Dynamical and thermodynamical contributions to the mid-latitude atmospheric response to Arctic sea ice decline

Svenya Chripko (chripko@cerfacs.fr), Rym Msadek, Emilia Sanchez-Gomez, Laurent Terray, Laurent Bessières, Marie-Pierre Moine

CERFACS, Toulouse, France

PAMIP Workshop

March 30 – April 1, 2021

ECERFACS

APPLICATE.eu

Advanced prediction in polar regions and beyond **FRIMAVER**

Outline

1) Sea ice albedo reduction,

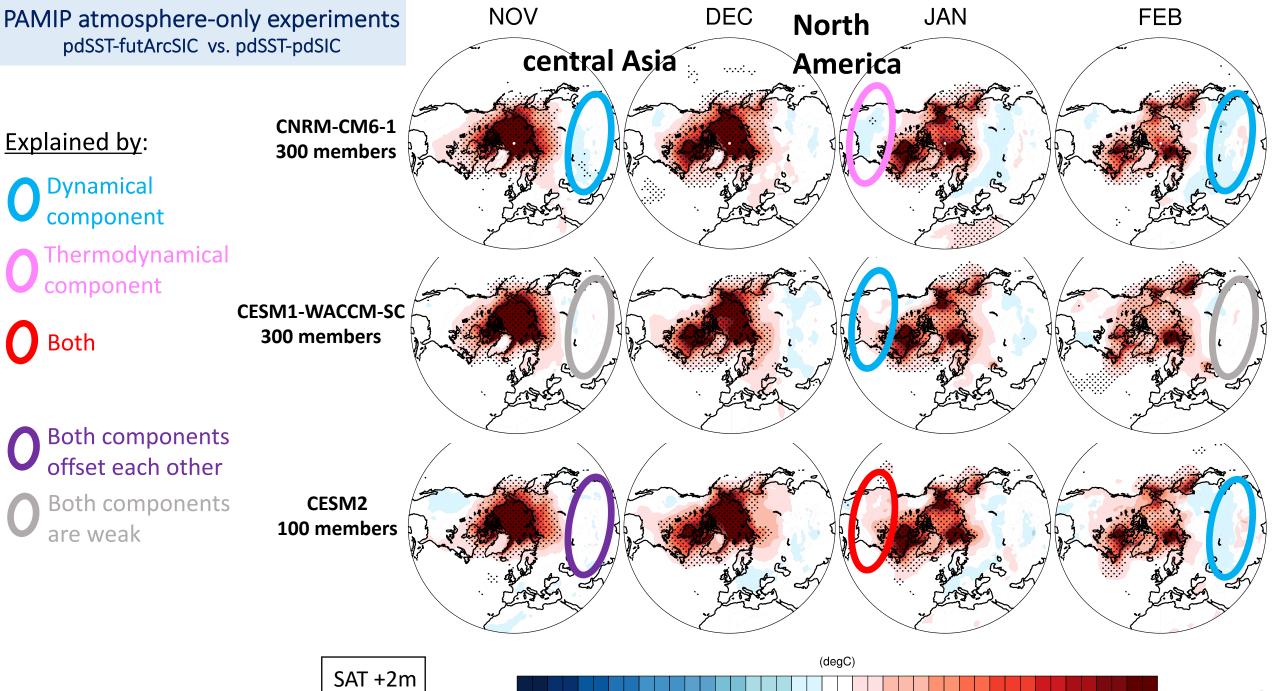
ocean/atmosphere coupled experiments,

strong & idealised sea ice loss,

CNRM-CM6 model

(PRIMAVERA project)

2) PAMIP atmosphere-only experiments, pdSST-futArcSIC vs. pdSST-pdSIC, forcing +2°C compared to pre-ind. period, 3 models: CNRM-CM6, CESM2, CESM1-WACCM-SC


1

Dynamical and thermodynamical decomposition

$$\Delta T_{tot} = \Delta T_{dynamical} + \Delta T_{thermodynamical}$$

→ Dynamical adjustment method,

based on a regional reconstruction of circulation analogs (Deser, Terray & Phillips 2016)

-3.5

-5

-4.5

-4

-3

-2.5

-2 -1.5 -1 -0.5 0

1.5

2

2.5

3

0.5

1

3.5 4

4.5 5

Summary

- **PRIMAVERA** Advanced prediction in polar regions and beyond
- → The large-scale circulation & mid-latitude SAT response to Arctic sea ice decline is significant with an idealized forcing (albedo experiment, strong sea ice loss) with CNRM-CM6 but hardly significant in the PAMIP atmosphere-only experiments with CNRM-CM6, CESM2 and CESM1-WACCM-SC
- → Strong variability of the response in the PAMIP atmosphere-only experiments with CNRM-CM6 (between different subsets of 100 members)

→ In the albedo experiments, the SAT response is first mainly explained by thermodynamical changes when sea ice loss is the strongest in November (i.e. advection of warmer oceanic air masses and/or changes in local surface energy budget) and the next months the cooling found over central Asia is explained by an intensification of the Siberian High (Chripko et al, in rev)

Questions

1. Are 100 members enough to detect a robust atmospheric response to Arctic sea ice loss associated with a warming of +2°C?

2. Are the roles of the dynamical and thermodynamical changes over the mid-latitudes (on the mean and extreme SAT) consistent across models ? Can they explain the regional differences among the PAMIP models ?

3. Do the models agree on a dynamically-induced Eurasian cooling ? What are the implications for the detectability of the WACE pattern in future observations ?