
Jarosław Maciejewski

Minecraft in FrameVR.io

FrameVR.io1 is an internet project that allows you to explore the virtual world, mainly using 
VR glasses, although you can also explore using a computer or smartphone. It offers, among others 
the ability to share your screen, voice chat, password protect your scenery, load your own scenery, 
add various resources to the scenery: pictures, 360° spheres, 360° movies, PDFs, videos, sounds or 
models. There are a lot of these options.

I decided that one of my scenery in FrameVR will  be based on the famous world from 
Minecraft,  which is available to the public at: https://framevr.io/nitro. It turned out that a lot of 
people were delighted with my idea of the scenery in FrameVR (which is very nice to me) and 
started asking me how I did it.

So, in this article, I want to provide a description from creating a world in Minecraft to 
exporting to FrameVR.
Here is a short list of my comments at the beginning:

• you should have Minecraft installed on your computer,
• you should have basic Blender skills,
• you should have node.js installed2, which should be added to the system path,
• it does everything on Windows, but should be done on other systems without any problems.

Step one: Minecraft

We will  start  our adventure with Minecraft,  but before we launch the game,  it  is  worth 
drawing a preview of our world on a piece of paper or in your head. Then we will know what to do 
in Minecraft and we will save ourselves time for unnecessary thinking about what else to add to the 
scenery. Our world should not be large, all elements placed reasonably so as to fit within the limit  
imposed by FrameVR for the environment, which is currently 15 MB.

Before you run Minecraft, I recommend installing the following plugins:
• Fabric API3 – API base for most other plugins,
• Fabric Mod4 – a plug that "connects" the above API to other plugins (with Fabric API it is 

required),
• Warp Mod Fabric5 – a plug-in that allows you to manage and navigate through a saved list 

of places,
• World Edit6 – a known plug that allows you to perform some operations more easily.

1 FrameVR.io - web page: https://framevr.io/ 
2 NodeJS - web page: https://nodejs.org/en/download/ 
3 Fabric API - web page: https://fabricmc.net/use/ 
4 Fabric Mod – web page:  https://www.curseforge.com/minecraft/mc-mods/fabric-api 
5 Warp Mod Fabric – web page:  https://www.curseforge.com/minecraft/mc-mods/the-warp-mod-fabric 
6 World Edit – web page:  https://www.curseforge.com/minecraft/mc-mods/worldedit 

https://framevr.io/
https://www.curseforge.com/minecraft/mc-mods/worldedit
https://www.curseforge.com/minecraft/mc-mods/the-warp-mod-fabric
https://www.curseforge.com/minecraft/mc-mods/fabric-api
https://fabricmc.net/use/
https://nodejs.org/en/download/
https://framevr.io/nitro


The above plugins are recommended but not required, however, it is worth making your work with 
Minecraft easier.

If we are ready, we have a plan, we know what we want to do, we run Minecraft (from the 
original instance in the latest version or Fabric instance), we go to the single player mode, we create 
a new world.

When  creating  a  new  world,  we  choose  the  following  options  (they  are  my 
recommendations):

• game mode: creative - access to all options,
• difficulty level: peaceful - all mobs are nice to us,
• allow cheats: enabled - we enable the possibility of entering commands in the chat,
• in Game Rules:

◦ World Updates:
▪ Advance time of day: off - turn off the automatic change of time of day
▪ Update weather: wyłączony - we turn off the automatic change of weather,
▪ Random tick speed rate: 1000 - we speed up the game time a bit,

◦ Drops - here we give everything off,
◦ Spawning - here we give everything off,

• More world options...
◦ Generate  structures:  on/off  -  it's  up  to  us  whether  we  want  to  generate  additional 

structures, e.g. villages,
◦ Bonus chest: disabled - we don't need it,
◦ World type: the type of map depends on us, I work on a super flat one.

If we set everything up in the options we wanted, we create the world and enter it.
We immediately enter two commands in the chat, i.e. the sky is always cloudless and we always 
have noon:

/weather clear

/time set noon

When creating our world, we keep the following tips in mind:
• there is no need to put text on the plates, because they will not be exported,
• we do not create full building structures, we delete those blocks that will not be visible to 

avatars because they will unnecessarily increase the size of the output file when exporting 
(Picture 1).



Picture 1: Empty spaces in the part invisible to avatars

For example, in the picture above, you can see a cross-section of the stand, where there are 
no blocks underneath - the space is empty there.

In general, my world in Minecraft looks like this:

Picture 2: My world in Minecraft #1



Picture 3: My world in Minecraft #2

Picture 4: My world in Minecraft #3



Picture 5: My world in Minecraft #4

Picture 6: My world in Minecraft #5



The characteristic rectangle made of gold ore blocks attracts attention (Picture  7). In my 
world, it marks the limits to which the planned idea is to be built.

If our work in Minecraft is ready, we are leaving the world and the game.

Step two: Mineways

The next step is export our Minecraft world to OBJ file that can be easily read by Blender.  
To do this, we need the Mineways program to reach this end point 7, which we download from the 
website, unpack the ZIP archive and run it. Although the program description in this thread is quite 
extensive,  the  program itself  is  easy  to  use.  I  recommend that  you close  other  memory eaters 
programs before exporting, because while exporting, we may get a message that the program was 
unable to reserve enough memory.

We start our steps in this program by loading our world into the program. We do this by 
clicking on 'File' in the top bar of the program and selecting 'Open World' (Picture 8). We will see 
here a list with the names of the worlds from Minecraft, so we choose our target from which we 
have made our world.

7 Mineways – web page:  
http://www.realtimerendering.com/erich/minecraft/public/mineways/downloads.html#downloadImgs 

Picture 7: The border of a sector of my world made of gold ore blocks

http://www.realtimerendering.com/erich/minecraft/public/mineways/downloads.html#downloadImgs


Picture 8: Select the world to be loaded into the program

Our world will be loaded into the program. We see everything from above.
Operating the program with the keyboard and mouse is very simple:

• -/+ or moving the mouse wheel - zooming the map,
• holding the left mouse button - moving the map,
• holding the right mouse button - selecting the area to be exported.

A message will appear (Picture 9), which will inform you that the depth level has been set 
by the program and will be changed. Click on OK.

On the map, we see a section of our world that is surrounded by the characteristic yellow 
lines that are actually gold ore blocks.

We  zoom  in  on  the  map  and  by  holding  down  the  right  mouse  button  we  make  the 
appropriate rectangle that will cover the area we want to export (Picture 10). We can improve this 
area, just zoom in on the map, move it to the selected border and use the mouse cursor (it should be  
changed to the icon for changing the vertical dimension) to change the borders of the purple area.
Be sure not to mark the yellow lines when selecting the area.



Picture 9: Successful world import into the program with a message

Picture 10: Selected area to be exported

In the upper part of the program window you will find two bars:
• Height - the maximum height is 255 and that is what the bar is set to. Up to this amount, the 

program will take into account the blocks set.
• Depth - this is the minimum height from which blocks will be considered.

Now we decide what textures are to be applied to the individual blocks from Minecraft.
To change it, click on 'File' => 'Choose Terrain File'. We have a list here with the names of the 
texture packs that are in the Mineways program folder (Picture 11). By default, the package used is 



'terrainExt.png',  so  if  we want  to  use  only  Minecraft  block  textures,  we don't  need  to  change 
anything here. Otherwise we can choose a different package from the list. The appearance of the 
individual texture packs can be found on the Mineways website (Documentation => Textures)8, 
where there are project links to the Sketchfab website and other preview images.

I use the terrainExt_JG-RTX256 package, which contains other higher resolution textures 
and which  are  pleasing to  the eye,  especially  since FrameVR is  dedicated  to  people  who will  
navigate the scenery wearing VR glasses.

You can add your own texture assets to the Mineways folder. On the website of this program 
you will find instructions on how to convert to a single file, where it basically comes down to 
issuing two commands on the command line.

Picture 11: Texture List

From the 'File' menu, select the 'Export for Rendering' option (Picture 12) and in the new dialog we 
choose the location and name of the file, where we want to save our OBJ file with the selected 
fragment of our work. For the file type, make sure the option: 'Wavefront OBJ, absolute (* .obj)' is 
selected.
After clicking on 'Save' another dialog box will appear with more options to choose from.

8 Mineways – website, texture -  http://www.realtimerendering.com/erich/minecraft/public/mineways/textures.html 

http://www.realtimerendering.com/erich/minecraft/public/mineways/textures.html


Picture 13: Pre-export options selection dialog

In this window (Picture 13):
• [1] click on the option: 'Export tiles for textures to', which will cause that all block textures  

will be saved separately to the 'textures' folder. If for some reason the field next to it is 
blurred, don't worry about it. This option also selects other options by default,

• [2] below the option described above there is an option: 'Texture output', where the options: 
RGB, A, RGBA should be selected,

• [3] 'Center model around the origin' should be marked,
• [4] 'Create block faces at the borders' should be marked,
• [5] 'Rotate model clockwise' should be set to '0' 'degrees',
• [6] 'Create files themselves' should be marked,

Picture 12: Selecting the Export for rendering



• [7] 'Export separate types' should be marked,
• [8] 'Material per family' should be marked,
• [9] 'Split by block type' should be marked,
• [10] 'Custom material' should be marked,
• [11] 'Create composite overlay faces' should be marked,
• [12] 'Use biome in center of export area' should be marked,
• [13] 'World coordinates selection volume' shows the coordinates of the selected area in the 

main program window,
• [14] We can decide ourselves whether we want the program to additionally create a ZIP file 

with all model files when exporting to OBJ,
• [15] 'Make each block...mm' - there should be a number1000,
• [16] 'Export lesser, detailed blocks' should be marked.

In fact, we don't have to bother with selecting the above options. Just compare your dialog 
with the picture and check [1], [9], make sure there is the right number in [15].

If everything is correct, click on 'OK'. The program will export our world to an OBJ file.

Picture 14: Message about successful export to file

When the whole process is finished, a message will be displayed (Picture 14), which shows 
statistics and a query whether it should appear every time when exporting to a file until we close the 
program completely. Click on 'No' and close the program.

An additional 3 items should appear in the OBJ file save location: an .obj file, a .mtl file,  
and a textures folder (Picture 15).



Picture 15: Exported OBJ 
file with textures

Step three: Blender

In Blender, we will process our model in more detail, add other objects and export it to a 
GLB file that is supported by FrameVR.

So we run Blender, delete the current content of the workspace, and import our OBJ model 
to Blender.  To do this,  select 'File'  => 'Import'  => 'Wavefront (.obj)'  from the menu, select the 
location where our OBJ model is located, click the 'Import OBJ' button (there is no need to change 
the settings on the right windows). Our model will be imported to Blender.

We change the way of displaying textures (key [Z] and then [2]) - 'Viewport shading' to 
'Material Preview'. Thanks to this, we can see the model with all textures regardless of the lighting 
(Picture 16).



Picture 16: Imported Minecraft snip to Blender

We move our object to set the starting point for the avatars on the surface of the block. In 
Blender, this is easy as the starting point will be the 'World Origin' point indicated by two clearly 
intersecting lines:  red and green. Initially,  this  point is  also indicated by the locate,  move, and 
transform cursor. Let's also set the appropriate height - with the 'super flat'  world we lower the 
object.

On the 'Object Properties' tab in the 'Transform' section, where we have given the location of 
the object, let's make sure that X, Y and Z contain only integers.

Picture 17: A snippet of the Minecraft world from a different perspective



If we look at our world, we will notice some imperfections, e.g. a tram shelter made of glass 
is not transparent, the water is too blue, there are black borders around the flowers. It doesn't look 
very interesting.

To fix this problem, for these textures you should set 'Alpha' as the image referring to 'Base 
color' and 'Blend Mode' set to: 'Alpha Clip' or 'Alpha Blend' (Picture 18).

Picture 18: Set an image as transparency + blending mode and shadows

If we have a lot of textures, it is quite a time-consuming task.
That's why I'm here to help - we'll use my Python script to fix this problem. To do this, go to 

the 'Scripting' tab and create a new window. Paste my script in this window and run it (Script 1).



import bpy

import re

from mathutils import *

from math import *

for material in bpy.data.materials:

    material.shadow_method = 'NONE' 

    

    #When method=BLEND

    arrayMaterials = [".*water_still.*", ".*water_flow.*", ".*glass.*", 

".*sunflower_back.*", ".*sunflower_front.*", ".*trapdoor.*"]

    for am in arrayMaterials:

        if re.match(am, material.name):

            links = material.node_tree.links

            nodes = material.node_tree.nodes

            material.blend_method = 'BLEND'

            links.new(nodes['Principled BSDF'].inputs['Alpha'], nodes['Image 

Texture'].outputs['Alpha'])

    #When method=CLIP

    arrayMaterials = [".*leaves.*", ".*fern.*", ".*dandelion.*", ".*blue_orchid.*", 

".*allium.*", ".*azure_bluet.*", ".*tulip.*", ".*oxeye_daisy.*", ".*cornflower.*", 

".*lily_.*", ".*torch.*", ".*vine.*", ".*sunflower_top.*", ".*lilac.*", ".*peony.*", 

".*campfire_fire.*", ".*campfire_log.*", ".*soul_campfire.*", ".*grass.*", 

".*sunflower_bottom.*", ".*MW_bed.*", ".*bamboo_small_leaves.*", 

".*bamboo_large_leaves.*", ".*ladder.*", ".*stonecutter.*", ".*bell.*", ".*cobweb.*", 

".*_door_.*", ".*rail.*", ".*rose.*", ".*poppy.*", ".*scaffolding.*", "sugar_cane", 

"sea_pickle", ".*fungus.*", ".*coral.*", ".*kelp.*", ".*mushroom.*", "crimson_roots", 

"warped_roots", "nether_sprouts", "iron_bars", "chain", ".*lantern.*"]

    for am in arrayMaterials:

        if re.match(am, material.name):

            links = material.node_tree.links

            nodes = material.node_tree.nodes

            material.blend_method = 'CLIP'

            links.new(nodes['Principled BSDF'].inputs['Alpha'], nodes['Image 

Texture'].outputs['Alpha'])

    #Show backface

    arrayMaterials = [".*water_still.*", ".*water_flow.*", ".*sunflower_back.*", 

".*sunflower_front.*"]

    for am in arrayMaterials:

        material.show_transparent_back = False

        if re.match(am, material.name):

            material.show_transparent_back = True

Text 1: Transparency bug fix script [file: blender_script_set_alpha.txt]



This code fixes the mentioned errors with the transparency of objects, turns off shadows.
If you go back to the 'Layout' view you will see that the problems will disappear.

However, I encourage you to use 'Fly Navigation' and fly around the entire facility, looking 
for such strange errors related to the incorrect display of textures and fixing them manually. If you 
see something like this, add it to the script above, but I tried to include all known block textures in  
this script.

Only execute this script when you delete the old object and add a new object exported from 
Mineways.

If we have fixed bugs related to an object, we can add other objects to our Blender project,  
e.g. for me they are avatar Alex, avatar Steve, Golem, cat.

If in FrameVR our avatar cannot enter, for example up the stairs, add a transparent 'plane' as 
a board to climb at a certain angle (0-60°).

If we added objects, placed them appropriately on the scenery, etc., then we have to do one 
more operation. When we add such scenery to FrameVR.io, black spots can be noticed in some 
places (Picture 19), that appear on the underside of objects.

To solve this problem, add the original material image as 'Emission' to each material, and set 
'Emission Strength' to 0.3.
With many materials and many objects it is quite a time consuming task, so I come again with my 
own script (Script 2), which will quickly achieve this goal.
So we switch back to the tab: 'Scripting', delete the previous content, paste the following content 
and run:

Picture 19: Black spots



import bpy

from mathutils import *

from math import *

for objects in bpy.data.objects:

for materialSlots in objects.material_slots:

if not materialSlots.name:

continue

material = bpy.data.materials[materialSlots.name]

material.shadow_method = 'NONE' 

material.show_transparent_back = False

if hasattr(material.node_tree, 'nodes'):

nodes = material.node_tree.nodes

if hasattr(nodes, 'Image Texture'):

links = bpy.data.materials[materialSlots.name].node_tree.links 

links.new(nodes['Principled BSDF'].inputs['Emission'], nodes['Image 

Texture'].outputs['Color'])

nodes['Principled BSDF'].inputs['Emission Strength'].default_value = 0.3

Text 2: Script that sets emission in objects [file blender_script_set_emission.txt]

We can execute this code every time we add a new object to our project.
If our Blender project is ready, it is worth saving it in Blender format to have the project 

ready for editing. Before saving, don't forget to enable the option to pack everything into one file 
('File' => 'External Data' => 'Automatically Pack Into .blend').
The export to a GLB file looks like this:

• in the 'File' menu select: 'Export', and then: gITF 2.0 (.glb/.gltf),
• In the new window, indicate the location where the file is to be saved,
• Make sure that on the right side in 'Format' we have the selected option 'gITF Binary (.glb),
• Click on the button 'Export gITF 2.0',
• Our project will be saved to a single GLB file.

Step Four: Compressing the GLB File

The maximum size of a GLB file that can be loaded as an environment on FrameVR is 15 
MB. If our file has a larger size, we either reduce the number of elements on the Minecraft map and 
in Blender  project,  or we can try to  reduce the size of the original  GLB using a  compression 

Picture 20: GLB file



algorithm created by Google. The Draco algorithm add-on comes to the rescue, which is executed 
as a Node.js script called gltf-pipeline.

Open a command prompt in the folder where the GLB file is located and enter the command 
to install the gltf-pipeline project available throughout the system:
npm install -g gltf-pipeline

Then enter and confirm the following command:

for /L %i in (0,1,10) do gltf-pipeline -i minecraft.glb -o output_draco_%i.glb -d --

draco.compressionLevel %i

where:

• minecraft.glb - the name of the input file, which must be the same as the one exported using 
Blender.

• output_draco_%i.glb  –  output  file  name,  %i  it  serves  as  information  on  the  level  of 
compression used.

We are waiting for the command to be carried out.



In the example image above, we can see the original GLB file exported from Blender and 11 
other additional files that are output files using Draco compression. A compression ratio of 0-10 is 
given at the end of each name.

You can already see that with the compression at the 0 level, Draco reduces the original 
GLB file by almost 50%, then to level 2 we get even smaller files slightly over 50%. However, from 
levels 3 to 10, compression doesn't really matter that much.
Therefore, I even recommend modifying the above command to generate GLB with compression
Draco at 0-2 [change from (0,1,10) to (0,1,2)].

If, even after compression using the Draco algorithm, our GLB file is too large, consider 
changes  in  the  Blender  project,  which  will  reduce  the  size  of  the  GLB  file.

Attachments (embedded in this PDF):
• blender_script_set_alpha.txt
• blender_script_set_emission.txt
• commands.txt

Picture 21: Original GLB file + GLB files after Draco compression


import bpy
import re
from mathutils import *
from math import *

for material in bpy.data.materials:
	material.shadow_method = 'NONE' 
	
	#When method=BLEND
	arrayMaterials = [".*water_still.*", ".*water_flow.*", ".*glass.*", ".*sunflower_back.*", ".*sunflower_front.*", ".*trapdoor.*"]
	for am in arrayMaterials:
		if re.match(am, material.name):
			links = material.node_tree.links
			nodes = material.node_tree.nodes
			material.blend_method = 'BLEND'
			links.new(nodes['Principled BSDF'].inputs['Alpha'], nodes['Image Texture'].outputs['Alpha'])

	#When method=CLIP
	arrayMaterials = [".*leaves.*", ".*fern.*", ".*dandelion.*", ".*blue_orchid.*", ".*allium.*", ".*azure_bluet.*", ".*tulip.*", ".*oxeye_daisy.*", ".*cornflower.*", ".*lily_.*", ".*torch.*", ".*vine.*", ".*sunflower_top.*", ".*lilac.*", ".*peony.*", ".*campfire_fire.*", ".*campfire_log.*", ".*soul_campfire.*", ".*grass.*", ".*sunflower_bottom.*", ".*MW_bed.*", ".*bamboo_small_leaves.*", ".*bamboo_large_leaves.*", ".*ladder.*", ".*stonecutter.*", ".*bell.*", ".*cobweb.*", ".*_door_.*", ".*rail.*", ".*rose.*", ".*poppy.*", ".*scaffolding.*", "sugar_cane", "sea_pickle", ".*fungus.*", ".*coral.*", ".*kelp.*", ".*mushroom.*", "crimson_roots", "warped_roots", "nether_sprouts", "iron_bars", "chain", ".*lantern.*"]
	for am in arrayMaterials:
		if re.match(am, material.name):
			links = material.node_tree.links
			nodes = material.node_tree.nodes
			material.blend_method = 'CLIP'
			links.new(nodes['Principled BSDF'].inputs['Alpha'], nodes['Image Texture'].outputs['Alpha'])

	#Show backface
	arrayMaterials = [".*water_still.*", ".*water_flow.*", ".*sunflower_back.*", ".*sunflower_front.*"]
	for am in arrayMaterials:
		material.show_transparent_back = False
		if re.match(am, material.name):
			material.show_transparent_back = True


Nitro
Załącznik pliku
blender_script_set_alpha.txt


import bpy
from mathutils import *
from math import *

for objects in bpy.data.objects:
    for materialSlots in objects.material_slots:
        if not materialSlots.name:
            continue
        material = bpy.data.materials[materialSlots.name]
        material.shadow_method = 'NONE'	
        material.show_transparent_back = False
        if hasattr(material.node_tree, 'nodes'):
            nodes = material.node_tree.nodes
            if hasattr(nodes, 'Image Texture'):
                links = bpy.data.materials[materialSlots.name].node_tree.links	
                links.new(nodes['Principled BSDF'].inputs['Emission'], nodes['Image Texture'].outputs['Color'])
                nodes['Principled BSDF'].inputs['Emission Strength'].default_value = 0.3	


Nitro
Załącznik pliku
blender_script_set_emission.txt


npm install -g gltf-pipeline

for /L %i in (0,1,10) do gltf-pipeline -i minecraft.glb -o output_draco_%i.glb -d --draco.compressionLevel %i

for /L %i in (0,1,2) do gltf-pipeline -i minecraft.glb -o output_draco_%i.glb -d --draco.compressionLevel %i

Nitro
Załącznik pliku
commands.txt


	Jarosław Maciejewski
	Minecraft in FrameVR.io

