

CODEN [USA]: IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

SJIF Impact Factor: 7.187

Online at: http://www.iajps.com

Research Article

TO DETERMINE THE EFFECTIVENESS OF TAMSULOSIN ON DECREASING BLADDER OUTLET OBSTRUCTION BY EVALUATING ITS INDIRECT EFFECT ON BLADDER WEIGHT

¹Dr.Farag Mohsen Saleh Abo Ali, ²Dr.Mohsin Mustafa Memon, ³Dr. M. Imran Malik, ⁴Dr. Sunil Kumar, ⁵Dr.Ahmad ullah, ⁶Dr.Shehzad Ali, ⁷Dr.Mehran Lashari, ⁸Dr.Junaid Habib Khan ⁹Prof.Murli Lal

> ¹Lecturer in Urology SIUT Karachi, E-mail: farag_ye@hotmail.com, ²Lecturer in Urology SIUT Karachi, E-mail: mmemon82@hotmail.com,

³Consultant Urologist FCPS, E-mail: drmalik_imran@yahoo.com,

⁴Assistant Professor in Urology JMC Khuzdar Balochistan, E-mail: sunilpanjwani28@yahoo.com,

⁵Consultant Urologist FCPS) E-mail: dr.ahmadullah8282@gmail.com,

⁶ Urologist in Syed Abdullah Shah Institute of Medical Sciences Sehwan,

E-mail: shahzadsehwani@yahoo.com,

⁷Urologist in Syed Abdullah Shah Institute of Medical Sciences Sehwan,

E-mail: dr.meni@yahoo.com,

⁸Ex-Associate Professor in King Edward Medical Academy, Lahore Drjunikhan@gmail.com, ⁹Professor of Urology SIUT Karachi, E-mail: chhabriam@yahoo.com

Article Received: April 2021	Accepted: April 2021	Published: May 2021
Abstract:		
Introduction: Urinary Bladder wall thickness. (Benign Prostate Enlargement) in compensate		th urinary outlet obstruction caused by BPE
Aim: The purpose of the study was to determ its indirect effect on bladder weight.		using bladder outlet obstruction by evaluating
Materials and Methods: The material in this s symptoms (LUTS) caused by benign prostatic were also the value of (IPSS) $IS \ge 8$ points, PM took Cap Tamsulosin 0.4 mg once daily and th 24 week. The parameters for evaluations was weight, and the secondary were assessments of residual volume (PMRV), as well along with the	enlargement, who had not been treated for t RV (post-void residual urine volume) <100ml, he evaluation parameters during the research primary and secondary. Primary parameter w f IPSS score, the quality-of-life determination he determination of the number and strength of	the previous 3 months. The inclusion criteria (PSA) $<$ 4nanogram/ml. The enrolled patients were measured at time intervals of 4, 12 and was the (UEWB) ultrasonic estimated bladder in (IPSS -QoL), and the amount of post-voided of adverse reactions.
Results: At the time of the enrollment of the pa 20.97, and IPSS-QoL 5 points. After 24 weeks 6ml, IPSS 7 Point and the IPSS-Quality of L (standard deviation and arithmetic mean) and effects (Dizziness 3% and ejaculation probled discrimination of the transmit	of management, the values were the following ife 2 point. The obtained outcomes of this st analytical statistics by using Student's t-test j	g: the arithmetic mean of UEWB 30g, PMRV tudy were processed by descriptive statistics for dependent (paired) sample. The drug side
discontinuation of the treatment. Conclusion: We conclude that UEBW is a relia the effect of medical therapy for BPE via its in		BPE. Moreover, it can also be used to monitor

Key words: Benign Prostatic Enlargement, Tamsulosin, Ultrasound Bladder Wall Thickness, Ultrasound Estimated Bladder Weight.

Farag Mohsen Saleh Abo Ali et al

Corresponding author:

Farag Mohsen Saleh Abo Ali, Lecturer in Urology SIUT Karachi, E-mail: farag_ye@hotmail.com,

Please cite this article in press Farag Mohsen Saleh Abo Ali et al., **To Determine The Effectiveness Of Tamsulosin On Decreasing Bladder Outlet Obstruction By Evaluating Its Indirect Effect On Bladder Weight..,** Indo Am. J. P. Sci, 2021; 08(05).

INTRODUCTION:

Bladder outlet obstruction (BOO) in men due to enlarged prostate has presented clinical problem and health burden throughout medical history. Prostatic enlargement affects approximately 50 % of men sixty years old and some estimate the prevalence to be approximately 80% by age 80 years 1. Benign prostate enlargement/Hypertrophy (BPE/BPH) is characterized by increase in size of prostate, lower urinary tract symptoms (LUTS) and Bladder outlet obstruction (BOO). Lower urinary tract symptoms can be caused by problems other than BPH (e.g. urethral stricture, bladder neck stenosis etc.). Men without LUTS can still have BOO(silent obstruction), which may alter bladder or kidney function and may lead to renal failure .

BOO leads to a variety of structural and functional changes in the bladder wall muscle, as a positive compensatory response in order to overcome the resistance to bladder emptying.

Currently, there are many treatment options available for management of BOO due to prostatic enlargement including pharmacologic therapy, which include alpha blockers and $5-\alpha$ reductase inhibitors, minimal invasive procedures such as laser prostatectomies, transurethral hyperthermia, ultrasonic radiofrequency ablation and surgical intervention. Highly selective Alpha -adrenergic receptor antagonists are considered to be the first line drugs when pharmacologic therapy is indicated 2. They act by decreasing smooth muscle tone in bladder neck and the prostate, leading to decrease in tension on the bladder wall, consequently decreasing the detrusor muscle hypertrophy and bladder weight.

BOO can be assessed and diagnosed by many methods. Clinically, patient symptoms can be assessed by questionnaire method. Several questionnaires have been developed to assist in the identification of patients with symptoms of subvesical obstruction. The two commonly used ones are

the International Prostate Symptom Score and the AUA Symptom Score³. Uroflowmetry is carried out to determine how fast urine flows out of the urinary bladder. Ultrasound is used in addition to determine bladder emptying through measuring post-void residual urine and may give additional information about associated causes for obstruction such as vesical stones etc. All these methods are indirect evidence of BOO and not specific to benign prostatic enlargement. Urodynamic study (pressure/flow) is the gold standard method for diagnosing bladder outlet obstructions. However, this method is invasive, costly and hence not commonly available. Moreover, it has certain morbidity such as urinary tract infection, urinary retention, gross hematuria and fever. Therefore, efforts have been made to find a less invasive alternative method to diagnose BOO.

A promising new technique to diagnose BOO objectively is ultrasound estimated bladder weight (UEBW)⁴. This technique is simple, require only an ultrasound machine ⁵. It measures bladder wall thickness /volume, thus calculating bladder muscle weight. Bladder muscle weight reflects the amount of detrusor muscle, which in turn depends upon the amount of work detrusor muscle has to do. Consequently, if alpha blockers are effective in reducing BOO, it leads to less work by detrusor muscle, resulting in decreased muscle mass, and thus it can be measured objectively by this technique.

Many studies have been done that prove the efficacy of Tamsulosin in the management of sub-vesical obstruction caused by BPH ⁶. The parameters used to assess the efficacy were mostly subjective in nature (questionnaire)or nonspecific (Uroflowmetry). Snjezana Milicevic published a study describing marked reduction in ultrasound estimated bladder weight in response to Tamsulosin therapy in a small number of patients ⁷. However, there are no other studies reported so far on this subject.

This study aims to determine the efficacy of highly selective α -blocker, Tamsulosin, in reducing

subvesical obstruction by ultrasonic measurement of change in bladder weight in a larger number of patients to further validate the findings of a single published study prior to recommending it as an assessment method for routine use in clinical practice.

2. MATERIALS AND METHODS:

2.1 Study Design

Quasi experimental study (before and after study). Based on the hypothesis that there is significant decrease in bladder weight after starting oral treatment with highly selective alpha1-a blockers Tamsulosin. **2.2 Study place**

Outpatient department of Mayo hospital, Urology unit I & II. MHL is a teaching tertiary care institute attached with King Edward Medical University, Lahore.

2.3 Durations of the study

The study period was 6 months Sample size Sample size was 63.

Sample size was calculated using the formula: $n = z^2 pq/d^2$, where, n =total sample size z=1.28(for 80% confidence level).

p= 57.7 % (percentage of change in bladder weight pre-and post-medication) (7) q=100-p=43% d=8(precision and permissible errors) n= (1.28) ²×57x43

(8)²

N=63.

Sample Technique

Non-probability consecutive sampling

Selection criteria Inclusion criteria

- Males above 45 years of age presenting with LUTS.
- Patients who haven't been treated for LUTS within the last 3 months as determined by patients" symptoms history.
- IPSS (International Prostate Symptom Score) ≥8, calculated by using the IPSS scoring system.
- Post-void residual urine volume (PVR) ≤100 on ultrasound assessment. • PSA ≤4 Nano gram/ml.

Exclusion criteria

- i. Patients who are already on Tamsulosin therapy on history or has been on Tamsulosin therapy for in the last 3 months.
- ii. Patients who have undergone any prostate surgery before presentation.

- iii. Patients who have a history of bladder outlet obstruction due to other causes (bladder stones, Tumors, stricture urethra).
- iv. Patients having neurogenic bladder dysfunction on history and physical examination.
- **v.** Patients presenting with LUTS caused by biopsy proven prostatic cancer.

Data Collection Procedure

- Patients of BPH presented to Urology outpatient department of unit I&II fulfilled inclusions criteria were enrolled in this study.
 At presentation patients' history and physical examination findings including DRE as well as PSA were entered into a case report form.
- Patients were given capsule Tamsulosin 0.4mg orally once daily at bedtime.
- Patient's data were recorded at baseline, at 4th, 12th and 24th weeks.
- At each visit, UEBW, IPSS, PVR, QOL score were recorded.
- Ultrasound estimated bladder Wight was measured by employing the formula
- :

$$UEBW = \frac{4\pi}{3} \left(\left(\sqrt[3]{\frac{3V}{4\pi}} \right) + D \right)^3 - V$$

Where UEBW= Ultrasound Estimated Bladder Weight, V= mean bladder volume, D= mean value of detrusor muscle thickness. π = 3.14 (7)

Detrusor thickness: was measured by a single operator with 6-10 MHz linear multifrequency probe in all the patients in the supine position, on the anterior side in medial line, with at least three measurements done at the distance of 1 cm each between them, whereby the mean value will be taken as detrusor thickness(D).

<u>Bladder volume</u>: Bladder volume was measured using ultrasound with 3-5 MHz probe by single operator and calculated with the following formula: Bladder height \times Bladder width \times Bladder depth \times 0.6.

2.8 Data analysis procedure

- Data were entered and analyzed in SPSS version 20.
- Quantitative variable like age were presented as mean ± SD. Qualitative variable like genders were presented as frequency and percentages.
- Effectiveness of Tamsulosin was assessed by paired T test, comparing premedication bladder weight and bladder weight at final follow up after

treatment. Tests were two tailed and level of significance was at <0.05.

- Age
- IPSS Quality of life
- PMRV

- **Study Variables**
- Bladder weight
- Ipss score

RESULTS AND OBSERVATIONS:

Table-1: Descriptive statistics of age (years)					
MEAN		63.79			
S.D		9.870			
RANGE		39			
MINIMUM		46			
MAXIMUM		85			

The mean age of patients was 63.79±9.87 years with minimum and maximum age of 46 and 85 years.

		Mean	S.D	Range	Minimum	Maximum	p-value
Bladder Weight	Baseline	55.13	9.50	37	38	75	< 0.001**
(g)	4 th week	43.37	8.20	34	28	62	_
	12 th	34.44	6.72	25	26	51	
	week						
	24 th						
	week	30.00	4.38	25	25	50	

Table-2: Comparison of bladder weight (g) at different visits

The mean bladder weight at baseline was 55.13 ± 9.50 g that was reduced to 30 ± 4.38 g at 24^{th} week after treatment. The mean reduction from baseline to 24^{th} week was significant, p-value $< 0.001^{**}$.

	,	Table-4: Comparison of IPSS score at different visits					
		MEAN	S.D	RANGE	MINIMUM	MAXIMUM	Р-
							VALUE
IPSS	Baseline	20.96	3.85	17.0	13.0	30.0	< 0.001**
SCORES	4 th week	13.35	4.07	16	5	21	
	12 th	8.16	4.29	18	0	18	
	week						
	24 th						
	week	6.17	3.89	15	0	15	

The IPSS at baseline was 20.97 ± 3.85 and at 24^{th} week was 6.17 ± 3.8 , the change in IPSS score from baseline to 24^{th} week was significant, p-value $< 0.001^{**}$

Table-5: Comparison of post-void residual urine at different visits							
		MEAN	S.D	RANGE	MINIMUM	MAXIMUM	P-VALUE
POST-VOID	Baseline	43.62	32.34	100	0	100	< 0.001**
RESIDUAL	4 th week	20.44	23.67	85	0	85	
URINE	12 th	9.84	16.87	60	0	60	
	week						
	24 th	6.59	12.89	50	0	50	
	week						

Post void residual urine average at baseline and 2th week was 43.62 ± 32.34 and 6.59 ± 12.89 (S.D is greater than mean due to large variation in data). The mean post residual urine was also significantly reduced from baseline to 24^{th} week p-value < 0.0001

Table-0. Comparison of Quanty of me at unrefent visits							
		MEAN	S.D	RANGE	MINIMUM	MAXIMUM	P-VALUE
QUALITY	Baseline	5.35	0.48	1	5	6	< 0.001**
OF LIFE	4 th week	3.33	0.95	2	2	4	
SCORE	12 th week	2.29	1.25	3	1	4	
	24 th week	1.62	1.61	4	0	4	

 Table-6: Comparison of Quality of life at different visits

Quality of life score at baseline was 5.35 ± 0.48 and at 24^{th} week was 1.62 ± 1.61 with significant change at last follow up, p-value < 0.001.

	Table-7: Compari VISITS	son of side effects at FREQUENCY	different visits PERCENTAGE	P-VALUE
POSTURAL	4 th week	1	1.58	
HYPOTENSION	12 th week	0	0	
	24 th week	0	0	
HEADACHE	4 th week	8	12.69	0.236
	12 th week	7	11.11	
	24 th week	4	6.34	
DIZZINESS	4 th week	2	3.17	0.368
	12 th week	1	1.58	
	24 th week	1	1.58	
NAUSEA/VOMITING	4 th week	3	4.76	0.097
	12 th week	1	1.58	
	24 th week	0	0	
RETROGRADE EJACULATION	4 th week	2	3.17	0.368
	12 th week	1	1.58	
	24 th week	1	1.58	

Postural hypotension was seen in 1(1.58%) case at 4th week, headache was reported by 8(12.69%) cases at 4th week, 7(11.11%) cases at 12th and 4(6.34%) cases at 12th week with no significant difference of headache from baseline to last follow up, p-value >0.05. At 4th week 2(3.17%) cases had dizziness, 1 (1.58%) case had dizziness at 12th and 24th week. There were 3(4.76%) and 1(1.58%) case told that they had Nausea / vomiting at 4th and 12th week respectively. Retrograde ejaculation was also occurred to 2(3.17%) at 4th week and 1(1.58%) patient at 12th and 24th week. There was no significant difference in complications at different visits, p-value > 0.05.

DISCUSSION:

Clinical benign prostatic enlargement BPE is characterized by lower urinary tract symptoms (LUTS) and bladder outlet obstruction (BOO). The prostate volume is approximately 20 ml after puberty and remains stable until after 5th decade (). Even though prostatic volume continues to increase in most men afterward, no clear co-relation exists between prostate size and BOO, as revealed by multiple studies. Quantifying prostatic enlargement by digital rectal examination or ultrasound is quick and simple as is LUTS (history, IPSS). However, measuring BOO is relatively difficult, currently only pressure- flow analysis by urodynamic is gold standard for measuring BOO. (^{8,9})

In routine clinical practice uroflowmetry, prostate size and postvoid residual urine are used to detect Boo. Multiple studies have shown that these tests are poor predictor of obstruction (¹⁰). Urodynamic study is time consuming, expensive and invasive .Efforts are undergoing to find an alternative screening test to diagnose BOO.

Ultrasound estimated bladder weight (UEBW) or bladder wall thickness (BWT) has been proposed as a non-invasive and cheap test to determine BOO. There is lot of controversy which parameter is better at defining BOO and matter is not resolved.

Rationality of using UEBW is that as prostatic enlargement causes intravesical obstruction, detrusor muscle has to work extra in order to overcome that obstruction. This overwork causes detrusor hypertrophy resulting in increased mass and hence weight up to a certain stage (compensatory phase). Beyond that stage if obstruction continues, detrusor may fail and mass regresses (decompensated phase).

Kojma et al were the first researchers to report that bladder weight increases upto four-fold in men with bladder outlet obstruction (BOO) as compared to nonobstructed men. They gave a cut off value Of 35 gram for calculating bladder weight. UEBW greater than 35 grams means obstructed bladder. $(^{11, 12, 13})$

Subsequently, researchers have tried to determine the effect of medical therapy on BOO objectively as manifested by decreased UEBW. Rationality is that if medical therapy (α blockers) effectively decreases outflow resistance, detrusor overwork should decrease, resulting in regression of detrusor hypertrophy and hence UEBW.

Melicevic (2012) reported results of a small study of 20 patients having BOO due to BPE. They had mean UEBW of 65gram at baseline, mean postvoid residual volume (PVRV) was 45 ml. Mean IPSS at base line was 15.6. Mean

IPSS-Quality of life (QoL) score at base line was 3.6 after 24 weeks of Tamsolusin therapy mean bladder weight decreased to 28 gm. At 24th week PVR was 21 ml. Mean IPSS after 24 weeks of alpha blockers therapy was 5.0. Mean IPSS-QoL improved to 1.0 after 24 weeks. (⁷)

In our study of 63 patients, mean UEBW was approximately 55 gm at baseline and it decreased to 30 gm after 24 weeks of Tamsolusin therapy. The decrease was statically significant (p<0.05). Mean PVRV in our study decreased from approximately 44 ml to 7ml (statically significant at p<0.05).

The mean IPSS score was 20 at base line and it improved to 7 after 24 weeks of Tamsolusin therapy

(statically significant at p<0.05). The mean IPSS-QoL was 5 at base line and it improved to 2 after 24 weeks of Tamsulosin therapy (statically significant at p<0.001).

Our study, with a much larger sample corroborates the finding of Mlicivic study (⁷). Its objectively shows that α -blockers, by decreasing BOO, cause decreased work load on detrusor muscle resulting in decreased detrusor mass and hence bladder weight over a period of time.

CONCLUSION:

We conclude that UEBW is a reliable, objective test for diagnosing BOO due to BPE. Moreover, it can also be used to monitor the effect of medical therapy for BPE via its indirect effect on detrusor hypertrophy.

REFERENCES:

- 1. F. Montorsi, D. Mercadante. Diagnosis of BPH and treatment of LUTS among GPs: a European Survey . Int J Clin 2013Feb; 67(2): 114-9.
- John Reynard, Simon Brewster, Suzanne Bier. Oxford Hand Book of Urology .3rd ed. Oxford .Oxford Medical publisher;2013.p.71-126.
- Paul Gleich, Bladder Outlet Obstruction Diagnosis and Medical Management. Consultant360 [Internet] 2012 Jan [cited 2012 jan;52(1)]. Available from: http://tinyurl.com/n5arj51.
- Housami F, Drake M, Abrams P.The use of ultrasound-estimated bladder weight in diagnosing bladder outlet obstruction and detrusor over activity in men with lower urinary tract symptoms .Indian J Urol 2009 Jan-Mar; 25(1): 105–109.
- Özlem Tokgöz, Hüsnü Tokgöz, İlker Ünal, Umut Delibaş, Sema Yıldız, Nuray Voyvoda, Zuhal Erdem. Diagnostic values of detrusor wall thickness, postvoid residualurine, and prostate volume to evaluate lower urinary tract symptoms in men. Diagn Interv Radiol 2012; 18:277–281.
- Alan J. Wein, Louis R. Kavoussi, Andrew C. Novick, Alan W. Partin, Craig A. Peters, Campbell-Walsh Urology.10th ed. Philadelphia

.Saunders Elsevier; 2011.p. 2597-2654

- Milicevic S. Tamsulosin efficiency in treatment of benign prostatic hyperplasia evaluated by determining bladder weight. Med Arh. 2012 Dec; 66(6): 391-395.
- 8. Meigs JR,Mohr B,Barry MI. Risk factor for clinical benign prostatic hyperplasia in a community based population of healthy aging men.JClinEpidemiol 2001;54:935-944.

- Berry SJ,Coffy DS, Wash PC, Ewing LL.The development of human benign prostatic hyperplasia with age .J Urol 1984 sep;132(3)474-9
- 10. Kortmann BBM, Floratos DL, Kiemeney LA et al. Urodynamic effects of alpha- adrenocapters blockers; a review of clinical trials. Urology 2003;62(1):1-9.
- 11. Kojima M, Inui E, OchiaiA, Naya Y, Ukimura O, Watanabe H. Ultrasonic estimation of bladder weight as a measure of bladder hypertrophy in

men with infravesical obstruction. Urology. 1996; 47: 942.

- Kojima M, Inui E, Ochiai A, Naya Y, Ukimura O, Watanabe H. Noninvasive quantitative estimation of infravesical obstruction using ultrasonic measurement od bladder weight. J Urol. 1997; 157:476-479
- 13. Kojima M, Inui E, Ochiai A, Ukimura O, Watanabe H. Quantitative evaluation of estimated bladder weight (EWB) in men with infravesical obstruction using transabdominal sonography