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PREFACE

This document is the fourth in a series of guides aimed at promoting best practice in different aspects of archaeo-
logical science, produced by members of the Science and Technology in Archaeology and Culture Research Center 
(STARC) of The Cyprus Institute. The current document was largely developed in the context of two projects: People 
in Motion and Promised. The implementation of People in Motion involved the laboratory study of a large commin-
gled and partially burned skeletal assemblage from Byzantine Amathus, Cyprus, which came to light in the context 
of excavations led by the Cypriot Department of Antiquities. Osteological work on this assemblage was co-fund-
ed by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation 
Foundation (EXCELLENCE/1216/0023). In addition, Promised aims at promoting archaeological sciences in the 
Eastern Mediterranean, with funding from the European Union’s Horizon 2020 research and innovation programme 
under grant agreement No 811068. 

The study of burned skeletal remains is particularly challenging due to the extensive alteration of the bones, manifest-
ing as warping, discoloration, shrinkage, and fracturing. These macroscopic changes express underlying structural and 
chemical alterations. As a result, the application of traditional osteological methods (morphological, metric, chemical, 
molecular, histological and others) is largely inhibited or should be extremely cautious. Nonetheless, the study of 
burned skeletal assemblages can offer unique insights to funerary practices and technologies, as well as the manipu-
lation of dead bodies. In line with the above, the aim of this guide is to cover various aspects of the study of burned 
skeletal assemblages. It should be seen as a supplement to the ‘Basic guidelines for the excavation and study of human 
skeletal remains; STARC Guide no. 1 ’ and the ‘Excavation and study of commingled human skeletal remains; STARC Guide 
no. 2’. The current guide is meant to serve only as a general outline and the described field and lab-based methods 
should be modified depending on the context and characteristics of each assemblage under study. 

A number of excellent volumes have been published in the past years, compiling experimental and case studies on the 
retrieval and examination of burned skeletal remains in archaeological and forensic contexts (Fairgrieve 2008; Schmidt 
and Symes 2015; Symes et al. 2012; Thompson 2015). Much of the information presented here has been drawn from 
these resources, as well as from other publications and the author’s professional experience. References are given 
throughout the current document but the aim is by no means to provide an exhaustive account of the literature.

This document is an open resource and it is anticipated to be updated at regular intervals. I would greatly appreciate 
any feedback and recommendations for future improvement.*

Efthymia Nikita

* For feedback/recommendations, please contact me at e.nikita@cyi.ac.cy
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INTRODUCTION

Cremation has been a diachronic practice in many different cultures since prehistory, while bodies may also be exposed 
to (lower) degrees of heat during mortuary practices such as cleansing fires. Besides funerary practices, a human body 
may be exposed to fire as a result of different events, such as car or aircraft accidents, bombings, natural disasters, 
homicides and suicides. In forensic contexts fire can also be used to destroy evidence and hinder the identification 
of the deceased. For these reasons, any an-
thropologist working in circumstances where 
burned skeletal remains may be encountered 
should possess a general understanding of 
the physical and biochemical alterations bone 
and teeth undergo when exposed to varying 
degrees of heat. The study of burned human 
remains poses special challenges compared 
to the anthropological study of non-thermally 
altered bones as exposure to heat produces 
macroscopic color changes, shrinkage, frag-
mentation, and warping, as well as microscop-
ic structural and chemical changes to bones. 
To ensure that these alterations are precisely 
analysed and interpreted in their respective 
forensic or bioarchaeological context, in turn, 
requires a specific approach in the field and in 
the laboratory.

Fire Dynamics
Fire is an oxidation reaction that generates heat and 
light. There are three requirements in order to make a 
fire (the so-called ‘fire triangle’): heat, oxygen, and fuel 
(DeHaan 2002, 2015). Heat involves raising the tem-
perature of an object to the lowest temperature at 
which it will sustain combustion. The amount of oxygen 
must be such that can sustain combustion. Finally, the 
fuel refers to the combustible materials that are pres-
ent and capable of sustaining the fire. The best ‘fuel’ in 
the human body is subcutaneous fat (DeHaan and Nur-
bakhsh 2001). The available amount and interaction of 
the parts of the fire triangle will determine the duration 
and intensity of the fire and, therefore, its impact on a 
body (Devlin and Herrmann 2013).

BONE RESPONSE TO FIRE

Even when subjected to extreme burning, 
human bodies cannot be completely de-
stroyed (Bass 1984; Brickley 2007; Eckert et 
al. 1988; Zana et al. 2017). In general, the ef-
fects of fire on human tissue vary based on the 
proximity of the body to the fire, the tempera-
ture reached, and the duration of exposure to 
the fire (Fairgrieve 2008). It should be remem-
bered that during the thermal exposure of a 
body, these parameters alter as temperature, 
heat and ventilation conditions can fluctuate 
dramatically (DeHaan 2015). In addition, the 
preincineration condition of bone, that is, the 
preservation of blood, marrow, moisture, and 
fat, also influences heat-induced alterations 
(DeHaan and Nurbakhsh 2001).

The temperature reached during heat expo-
sure depends on the amount of oxygen avail-
able, the size and volume of the body, the clothing and other layers surrounding the body, and others (Binford 1963; 
Christensen 2002; Symes et al. 2015). Soft tissues surrounding the bones have a protective effect as they limit the 
transfer of heat and restrict oxygen supply to the skeleton. This protective effect depends upon the thickness of soft 
tissues, thus bones surrounded by thinner layers of soft tissues will be exposed to higher temperatures and levels of 
oxygen before bones protected by thicker soft tissue layers, which will take longer to be affected by the fire (Fairgrieve 
2008; McKinley 2015). 

Myth busting
‘Spontaneous combustion’ and the ‘exploding skull’ 
are two myths regarding the human body’s response to 
fire. The former implies the near complete cremation of 
human bone under unexpected circumstances. Exper-
imental studies have shown that while humans do not 
spontaneously combust, they are particularly combus-
tible under certain circumstances, such as when bones 
are osteoporotic (Christensen 2002; DeHaan and Nur-
bakhsh 2001). With regard to the ‘exploding skull’, con-
trary to popular opinion (Heglar 1984; Rhine 1998), the 
cranium does not explode when exposed to prolonged 
heat. Pope and Smith (2004) found that numerous fac-
tors may fracture a burned skull, such as falling debris, 
the handling of burned remains, the means by which the 
fire is extinguished, and others, and these external events 
is what creates the appearance of the exploded skull.
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A typical outcome of heat-induced shrinkage of muscles, tendons and ligaments is the arrangement of the body 
in the so-called ‘pugilistic posture’ (Symes et al. 2015; Ubelaker 2009). The ‘pugilistic posture’ will provide further 
protection for some anatomical regions, hence the pattern described in the previous paragraph may not be observed 
(Thompson 2015). Figure 1 presents the pattern of thermal destruction of a skeleton at pugilistic posture, indicating 
the initial, secondary, and final areas to be affected by burning (from Symes et al. 2015). It must be stressed again 
that Figure 1 provides only a very general pattern, while in reality the sequence of skeletal fire alteration is affected by 
many parameters, such as the position of the body on the fire, the pre-burning condition of the body, the size of the 
individual, prior pathological conditions, and many others (Symes et al. 2012).

Figure 1. Sequence of skeletal affliction by fire in pugilistic posture (adapted from Symes et al. 2015 Figure 2.7)

A literature review regarding the stages of heat-induced bone transformation has been carried out by Mayne Correia 
(1997) and reviewed by Thompson (2003, 2004). Although both authors identify the same four stages, they occa-
sionally disagree about the temperature intervals at which each stage corresponds. The first stage, dehydration, is 
characterised by the breakage of the hydroxyl bonds in hydroxyapatite crystals and water loss, leading to subsequent 
weight reduction and fracturing (Mayne Correia 1997; Thompson 2003). Using scanning electron microscope (SEM) 
analysis, dehydration is characterized by bubbles in the external lamellae and cracking (Mayne Correia 1997). Both 
authors agree that dehydration occurs approximately between 100oC and 600oC. The second stage, decomposition, 



5

takes place at 500-800oC according to Mayne Correia (1997) and at 300-800oC according to Thompson (2003, 
2004). During this stage, organic components decompose and this results in color change, weight loss, reduction 
in mechanical strength, and changes in porosity. SEM analysis shows an increase in the diameter of the crystals and 
the lacunae but bone structure is still recognisable (Mayne Correia 1997). In the third stage, inversion, there is an 
increase in crystal size, the carbonates are 
removed and magnesium is released, caus-
ing additional weight loss (Mayne Correia 
1997). Under SEM, cracks are wider and the 
matrix becomes increasingly more homoge-
neous, while lacunae become less visible. The 
inversion stage occurs between 700oC and 
1100oC according to Mayne Correia (1997) 
and between 500oC and 1100oC based on 
Thompson (2004). The last stage, fusion, is 
characterised by the melting and coalescence 
of the crystal matrix (Thompson 2003). An 
increase in crystal size can be observed, and 
considerable bone dimensional reduction 
and an increase in mechanical strength take 
place (Thompson 2004). This stage occurs 
at 1600oC+ according to Mayne Correia 
(1997) but merely at 700oC+ according to 
Thompson (2004). Note that these four 
stages ‘in themselves do not explain all of the 
fundamental causal changes occurring within 
hard tissues, and to date are entirely theoreti-
cal’ (Thompson 2004, p. 203).

Commercial cremations versus outdoors pyres
Given the importance of the environment in which fire exposure takes place, it is relevant to outline how modern 
cremations compare to outdoors pyres. Modern commercial cremations take place in gas-fired ovens, where the 
main chamber is lined with heat-resistant refractory bricks (Davies and Mates 2005). The body is placed inside a 
body bag, a cardboard box, or a wooden coffin. The temperature is typically 870°C–980°C and the average duration 
2–2.5 hours (Rosen 2004). Afterwards, the burned remains are pulverized to reduce further their volume, leaving 
little diagnostic bone (Symes et al. 2013). By contrast, in outdoors pyres, which require human intervention and con-
stant heat sources, most of the heat is lost to the atmosphere, a constant external heat source is necessary, and the 
temperature cannot stay uniform throughout the process. A further complicating factor is the wind, the strength 
and directionality of which will affect heat distribution and temperature maxima. In addition, the heat is directed to 
the body only from below, whereas in the cremator heat exposure is multi-directional (McKinley 1994a). Once the 
main pyre structure burns down, the remains will rest on the hot ash bed, and the cremation may continue for sev-
eral more hours (McKinley 2006). Weather conditions play an important role in the duration for which the pyre will 
burn: strong winds will make the pyre burn faster but unevenly, while rain will reduce the pyre temperature or even 
extinguish it (McKinley 2015). The vegetation surrounding the pyre is also important: dry vegetation will increase fire 
temperature but reduce its duration due to the fast consumption of the fuel; oily vegetation will take longer to ignite 
and the pyre duration will be prolonged, while with wet vegetation, a fire may not ignite (Symes et al. 2013).

Carbonization
Organic materials contain high proportions of carbon 
atoms and experience carbonization when exposed to 
intense heat. During heating, complex organic molecules 
break down and elements, such as oxygen and hydrogen, 
are either freed into the atmosphere or combine with 
other elements, while structural carbon remains. Since 
naturally occurring carbon is black in color, carbonized 
bone is also black (Symes et al. 2015).

Calcination
During calcination, the freed carbon from organic mol-
ecules is combined with oxygen and forms carbon di-
oxide (CO2) or carbon monoxide (CO). Subsequently, 
it is released into the atmosphere. The remaining bone 
is comprised of inorganic components, thus its color is 
white because this is the natural color of hydroxyapatite 
(Mayne Correia 1997; Mayne Correia and Beattie 2002; 
Thompson 2004, 2005). Fracturing, shrinkage, and 
warping accompany calcination (Schwark et al. 2011; 
Thompson 2004, 2005).
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FIELD PROCEDURES

Burned remains may be found in various contexts: on the ground surface, (partially) buried, inside funerary structures, 
etc. Any field procedure has to be adjusted to the unique challenges posed by each context of recovery and the as-
sociated degree of preservation of the remains, the sample size, and the degree of commingling. In some contexts, a 
confined excavation will be appropriate, while in others, surface surveying will be a necessary first step to document 
the spread of the remains. 

Burned human remains pose two additional and interconnected challenges compared to unburned remains: frag-
mentation and identification. Burning can lead to extreme bone fragmentation, which hinders recovery in the field. 
This extreme fragmentation coupled with the morphological, chemical and structural deformities that characterise 
burned bone, often renders the differentiation between such bone and other materials difficult (Fairgrieve 2008; 
Ubelaker 2009). 

The steps in the recovery of burned remains are summarised in the box below (see also Nikita et al. 2019). During 
each of these steps, it is important to describe in detail any features and the stratigraphy, including plan and profile 
maps, as well as measurements. Any post-depositional disturbance should be recorded in detail as well, while soil 
samples should be taken and sample locations should be documented. The excavation, documentation and recov-
ery should continue until undisturbed strata are visible (Devlin and Herrmann 2013; Fairgrieve 2008).

Steps in the excavation of burned remains (Naji et al. 2014; Schmidt 2015)

1. Identify the extent of the deposit.

2. Photograph and draw the deposit.

3. If the remains are contained in an urn or other pot, transport the pot to the laboratory so that it is 
excavated in a controlled environment by an osteoarchaeologist. If the remains are not contained in 
a pot (or in some structure that may be lifted as a block and transported to the lab), excavate them 
in the field. 

4. Construct a reference grid over the deposit. 

5. Document and collect all surface findings (i.e., skeletal elements, artifacts etc.).  

6. Using a trowel, paint brushes and wooden tools, excavate the burned remains in layers defined by all 
the fragments that can be removed without disturbing the underlying level (Fairgrieve 2008). 

7. Map large fragments (> 3 cm) individually and group smaller ones (< 3 cm) by grid square.

8. Bag separately the remains of each layer. Make sure to label accordingly fragments found in close 
proximity so as to facilitate reconstructions and fragment identification later on in the lab.

9. Use paper towels to wrap fragile bones prior to transportation and place them inside paper bags. 
Avoid plastic bags or metal cans as the former encourage moisture and the latter contribute to 
further fragmentation. 

10. Sieve all soil, ideally using a 3mm screen. 

Note that for burned remains found inside urns or other contained structures, the use of virtual approaches, such 
as computed tomography, has proven particularly useful as a first non-invasive step to assess the context prior to 
destructive micro-excavation (Higgins et al. 2020).
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Sorting and Cataloguing
When sorting bones, as much detail as pos-
sible should be used in identifying the ana-
tomical location of each fragment, e.g. ‘prox-
imal foot phalanx head and shaft’ (McKinley 
2017). Particularly useful in this respect is the 
zonation system for partially preserved re-
mains, which divides each skeletal element in 
sections/zones (Knüsel and Outram 2004 – 
see also STARC Guide No. 2). Subsequently, 
the percentage preservation of each zone 
may be recorded. If it is not possible to iden-
tify their anatomical location, bone fragments 
should be sorted into broader categories (e.g. 
cranium, thorax, pectoral girdle, upper limb, 
pelvic girdle, lower limb, unidentifiable) (Devlin 
and Herrmann 2015). When bones are too 
partially preserved, they should be classi-
fied into even broader groups, such as ‘flat,’ 
‘short,’ ‘epiphysis,’ or ‘diaphysis.’ Due to the 
friable nature of burned remains, the number of fragments may increase due to handling; hence, recording weights 
is important (see section Weights) (Fairgrieve 2008). Fragments that are particularly small could be divided into size 
groups and weighted per group (Naji et al. 2014; Schultz et al. 2015).

LABORATORY PROCEDURES

As with field procedures, the particular laboratory procedures employed need to be assemblage-specific. The follow-
ing sections provide a broad outline.

Cleaning
Bones and teeth should be rinsed with tap water, when not too fragile, and left to dry naturally, avoiding direct sun-
light. Dry brushing is preferable when cleaning carbonized bone, as its charcoal-like consistency is more friable than 
calcined bone. Where bone is well preserved, wet sieving using a 1mm mesh size is ideal. If necessary, a soft tooth-
brush or a wooden cocktail stick may be used to remove adhering dirt (Fairgrieve 2008; Schmidt et al. 2015).

The bone inventory as a means of assessing the 
pre-burning condition of remains
When the representation of anatomical regions is atyp-
ical, it is most likely that the cremation involved dry 
skeletons than fleshed bodies. When fleshed bodies 
are burned, bone loss may occur during the recollec-
tion of the remains from the pyre after cremation and/
or during their transportation to the final deposition 
site. If dry bones are burned, bones may be lost during 
the abovementioned processes as well as before cre-
mation, when the bones are recovered from their orig-
inal deposition site (Godinho et al. 2019a). In assessing 
the pre-burning condition of the skeleton based on the 
bone/tooth inventory, it is particularly relevant to note 
the presence of small skeletal elements, such as tooth 
roots or phalanges, as these are the elements most likely 
to be left behind when skeletonized remains are trans-
ported (Lemmers 2012; Masotti et al. 2020).

Reconstruction
Although often impossible to undertake due to the 
warping of bone fragments, reconstruction/refitting 
(the articulation of the broken edges of bone fragments) 
enhances the morphological and metric study of burned 
remains and can provide important information regard-
ing the dispersal of fragments from a single element 
across the deposit (Curtin 2015; Ubelaker 2009). Con-
solidants should be used in moderation, with preference 
to water- or alcohol-soluble materials (Schmidt 2015).

Each identifiable bone and tooth fragment 
and each fragment with length over 2 cm 
should receive a catalog number. The use of 
ink on the remains should only be done if the 
bone is not going to be subjected to chemical 
tests and if such writing will not impede the 
visibility of important anatomical traits. Due 
to the friable nature of burned remains, it is 
preferable to number the bone containers 
(e.g. bags) rather than the bones themselves 
(Fairgrieve 2008; Watson et al. 2015).
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Minimum Number of Individuals
Burned remains may represent multiple skeletons because many individuals had been burned together or because the 
pyre area had been used multiple times and debris from successive cremations got mixed or for other reasons (André 
et al. 2013). The identification of multiple individuals in the same deposit is based on supernumerary bones or skel-
etal elements with discordant dimensions, age, sex or systematic disease (Irish et al. 2015; Rubini et al. 1997). Note, 
however, that bone dimensions should be used cautiously because heat exposure results in shrinkage and warping 
(see section Shrinkage and warping). The best approach is to estimate the Minimum Number of Individuals (MNI) 
using an anatomical area that is particularly dense and less likely to be affected severely by fire, such as the petrous 
part of the temporal bone (Fairgrieve 2008). The use of more elaborate methods, such as those for the estimation 
of the Most Likely Number of Individuals (Adams and Konigsberg 2004) or the Initial Number of Individuals (Nikita 
and Lahr 2011), is often not practical given the very small burned fragments that comprise the majority of cremated 
assemblages. In cases of partial cremation, however, such methods may be applied in conjunction to MNI estimates.

DNA analysis may also be adopted to sort skeletal elements per individual (Schultz et al. 2015); however, DNA tends 
to be destroyed above 600°C and often even below that temperature (Walker et al. 2008). Another means of es-
timating the number of individuals present in an assemblage is the average weight of skeletal remains. The average 
weight per adult body in modern crematoria is 1,760.3 g to 3,379 g (Bass and Jantz 2004; May 2011; Van Deest et al. 
2011). Any greater mass of burned remains supports strongly the presence of more than one individual. Any smaller 
mass of remains, however, does not necessarily imply that only one individual is represented in the assemblage; instead 
it may indicate some selection process. Another limitation of this approach is that cremation weights vary greatly 
based on an individual’s age, sex, pathological status and many other factors (Bass and Jantz 2004), while taphonomic 
factors may alter considerably the weight of burned bone (Amarante et al. 2019). See also section Weights.

Sex assessment
Many authors have argued that techniques used for sexing unburned skeletal remains based on the morphology of 
the skull and pelvis are applicable to cremated individuals (Geber et al. 2017; Lara et al. 2015; Mayne Correia and 
Beattie 2002; Rubini et al. 1997; Wahl 2015). Nonetheless, Fairgrieve (2008) highlights a number of limitations in 
the applicability of these criteria due to shrinkage, warping and heat-induced fractures (see sections Shrinkage and 
warping and Heat-induced fractures). 

The use of osteometric methods to sex burned human remains has also been suggested. Gejvall (1969) proposed 
metric standards for sex estimation based on skull thickness, humeral head diameter, and femoral, humeral and ra-
dial diaphyseal thickness. Warren and Maples (1997) also used femoral and humeral head measurements of burned 
human remains and found that femoral head measurements had an average of 44.2 mm for males and 38.2 mm 
for females, and humeral head measurements had an average of 45.8 mm for males and 38.2 mm for females. Van 
Vark (1975) and Van Vark et al. (1996) examined the expression of different cranial and post-cranial sexually di-
morphic traits on a cremated sample from 19th century Amsterdam. The results were extremely good for the male 
individuals (92% correct classification) and reasonable for the female individuals (79% correct classification). In ad-
dition, Schutkowski (1983) and Schutkowski and Herrmann (1983) obtained correct sex classification in 67.0% - 
73.4% of the cases examined using discriminant function analysis on the petrous bone. Similarly, Gonçalves et al. 
(2013a) achieved successful sex classification scores using humeral, femoral, talar and calcaneal measurements from 
Portuguese cremated individuals. However, other metric sexing methods, such as the lateral angle of the internal 
auditory canal, have been found not to provide accurate results with burned human skeletal remains (Gonçalves et 
al. 2015a; but see Masotti et al. 2019). It must be stressed that metric sex estimation is based on population-specific 
samples, so the application of such methods should be cautious, whether in burned or unburned remains.
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Logistic regression equations for sex estimation (adapted from Tables 6 and 7 in Gonçalves 
et al. 2013a)*

 y -32.753 + 0.891 * Humeral head transverse diameter
 y -26.919 + 0.661 * Humeral head vertical diameter
 y -49.415 + 0.904 * Humeral epicondylar breadth
 y -29.896 + 0.782 * Femoral head transverse diameter
 y -30.376 + 0.759 * Femoral head vertical diameter
 y -32.849 + 0.683 * Talar maximum length
 y -39.628 + 0.549 * Calcaneal maximum length
 y -37.626 + 0.825 * Humeral head transverse diameter + 0.177 * Humeral head vertical diameter
 y -36.860 + 0.664 * Femoral head transverse diameter + 0.299 * Femoral head vertical diameter

*Positive values suggest males, while negative values suggest females

More recently, Cavazzuti et al. (2019) proposed cut-off points for osteometric sexing in archaeological populations 
(Table 1). To develop their method, the authors used Bronze Age and Iron Age cremated individuals from Italy. An im-
portant caveat of their study is that the sex of these individuals was assessed on the basis of ‘clearly engendered grave 
goods’, thus it was based on the assumption that gender was highly correlated to sex in these groups. 

Gouveia et al. (2017) examined the potential of odontometric sex estimation on experimentally heated teeth and found 
that this approach has serious limitations, though certain dimensions and combinations of variables (cementum-enamel 
junction perimeter, combined mesiodistal and buccolingual diameters) may reach correct sex classification that exceeds 
80%. In contrast, Godinho et al. (2019b) found that micro-fracturing produces statistically significant expansion of the 
tooth crown, which impacts odontometric sex estimation. The authors highlighted that the effect of heat-induced size 
changes may be removed using μCT scanning; however, this is a complex approach and, coupled with the fact that 
tooth crowns tend to fracture when exposed to high temperatures, renders odontometric sexing impractical.

Finally, studies using the weight of burned remains to discriminate between sexes (Van Deest et al. 2011) should be 
considered tentative at best (Naji et al. 2014). Although the difference between female and male weights is often 
statistically significant, the range of variation and the often incomplete state of the skeleton in burned assemblages 
due to various taphonomic processes additionally to heat exposure, strongly limit sex assessment using cremated 
weights. In addition, age-related differences also interfere with relevant assessments (Gonçalves 2011). See also sec-
tion Weights.

Table 1. Cut-off points for osteometric sexing based on ancient Italian populations (adapted from 
Cavazzuti et al. 2019 Tables 3 and 4)*

Skeletal Element Measurement Cut-off point (mm)

Mandible condyle width 15.87

Axis dens anteroposterior diameter 9.55

Axis dens transverse diameter 9.10

Humerus vertical head diameter 37.88

Humerus trochlea maximum diameter 20.00
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Skeletal Element Measurement Cut-off point (mm)

Humerus trochlea minimum diameter 13.28

Humerus capitulum maximum diameter 16.09

Radius head maximum diameter 18.32

Lunate maximum width 14.30

Lunate maximum length 13.82

Femur vertical head diameter 39.39

Patella maximum height 35.68

Patella maximum width 36.61

Patella maximum thickness 16.10

Talus maximum length 46.87

Talus head-neck length 16.51

Talus trochlea length 28.92

Talus trochlea width 27.52

Navicular maximum lenght 13.46

First metatarsal dorsoplantar width of the head 16.17

First metatarsal mediolateral width of the head 17.02

Age-at-death estimation
To determine age-at-death in burned remains, scholars use the same osteological methods as for unburned skeletal 
remains (Geber et al. 2017; Irish et al. 2015; Lara et al. 2015; Mayne Correia 1997; Mayne Correia and Beattie 2002; 
Rubini et al. 1997), unless the remains are so partially preserved that it is possible to only distinguish between ‘non-
adult’ (<18 years) and ‘adult’ (>18 years) (Curtin 2015; McKinley 2017). Even in cases where traditional ageing meth-
ods can be applied, one needs to bear in mind the impact of heat-induced alterations (Table 2). 

Special reference should be made to metric and histological methods and their applicability to ageing burned re-
mains. When using metrics to age burned nonadults, it should be remembered that fire exposure results in a re-
duction in bone dimensions. Fazekas and Kósa (1978) make reference to the study by Petersohn and Köhler (1965) 
where percent shrinkage was examined on fetal bones as these passed through the fresh, carbonized and calcined 
states. Huxley and Kósa (1999) reevaluated Petersohn and Köhler’s (1965) data and noted that shrinkage from car-
bonization and calcination exhibits great variation depending on the lunar month and the skeletal element. Table 3 
is a compilation by Huxley (1998) of Petersohn and Köhler’s (1965) data showing the differences in the average per-
cent shrinkage of different skeletal elements per lunar month.

Key: Values greater than the cut-off point suggest males, while smaller values suggest females; 
Measurements in bold are those that showed accuracy equal to or higher than 80% in the 
cross-validation analysis.



11

Table 2. Influence of heat-induced changes on age-at-death estimation methods (adapted from Fairgrieve 2008 Table 5.6)

Ageing method Heat-induced alteration

Primary ossification centers Destruction, especially of infant wrist and cranial bone cartilaginous 
ossification centers

Tooth formation & eruption Desiccation of tooth crown and roots

Epiphyseal fusion Fracturing of epiphysis and fusion sites, destruction of growth plate 

Pubic symphysis morphology Fracturing, warping, bone surface deformity

Auricular surface morphology Fracturing, warping, bone surface deformity

Sternal rib ends morphology Fracturing, destruction 

Cranial suture closure Fracturing, delamination

Table 3. Comparison of shrinkage rates (%) by skeletal element for fetuses between 4–10 lunar months (LM) and 
newborns (drawn from Huxley 1998 Table 7; reprinted by Fairgrieve 2008 Table 5.5)

4LM 5LM 6LM 7LM 8LM 9LM 10LM Newborn

Humerus 9.13 5.39 3.37 2.24 1.45 1.68 1.75 2.03

Radius 9.73 5.79 4.30 2.24 2.41 1.90 1.70 0.39

Ulna 9.23 5.65 3.46 2.25 2.21 1.82 3.09 1.06

Femur 13.85 4.59 3.56 2.46 2.28 1.67 1.72 1.48

Tibia 12.35 5.82 3.44 2.51 2.93 1.94 1.69 1.19

Fibula 6.27 7.18 2.77 2.07 1.82 1.59 1.46 1.52

With regard to histological methods, Bradtmiller and Buikstra (1984) found that bone burned at 600oC could pro-
vide accurate microscopic age estimates. More recently, Absolonova et al. (2013) tested the effect of higher tem-
peratures of exposure (700°C, 800°C, 1000°C) on bone microstructure and found a decrease in the dimensions of 
the microstructures and an increase in their number per mm2 induced by age, but also by burning within the same 
age group. The authors highlighted that burning-induced microstructural changes are similar to age-related changes, 
which reduces the applicability of age-at-death estimation equations, especially for remains burned at temperatures 
over 800°C. For this reason, the authors developed new regression equations for unburned bones, bones burned at 
700°C, and at 800°C (Tables 4-5).
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Table 4. Histomorphometric variables used in age-at-death estimation equations (adapted from Absolonova et al. 2013 
Table 2)

Variable Abbreviation and Unit

Number of intact osteons per mm² POC_OST; #/mm²*

Osteon circumference OBV_O; μm

Maximal osteon axis MAX_O; μm

Haversian canal feret diameter F_PR_K; μm

Haversian canal shape factor SFAC_KAN

Number of non-Haversian canals per mm² P_NON_H; #/mm²

Percentage of total internal circumferential lamellae area PR_LAM; %

*#/mm² is the number of microstructures per mm² of the compact bone area

Table 5. Age-at-death prediction equations for pooled sexes (adapted from Absolonova et al. 2013 Tables 5-7)

Fire temperature Equation r SEE

Unburned Y = 163.0256 - 0.1449(OBV_O) - 0.4786(PR_LAM) -  
6.7111(P_NON_H)

0.761 13.924

700°C Y = -59.8169 - 0.2822(MAX_O) +  
222.6290(SFAC_KAN)

0. 673 16.248

800°C Y = 100.5203 - 0.353(MAX_O) + 0.4769(F_PR_K)  
+ 0.4136(POC_OST)

0.578 14.903

The accuracy of histological methods
It must be noted that even in unburned remains, the use of histological age-at-death estimation should be cau-
tious with many scholars pointing out that histological methods should merely be used as a rough age-at-death 
indication (e.g. Chan et al. 2007; García-Donas et al. 2016; Lagacé et al. 2019; Paine and Brenton 2006).

Heat exposure also affects the identification of dental age-at-death indicators, such as the apposition of secondary 
dentin, dentinal sclerosis and cementum incremental lines (Gocha and Schutkowski 2013; Naji et al. 2014).
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Stature estimation
The application of methods of stature estimation based on fragmentary bones has been attempted by various re-
searchers studying burned remains (Lisowski 1968; Malinowski and Porawski 1969; Piontek 1975; Rösing 1977). 
However, these studies recognize that the error rates for such estimates are large due to bone shrinkage (Holland 
1992; Mayne Correia 1997). Fairgrieve (2008) suggests the adoption of a correction factor to account for bone 
shrinkage when applying one of the various methods available for stature estimation. However, the degree of bone 
shrinkage is usually unknown. Thus, stature estimates should only be attempted for skeletal elements that appear to 
have had limited heat exposure. 

Pathology
Shrinkage, warping and fragmentation obscure pathological assessments. However, certain types of pathology, such 
as degenerative disease and porotic hyperostosis, can be reliably identified even on small burned fragments (Reinhard 
1994). A key issue with the study of burned remains is the identification of trauma, as detailed below.

Trauma
Even though in burned remains, sharp-force, blunt-force and ballistic trauma may be difficult to discern, experimental 
studies indicate that diagnostic evidence often survives heat exposure. Herrmann and Bennett (1999) showed that 
sharp-force trauma can be recognized after incineration (see also Figure 2), but this was not the case for ballistic 
trauma due to the extensive fragmentation it generated prior to burning. Blunt-force trauma could be identified in 
most cases but required the reconstruction of the skeletal elements prior to any assessment. The authors also noted 
that larger bone fragments were associated with traumatic fracturing whereas smaller fragments and perpendicular 
fracture angles with heat-induced fracturing. Regarding longitudinal fractures, smooth surfaces were most frequent-
ly associated with traumatically induced fractures. Looking into different types of sharp-force trauma, de Gruchy 
and Rogers (2002) found that chop marks could be identified on burned bone, whereas hacking made the bone 
more prone to heat-induced fragmentation. In the same direction, Kooi and Fairgrieve (2013) concluded that tem-
perature, fuel, oxygen availability and general burning environment affect cut mark preservation; however, they also 
stressed the shielding effect that soft tissue has in low temperatures. In contrast, Waltenberger and Schutkowski 
(2017) concluded that despite heat-induced alterations, cut marks can be identified on burned bones, as the variables 
principally affected are the slope height and floor angle of the cut, whereas the depth, width, slope, opening angles 
and floor radius are not significantly influenced by fire. This is in agreement with Tutor et al. (2021), who examined 
experimentally inflicted sharp-force trauma by means of a machete and a serrated knife on pre-burned bones and 
were able to distinguish cut marks from heat-induced alterations, though some heat-induced fractures (e.g. step and 
transverse fractures) can be mistaken with trauma. In contrast, cut marks inflicted again with a machete and a ser-
rated knife but this time on bones that were subsequently burned, were largely eliminated after heat exposure (Tutor 
et al. 2020). With regard to saw marks, Marciniak (2009) showed that heat exposure affected the identifiability of 
saw mark striae, but the marks left by most types of handsaws and power saws could be discriminated, and Robbins 
et al. (2015) found that the saw striae characteristics identified in burned samples using SEM and stereomicroscopy 
were in agreement to each other. Collini et al. (2015) analysed blunt-force trauma, drill injuries and gunshot wounds 
in experimentally charred bones. Morphological trauma features were overall preserved after heat exposure, but de-
pressed fractures increased in dimensions, drilled injuries shrunk, and the number of fractures increased in samples 
with gunshot wounds. Finally, Pope and Smith (2004) examined cranial trauma and found that identification of bal-
listic, blunt-force, and sharp-force wounds is possible, as detailed in Table 6; in contrast, Franceschetti et al. (2021) 
concluded that peri-mortem cranial fractures are rarely possible to identify post-cremation.
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Figure 2. Pre-burning sharp-force trauma – note sharp margins compared to irregular margins of fire-induced fractures 
(adapted from Devlin and Herrmann 2013 Figure 16.13)

Table 6. Summary of heat effects on cranial trauma (adapted from Pope and Smith 2004 Table 2)

Type of trauma Heat-related bone changes Trauma signatures in burned crania

ballistic • Focal retraction and shrinkage of wounds 
• Advanced destruction of exposed injuries 
• Accelerated bone color changes in open 

injuries

• Internal or external beveling 
• Secondary radiating or concentric fractures
• Juxtaposition of color in adjacent fragments
• Radiating fractures into green bone
• Deformed, ragged, or eroded fracture 

margins

blunt-force • Focal retraction and shrinkage of impact sites 
• Advanced destruction of exposed injuries 
• Accelerated bone color changes in open 

injuries

• Impact sites exhibiting tool marks or inwardly 
crushed bone

• Secondary radiating or concentric fractures
• Juxtaposition of color in adjacent fragments
• Radiating fractures into green bone
• Deformed, ragged, or eroded fracture 

margins
• Depression, inward crushing, and tool marks

sharp-force • Focal retraction and shrinkage of incisions
• Advanced destruction of exposed injuries 
• Accelerated bone color changes in open 

injuries

• Linear incisions, depressions, cuts, chops, saw 
marks, punctures, stabs, hacks, drill marks, 
and other tool marks

control • Bone color changes according to degree of 
heat exposure

• Delamination, fragmentation, embrittlement, 
and color changes

• “Exploded appearance” 
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Heat-induced fractures
Heat-altered bone gradually loses its water and organic components, and becomes susceptible to compressive and 
tensile forces, resulting in heat-induced fractures (Mayne 1990). The degree of bone fragmentation depends upon 
three factors: fire temperature, fire duration, and existence of mechanical trauma. In temperatures under 700°C, 
there is little fragmentation, except in the long bone epiphyses (Bohnert et al. 1998; Pope and Smith 2004), while 
at temperatures over 700-800°C, bones become more fragile (Marella et al. 2012; Pope and Smith 2004). Even 
though fire duration is important, greater bone fragmentation does not necessarily imply a longer duration of fire 
exposure. DeHaan (2012) experimented with a seven-hour fire and found that the head and upper limbs were left 
largely intact. Similarly, Spitz (1993) found identifiable bone fragments even after one or two days of fire exposure.

Symes and colleagues (2013, 2015) discuss at length the biomechanics of burned bone and propose seven classes of 
heat-induced fractures (Figures 3-4): 

Figure 3. Patina fracture with transverse, longitudinal and curved transverse fractures (left) (adapted from Symes et al. 
2013 Figure 14.16), transverse fractures (middle) and delamination (right) (adapted from Devlin and Herrmann 2013 
Figures 16.6 and 16.8)

1. Longitudinal: Longitudinal fractures are the most common burn fractures in long bones. They are  
usually parallel to the osteon canals, although they may also exhibit a somewhat helical direction down  
the long bone axis. They may penetrate the marrow cavity.

2. Step: Step fractures extend transversely from one longitudinal fracture to another.

3. Transverse (or straight transverse): Transverse fractures are very common; they are perpendicular to 
the long bone axis. They tend to penetrate the medullary cavity and may completely transect the bone. 
They are very similar to or comprise step fractures.

4. Patina: Patina fractures are superficial and appear as a mesh of uniform small cracks. They are found 
mostly on the flat surfaces of postcranial bones, the epiphyses and the cranial bones.

5. Splintering and Delamination: These fractures are expressed as a separation of cortical from trabecular 
bone, and they are mostly found in the cranial bones, the epiphyses and the costochondral rib ends.

6. Burn line fractures: These fractures separate the burned from the unburned bone surface.

7. Curved transverse (curvilinear): These fractures circumscribe the long bone shaft. They may extend from 
longitudinal fractures or show an oblique orientation. A less common type manifests as ‘concentric rings.’ 
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Figure 4. Curved transverse fractures at distal femur (left) (adapted from Symes et al. 2013 Figure 14.10) and unidentified 
long bone (right) (adapted from Gonçalves et al. 2011 Figure 2)

Recording fragmentation
The maximum length of each bone fragment should be recorded using a sliding calliper (Bontrager and 
Nawrocki 2015; Watson et al. 2015). Subsequently, the percentage of bone fragments smaller than 1 or 
2 cm indicates the intensity of fragmentation (Curtin 2015; Lyman 1994). For example, Minozzi (2015) 
sorted the degree of bone fragmentation into three categories: high if more than 50% of the remains were 
smaller than 2×2cm, medium if more than 50% of the remains were larger than 2×2cm, and low if more 
than 50% of the remains were larger than 5×2cm. Alternatively, the relative fragmentation of bone can be 
estimated by the ratio of the number of fragments recovered to the minimum number of elements. The 
higher this value, the more fragmented the bones (Costamagno et al. 2005; Lyman 1994). 

For particularly fragmented remains, the Fragmentation Index proposed by Harvig and Lynnerup (2013) 
may be used. This is the ratio of cremation weight (in grams) to cremation volume (in millilitres). A 
Fragmentation Index below 1 represents limited fragmentation, whereas a Fragmentation Index above 1 
represents substantial fragmentation.

Shrinkage and warping
Heat-induced dimensional change (bone shrinkage) has been noted in a number of early experimental studies 
(Dokládal 1971; Malinowski and Porawski 1969; Piontek 1975). Among the most systematic early studies were those 
by Herrmann (1976, 1977), who heated cortical bone at 150°C to 1200°C and identified three phases of shrinkage: 

1. 150-300°C, resulting in 1-2% shrinkage 
2. 750-800°C, also resulting in 1-2% shrinkage
3. 1000-1200°C, resulting in 14-18% shrinkage

More recently, Byers (2005) confirmed the above results as he found minimal to 2% bone shrinkage at temperatures 
up to 700oC, 1-2% shrinkage at temperatures of 700-800oC, and 10-15% shrinkage at temperatures over 800oC. 
Subsequent studies using different skeletal elements and temperatures have concluded that the expected shrinkage 
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in cremated bone is limited up to temperatures of 800°C; however, above this temperature, shrinkage should be 
taken into consideration when applying morphological and metric skeletal methods (Bradtmiller and Buikstra 1984; 
Buikstra and Swegle 1989; Grupe and Herrmann 1983; Holland 1989; Hummel and Schutkowski 1986; Nelson 1992; 
van Vark 1970). 

Thompson (2005) found a wide range of dimensional changes on bones burned at different temperatures (500o, 
700o, 900o) for different lengths of time (15’, 45’) and measured at different points after removal from the furnace 
(5’, 15’, 25’): -4.5% to 13.0% dimensional change for bones burned up to 500oC, -1.7 to 19.3% for bones burned up 
to 700oC, and -3.9% to 37.7% for bones burned at 900oC. Thompson’s (2005) results highlighted that the duration 
of fire exposure is also important. Gonçalves’ (2011) experimental work supported this statement but stressed that 
the relationship between shrinkage and exposure duration is not linear. 

As for the relationship between bone mineral content and shrinkage, Herrmann (1976, 1977) found higher percent 
shrinkage for males in comparison to females, which he associated to higher percentages of bone mineral in the for-
mer. In contrast, Huxley and Kósa (1999) found decreased shrinkage of heat-exposed bones with increasing age in 
foetuses; therefore, a negative association between shrinkage and bone mineralization (Guo 2001). In addition, mean 
shrinkage rates in foetuses have been found by many authors to exceed those seen in adults due to the relatively high-
er proportion of collagenous distribution within developing nonadult bones (Bradtmiller and Buikstra 1984; Harsányi 
1993; Herrmann 1977; Holland 1989; Müller et al. 1952). These findings support that skeletal elements become less 
susceptible to heat-induced shrinkage as bone mineralization progresses. 

Another important factor determining the degree of shrinkage is bone structure. Hummel and Schutkowski (1986) 
found that temperatures up to 1000oC resulted in 5% shrinkage in bone length but 27% reduction in cross-sec-
tional bone diameter. Similarly, Thompson’s (2005) experimental study on sheep long bones recorded more shrink-
age in the epiphyses and attributed this finding to the random arrangement of collagen fibers in trabecular bone. 
As Thompson (2005) notes, there is a discrepancy in earlier literature regarding which type of bone shrinks more 
with Gejvall (1969) and Gilchrist and Mytum (1986) arguing that compact bone will shrink the most and McKinley 
(1994b) and Van Vark (1974) arguing that trabecular bone will exhibit more shrinkage. The author stresses that both 
arguments may actually be correct: it may be that trabecular bone exhibits more absolute shrinkage but compact 
bone shows more relative shrinkage. 

As mentioned above, the critical temperature at which the degree of heat-induced shrinkage significantly increases 
has been set at around 800oC (Buikstra and Swegle 1989; Eckert et al. 1988; Holland 1989; Spennemann and Colley 
1989). This 800oC threshold lies near the beginning of the fusion stage of heat-induced bone transformation (see 
above), which is characterised by the coalescence of the inorganic phase and the filling in of the pores left by the 
freed water and organic phase. This is the process that generates a reduction in bone size (Thompson 2005).

Even though shrinkage can be notable, a more pronounced heat-induced change is warping, that is, a deformity in 
the natural bone shape (Bontrager and Nawrocki 2015) (Figure 5). Binford (1963) attributed warping to the contrac-
tion of muscle fibres, while Spennemann and Colley (1989) linked it to the entrapment of heat inside the medullary 
cavity. More recently, Thompson (2005) associated warping to the contraction of the periosteum and to the differ-
ent distribution of collagen within bone. Following the last hypothesis, Gonçalves et al. (2011) argued that warping 
would depend on bone collagen preservation, thus it would not be related to the presence of soft tissues.

Figure 5. Warped tibia (adapted from Gonçalves et al. 2011 Figure 1)
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Discoloration
The varying colors encountered on burned bones have received great attention as color can provide information 
regarding the temperature of the fire, oxygen availability, the preincineration state of bone, the position of the body 
on the pyre, and chemical interactions with soil (Bennett 1999; Bennett-Devlin et al. 2006; Binford 1963; Bonucci and 
Graziani 1975; De Graaff 1961; DeHaan and Nurbakhsh 2001; Hummel et al. 1988; Pope 2007; Shipman et al., 1984; 
Thompson et al. 2017; Walker et al. 2008; Wärmländer et al. 2019). It must also be remembered that color may be 
altered by other materials in the firing environment; for example, a proximity to metals may produce green, yellow, 
pink and red discoloration (Dunlop 1978).   

With increasing heat exposure, bone progresses from tan to dark brown to black, then blue, gray, and finally 
white (Figure 6) (Baby 1954; Bennett 1999; Binford 1963; Buikstra and Swegle 1989; Gilchrist and Mytum 1986; 
McCutcheon 1992; McKinley 2000; Nicholson 1993; Shipman et al. 1984; Stiner et al. 1995). As thermal damage 
progresses from the external bone surfaces to the internal ones, colour gradients may be identified across the bone, 
such as the so-called ‘sandwich effect’, whereby the external bone surface is white and the internal grey or black 
(Symes et al. 2015). As briefly discussed in section Bone response to fire, when the body is fleshed when exposed to 
heat, the pugilistic posture (Figure 1) will shield certain anatomical parts and expose others, also leading to patterned 
color alterations on the skeleton (Symes et al. 2015). Deviations from this expected pattern may offer insights to the 
pre-incineration condition of the body, e.g. the use of binding or other means that result in an unusual body position 
in the pyre (McKinley 2015). 

The work by Shipman et al. (1984) was the first to standardize burned surface color descriptions using Munsell soil 
color charts. Since then, different authors have proposed slightly different temperatures at which each color change 
occurs, even though the progression of colors is largely always the same (e.g. Bonucci and Graziani 1975; Holden et 
al. 1995a, 1995b; McCutcheon 1992; Munro et al. 2007; Walker et al. 2008).

Figure 6. Bone fragments illustrating color changing sequence from unaltered (far left) to dark brown, black, gray, and 
white (adapted from Devlin and Herrmann 2013 Figure 16.3)

It must be remembered that heat-induced bone color change is a macroscopic alteration linked to chemical and 
physical changes in bone structure (Bonucci and Graziani 1975; Devlin and Herrmann 2015; Ellingham et al. 2015; 
Fairgrieve 2008; McCutcheon 1992; McKinley 2000; Munro et al. 2007; Nicholson 1993; Shipman et al. 1984; 
Thompson 2004; Thurman and Wilmore 1980). Black color results from the combustion of the organic components 
of collagen and carbon, while gray and white colors are the outcome of continued combustion that alters the crys-
talline structure (Devlin and Herrmann 2013). Table 7 summarizes the different colors seen on bones and associated 
structural changes.
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Table 7. Color change to burned bone and causative factors  
(adapted from Fairgrieve 2008 Table 3.5 and references 
therein)

Colour Causative factors

Brown Hemoglobin, soil discoloration

Black Bone carbonization

Gray-blue, gray Pyrolysis of organic components

White Bone calcination

Regarding methods for standardizing color recording, 
the Munsell Soil Color Chart has been used extensively 
(Kharkanis et al. 2009; McCutcheon 1992; Munro et 
al. 2007), following Shipman et al. (1984). Researchers 
have more recently started investigating the use of the 
RGB (Red-Green-Blue) colour space and CIE *L*a*B* 
colour space (a model defined by the Commission 
Internationale de l’Eclairage, with values for L*: light-
ness, a*: red-green values, b*: yellow-blue values, which 
locates color on a three-dimensional axis), together 
with digital photography and spectrophotometers to 
enhance objectivity and statistical processing (Devlin 
and Herrmann 2015; Krap et al. 2019; Ulguim 2015; 
Walker et al. 2008). Table 8 summarises the strengths 
and weakeness of these methods.

Table 8. Advantages and disadvantages of commonly used color recording systems (Thompson et al. 2017 Table 21.2)

Color recording system Strengths Weaknesses

Munsell • Standardised • Subjective
• Difficult to capture surface color variation
• Developed for soil color analysis
• Difficult for statistical manipulation

RGB • Standardised
• Objective
• Quantifiable 
• Easily comparable

• Requires post-processing or expensive equipment

CIE L*a*B* • Standardised
• Objective
• Quantifiable
• Easily comparable

• Requires expensive equipment

Depending on the research questions, different recent studies have adopted schemes of coding bone color changes 
with different levels of detail. Weitzel and McKenzie (2015) simply classified skeletons into two groups: those that ex-
hibited charring (color mostly black) and those that also showed small spots of dark grey, grey and white (colors rep-
resenting calcination). The location of charring was recorded for each skeletal element and then for the skeleton as a 
whole, whereby categories were created based on the number of skeletal elements affected by fire as a percentage of 
the total number of elements present (100%, 75–99%, 50–74%, 25–49% and 0–24% charred). Curtin (2015) ad-
opted a slightly more detailed recording scheme: unburned (no apparent heat-related changes), slight burning (light 
brown or reddish discoloration, often localised), moderate burning (more extensive dark brown or black discolor-
ation), and severe burning (calcined bone, white, grey or blue-grey in color, often warped and shrunken). Alternative 
schemes include the categories ‘unburned’ (no change in color), ‘lightly burned’ (brown or black, including ‘smoked’ 
fragments) or ‘heavily burned’ (blue-grey or white, also known as ‘calcined’) (Bontrager and Nawrocki 2015). Color is 
usually recorded per element or per fragment (Lara et al. 2015). Either all colors visible on each element/fragment or 
the dominant color may be recorded (Watson et al. 2015).
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Fleshed versus dry bone
The issue of distinguishing the pre-incineration state of bones (dry versus fleshed) has been examined by several au-
thors. This issue has implications for both forensic anthropology and bioarchaeological studies, as it provides informa-
tion about the postmortem treatment of a body/individual. Warping and thumbnail fractures (curved transverse frac-
tures) are among the main attributes adopted in relevant studies. Baby (1954) noted that green (recently defleshed) 
bone demonstrates warping, whereas dry bone shows no warping but it manifests patina, longitudinal, and transverse 
fractures. Binford (1963) reported dry bones as having straight transverse cracking, while green bones had curved 
transverse cracking. Stewart’s (1979) findings agreed with those by Binford. However, contrary to the curved trans-
verse fractures noted by Binford (1963), Thurman and Willmore (1980) found that fleshed cremations are character-
ised by serrated transverse fractures. Etxeberria (1994) found warping occurring only on recently defleshed bones, 
but not on dry bones. In contrast, Spennemann and Colley (1989) identified warping on an experimentally burned 
archaeological humerus. This finding was later corroborated by Buikstra and Swegle (1989) who, based on their study 
of human and animal bones, reported warping in both green and dry bones burned in open-air fires. Similarly, Whyte 
(2001) found that warping affected fleshed, recently defleshed and dry animal bones that had been experimentally 
burned. More recently, Gonçalves et al. (2011) found warping in dry human bones burned at a crematorium, lending 
further support to the fact that this kind of deformity is not exclusively linked to the burning of fleshed or recently 
defleshed bones. As discussed in Mayne Correia (1997), the disagreement of the results of previous studies can large-
ly be attributed to differences in the experimental methods and the type of skeletal materials adopted, as well as to 
inconsistencies in terminology. 

More recent experimental work by Gonçalves et al. (2015b) explored the frequency of heat-induced warping and 
thumbnail fractures on cremations of cadavers and skeletons. The authors confirmed that heat-induced warping and 
thumbnail fractures may occur in dry bones, though they are much more frequent in cadavers (fleshed bodies) than in 
skeletons. In addition, in burned skeletons, thumbnail fractures were almost thrice as frequent as warping. Therefore, 
warping is a better indicator of the pre-burning condition of remains. 

In addition to the above patterns, remains burned in a wet/fleshed state usually exhibit varying color patterns, deep 
fracturing and delamination, whereas bones burned in a dry state usually show little color variation, superficial frac-
turing and limited delamination (Bontrager and Nawrocki 2015). More recently, Lemmers et al. (2020) suggested 
that evidence of bioerosion lesions can still be identified histologically in burned remains and these can offer import-
ant insights to the pre-burning treatment of the body, that is, they can indicate whether the remains had been buried 
prior to being exposed to heat or not (but see cautionary note by Végh et al. 2021 who discovered that fire may 
actually produce features that resemble bioerosion).  

Weights 
During heat exposure, bone mass is reduced due to moisture loss, fat combustion and the breakdown/oxidation 
of organic molecules (Grupe and Hummel 1991; Thompson 2004, 2005). Several investigations experimentally ad-
dressed bone mass reduction using different animal bones burned for different durations and at different tempera-
tures (e.g. Enzo et al. 2007; Grupe and Hummel 1991; Hiller et al. 2003; Munro et al. 2007; Person et al. 1996). 
Some studies have shown a bone mass loss of 10% up to 200oC, 30% beyond 300oC, and 40% beyond 900oC 
(Bonucci and Graziani 1975; Grupe and Hummel 1991).

Skeletal weight should always be recorded on burned remains and may often be the only workable data in very frag-
mentary material. This parameter may allow for some insights especially regarding the completeness of the remains, 
the degree of anatomical identification and the proportions of each skeletal region (Gonçalves 2011). Relevant stud-
ies are largely based on the work of Lowrance and Latimer (1957), who weighed adult skeletons of Asian origin after 
the bones had been macerated and degreased. They were able to determine the percentage of mass each bone con-
tributed to the total mass of the skeleton. When an anatomical region is underrepresented, it raises issues of selective 
bone treatment or preservation (André et al. 2013). Trotter and Peterson (1962) studied the relationship between 
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skeletal mass and the mass of ash. The skeletons used by the authors were macerated, degreased and dried before 
being heated to 600oC. The mass lost varied between 30 and 39% depending on the bone (Trotter and Peterson 
1962). André et al. (2013) applied Trotter and Peterson’s percentages (1962) to Lowrance and Latimer’s (1957) data, 
and calculated new proportions of each bone and each anatomical region (Table 9). 

Table 9. Calculation of the theoretical proportions of bones and anatomical regions for a skeleton burned to 600oC from 
Trotter and Peterson’s data (1962) applied to Lowrance and Latimer’s data (1957) (André et al. 2013 Table 2)

Percentages 
of bone 
weights 
(Lowrance 
and Latimer 
1957)

Bone 
weights  
for a 
skeleton  
of 2882 g

Percentages 
of bone 
weights 
after 
burning 
to 600oC 
(Trotter and 
Peterson 
1962)

Bone 
weights 
after 
burning to 
600oC

Percentages 
of bone 
weights for 
a skeleton 
of 2882 g 
burned to 
600oC

Percentages 
of bone 
weights 
for each 
anatomical 
region 
(Lowrance 
and Latimer 
1957)

Percentages 
of bone 
weights 
for each 
anatomical 
region for 
a skeleton 
burned to 
600oC

Head Cranium 17.98 518.18 67.01 347.22 18.19 20.4 20.7

Mandible 2.42 69.74 69.71 48.62 2.55

Trunk Vertebrae 10.06 289.93 63.96 185.45 9.71 17 16.5

Ribs 6.42 185.02 64.95 120.17 6.29

Sternum 0.47 13.55 62.87 8.52 0.45

Upper 
limbs

Scapula 2.84 81.85 65.84 53.89 2.82 17.6 17.8

Clavicle 1.04 29.97 66.01 19.78 1.04

Humerus 6.38 183.87 66.89 122.99 6.44

Ulna 2.66 76.66 67.69 51.89 2.72

Radius 2.18 62.83 67.59 42.46 2.22

Hand 
bones

2.53 72.91 66.54 48.51 2.54

Lower 
limbs

Hip bones 7.83 225.66 64.64 145.87 7.64 45 45

Femur 17.67 509.25 66.69 339.63 17.79

Patella 0.57 16.43 66.2 10.87 0.57

Tibia 10.63 306.36 66.92 205.01 10.74

Fibula 2.47 71.19 67.64 48.15 2.52

Foot 
bones

5.79 166.87 66 110.13 5.77



22

Rather than estimating the weight of individual burned bones or anatomical regions, some researchers have doc-
umented it at the full skeleton level in order to assess the completeness of assemblages involving burned human 
skeletal remains (McKinley 1993; Warren and Maples 1997). The weight of burned remains can be compared to 
these reference standards to assess their completeness. Such documentation has already been carried out for several 
populations in Europe (Gonçalves et al. 2013b; Herrmann 1976; Malinowski and Porawski 1969; McKinley 1993), 
the United States (Bass and Jantz 2004; Van Deest et al. 2011; Warren and Maples 1997) and Asia (Chirachariyavej 
et al. 2006). Representative data are given in Tables 10-11. The mean skeletal weight of the burned skeletons re-
ported in all those studies presented great variation, which may be the result of different approaches adopted in 
weighing the remains, or linked to age, sex and regional differences (Bass and Jantz 2004; Chirachariyavej et al. 
2006; May 2011; McKinley 1993; McKinley and Bond 2001; Van Deest et al. 2011). Indeed, more aged individuals 
showed lower weights, and females systematically weighed less than males (Bass and Jantz 2004; Chirachariyavej et 
al. 2006; Malinowski and Porawski 1969; May 2011). With regard to regional differences, Bass and Jantz (2004) and 
May (2011) attributed these to regional variation in obesity rates and the body weight of different living populations. 
Chirachariyavej et al. (2006) further highlighted that different coffins may lead to variation regarding the weight of 
burned remains since often the coffin ashes are weighted along with the skeletal remains.

Table 10. Mean weight (in grams) for burned skeletal remains per sex (Gonçalves 2011 Table 1.1.2)

Females Males Reference

1540 2004 Malinowski and Porawski (1969)

1700 1842 Herrmann (1976)

1616 2284 McKinley (1993)

1840 2893 Warren and Maples (1997)

2350 3379 Bass and Jantz (2004)

2120 2680 Chirachariyavej et al. (2006)

2238 3233 Van Deest et al. (2011)

Table 11. Average weights of burned remains (in grams) in males and females from different archaeological periods 
(Minozzi 2015 Table 17.3)

Assemblage Females Males Reference

Ligurian Apuans 862 1173 Minozzi (2015)

Borgo Panigale 592 812 Cavazzuti (2008/2010)

Pisa 1061 1255 Bagnoli (2011/2012)

Casinalbo 656 974 Cavazzuti (2008/2010)

German Urn field culture 438 562 Wahl (2015)

German Hallstat/La Tenè 401 572 Wahl (2015)
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Additionally to using burned remains’ weights 
to assess the completeness of an assemblage, 
this method has been adopted to estimate 
the minimum number of individuals and the 
sex of an individual (Bass and Jantz 2004; 
Warren and Maples 1997), although these ap-
proaches have serious weaknesses (Fairgrieve 
2008; McKinley and Bond 2001). See sec-
tions Minimum Number of Individuals and 
Sex assessment. 

Another application of skeletal weights is re-
lated to the reconstruction of the funerary 
practices of past populations. Reference weights have been used to assess how thoroughly burned remains were 
collected prior to their deposition in the urn or grave (Gonçalves et al. 2010, 2015b; Holck 1986; McKinley 1994a, 
1994b; Murad 1998; Murray and Rose 1993; Richier 2005; Smits 1998). However, this approach does not take into 
account that not all parts of the skeleton are equally affected by heat-induced weight loss and that many bone frag-
ments exposed to heat can no longer be anatomically identified (Gonçalves 2011). 

A general serious limitation of using published weight standards is that such standards have been estimated based 
on calcined adult (often rather aged) individuals that were burned in modern crematoria. Thus, comparisons with 
non-calcined, non-adult remains, or remains burned in open pyres is problematic (Thompson et al. 2017).

Bone microstructure 
As already stressed, many of the above presented macroscopic changes are associated with microstructural alter-
ations due to heat exposure. Some broad such alterations are presented in Table 12.

Recording the weight of burned remains
Despite the limitations associated with the use of burned 
remains weight, it is important to collect relevant infor-
mation, at least as a means of quantifying the available 
material and its preservation (see section Sorting and 
Cataloguing). For this purpose, the weight of bone per 
sieve fraction should be obtained, as well as the total 
weight of bone from the combined sieve fractions. The 
weight from each sieve fraction should be represented 
as a percentage of the total weight. Weight in grams 
should be measured to one decimal place.

Table 12. Heat-induced bone microstructural alterations (Carroll and Squires 2020)

Category Temperature Thin-section micrograph Description

I 100oC-400oC well preserved bone 
microstructure; 

circular well-formed Haversian 
systems; 

unaltered Volkmann’s canals, 
osteons and canaliculi
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Category Temperature Thin-section micrograph Description

II 500oC-600oC depletion of organic material;

fusion of hydroxyapatite 
crystals; 

microfeatures still identifiable, 
but less well preserved

III 700oC-900oC more visible degeneration of 
microscopic features; 

increased hydroxyapatite 
fusion; 

decomposition of all organic 
material

IV >1000oC complete hydroxyapatite 
fusion → no discernible 
osteons, Volkmann’s canals 
and canaliculi;

few misshaped Haversian 
systems
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Crystallinity Index
Heat-related variation of the crystallinity index is 
an important topic examined with regard to the 
effect of heat on bone mineral structure. When 
bone is fresh, its crystal structure is poorly ordered, 
contains small crystals and has a greater strain; un-
burned bone, therefore, has a low crystallinity index 
value (Paschalis et al. 1997; Thompson et al. 2011). 
When exposed to heating, the crystal structure of 
bone becomes better ordered and is characterised 
by larger crystals and less porosity and strain; hence, 
the crystallinity index value increases (Bartsiokas 
and Middleton 1992; Figueiredo et al. 2010; Munro 
et al. 2007; Nagy et al. 2008; Olsen et al. 2008; 
Shipman et al. 1984; Stiner et al. 2001; Surovell and 
Stiner 2001; Trueman et al. 2008). Representative 
Crystallinity indices calculated from XRD (CI) and 
FTIR (IRSF) data in bones incinerated for 150 mins 
are given in Table 13. 

Table 13. Crystallinity indices at different temperatures 
calculated from XRD (CI) and FTIR (IRSF) data  
(drawn from Greiner et al. 2019 Table 3)

Temperature (oC) CI IRSF

Unheated 0.11 2.43

100 0.14 2.67

200 0.16 2.81

300 0.17 2.97

400 0.19 3.12

500 0.24 3.56

600 0.35 4.26

700 1.23 6.17

800 1.31 6.32

900 1.28 6.29

1000 1.30 6.96

Regarding the factors underlying the increase in crystallinity index values, Rogers and Daniels (2002) argued that 
their data support an increase in crystal size as causative factor, but they also stated that a redistribution of existing 
crystals may also play a role. Hiller et al. (2003) agreed that crystal size indeed increases with heat exposure, but crys-
tal shape and thickness also alter. Person et al. (1996) and, more recently, Sui et al. (2014) stressed the importance 
of the organic phase in protecting the inorganic phase from change and, therefore, its influence on crystallinity index 
- although this will only occur up until the loss of the organic phase. Trueman et al. (2008) and Lebon et al. (2010) 
agreed with these findings and explained them more specifically by highlighting the role of the organic phase in re-
ducing bone porosity, thus crystal surface area exposure to the environment.

Heat-induced changes in bone crystallinity (Etok et al. 2007)
 y 25–250oC: loss of poorly bounded water up to 100oC and of structural water from proteins and 

mineral surface-bound water up to 250oC 
 y 300–500oC: combustion of about half of the organic phase, increase of crystal size (from ca. 10 

to 30 nm) and crystallite thickness (from ca. 2 to 8-9 nm), and formation of new mineral phases 
 y > 500oC: loss of remaining organic matter, crystallite size enlargement to 110 nm and crystallite 

thickness growth to 10 nm 
 y 900oC: loss of intercrystallite space
 y > 900oC: formation of β-tricalcium phosphate 
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Different methods have been used to examine heat-induced bone crystallinity changes: x-ray diffraction (XRD), 
small-angle x-ray scattering (SAXS), Fourier transform infrared spectrocopy (FTIR), Raman spectroscopy, and others 
(Mamede et al. 2017; Munro et al. 2007; Sui et al. 2014; Thompson et al. 2009). Crystallinity index values from these 
methods are not directly comparable, although the general trends they reveal are similar. They all have advantages, 
but FTIR is preferable because it allows the simultaneous examination of all bone tissue components, it can identify 
contaminant material and detect substitutions within the elemental structure, it is cost-efficient and more accurate 
at lower heating temperatures (D’Elia et al. 2007; Paschalis et al. 1997; Wright and Schwarcz 1996). Other scholars 
advocate XRD over FTIR (Pijoan et al. 2007; Pucéat et al. 2004; Rogers et al. 2010), while others still have used the 
two approaches in combination (Munro et al. 2007; Pucéat et al. 2004). 

Beyond being heat-induced, crystallinity changes also occur naturally after death and are enhanced by weathering 
(Brock et al. 2010; Piga et al. 2009; Stiner et al. 1995, 2001; Surovell and Stiner 2001). Rogers et al. (2010) examined 
differences in the microstructural changes that occur in diagenetically altered and burned bones to test whether the 
two processes can be differentiated. Indeed, the authors identified differences in the lattice order of the mineral of 
these types of bone, as well as in the directional nature of their microstructure. 

When examining crystallinity, it should be remembered that it is not uniform throughout the skeleton (Nakano et al. 
2002; Thompson et al. 2009), while age has also been shown to affect it, with younger bone showing lower values 
than more mature bone (Paschalis et al. 1997). However, Thompson et al. (2011) highlighted the importance of ex-
trinsic variables (e.g., temperature and duration of heat exposure) over intrinsic ones (e.g., skeletal sample location). 
Moreover, there is evidence that certain pathological conditions can also affect crystallinity index values. Nagy et al. 
(2008) found a difference in crystallinity index between archaeological remains afflicted by tuberculosis and syphilis. 
Wright and Schwarcz (1996) also noted that dense enthesophytic bone may be responsible for an unexpected crys-
tallinity index value in their work. Finally, the fire context is also important. Heat from a pyre generally comes from 
one direction and will cause greater heat-induced crystallinity index changes on the bone surface closest to it (Schurr 
et al. 2015). Before closing, it must be noted that with appropriate carbonate compensation, increases in crystallinity 
will still produce a constant crystallinity index (Pucéat et al. 2004).

DNA analysis
A number of studies have highlighted the potential to extract DNA from burned remains once these have been ex-
posed to temperatures up to 600oC (sometimes 300-400oC), at which point much of the organic component is oxi-
dised (Brown et al. 1995; Duffy et al. 1991; Harbeck et al 2011; McKinley 2017; Pusch et al. 2000; Sajantila et al. 1991; 
Tsuchimochi et al. 2002; Williams et al. 2004). In cases of bone exposure to higher temperatures and/or for long 
duration, such as in modern commercially cremated remains, experimental and case studies indicate DNA cannot be 
retrieved (Cattaneo et al. 1999; Nelson and Melton 2007; Rees and Cox 2010; von Wurmb-Schwark et al. 2004).

Stable and radiogenic isotope analysis
Among the earliest experimental studies on the applicability of stable isotope analysis on burned skeletal remains, 
DeNiro et al. (1985) found that boiling or roasting did not change the δ13C and δ15N values by more than 1‰; how-
ever, more extreme heating altered δ13C and δ15N values by as much as 5‰ and 4‰, respectively. More recently, 
Schurr et al. (2015) confirmed that stable nitrogen isotope ratios are significantly affected by heating; however, con-
trary to DeNiro et al. (1985), δ13C values did not change particularly by heating, although in burned samples they 
showed increased scatter around the mean value of −13.2 ± 0.1‰. For oxygen isotopes, Munro et al. (2007) found 
that δ18Op values were preserved at temperatures lower than 300°C; however, at higher temperatures, values were 
up to 7‰ smaller. In their experimental work, Harbeck et al. (2011) concluded that stable isotopic values of the light 
elements carbon, nitrogen and oxygen are unaltered up to 200oC, but over this temperature, results are unreliable. 
These results disagree with a recent experimental study by Robinson and Kingston (2020) who tested the effect of 
heating on faunal δ13Cenamel and δ18Oenamel and found that although δ18O values are significantly altered from 300oC 
onwards, δ13C values are minimally affected at temperatures as high as 1100oC (except in thin-enameled species). 
Stable isotopic values of the heavy element strontium also remain unchanged up to 1000oC, as supported in ex-
perimental studies (Snoeck et al. 2015) and case studies using archaeological material (Graham and Bethard 2019; 
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Snoeck et al. 2016, 2018; Taylor et al. 2020). In this direction, the work by Harvig et al. (2014) showed that strontium 
isotope ratios estimated from the otic capsule of the petrous part of the temporal bone show a high correlation with 
ratios obtained from the dental enamel of the same individuals, in burned and unburned remains. Hence, the petrous 
bone can substitute dental enamel where the latter is too fragmented.

The validity of radiocarbon dating of burned bones has been supported by different studies (Minami et al. 2019; De 
Mulder et al. 2007, 2012; Naysmith et al. 2007; Olsen et al. 2008, 2011). However, in several cases charred bones 
exhibit aberrant results, likely due to post-depositional CO3 substitution (Olsen et al. 2008; Van Strydonck et al. 
2009). Contrary to charred remains, in calcined bones, the compactness of the bone structure prevents carbonate 
substitution (Van Strydonck et al. 2005). Thus, dating should employ calcined bone rather than charred one (Lanting 
et al. 2001). A serious potential limitation in radiocarbon dating is the so-called ‘old wood effect’, that is, we may be 
dating the wood used for the cremation pyre rather than the skeletal remains (Geyh 2001; Olsen et al. 2013; Rose et 
al. 2020; Snoeck et al. 2014; Van Strydonck et al. 2010; Zazzo et al. 2012). 

Heat-induced dental alterations
As with bone, many extrinsic variables control the effect of heat on teeth, such as temperature, duration of expo-
sure, state of the body before exposure, and others. Nonetheless, some broad patterns can be outlined. During fire 
exposure, different teeth and dental tissues are differentially affected. The anterior teeth may be less affected com-
pared to the posterior teeth if they fall out at an early stage of the burning process; once they are on the ground, 
they are likely below or away from the fire. However, if they do not fall out, the enamel of the anterior teeth is more 
affected by heat exposure than that of the molars because the latter are better protected by the orofacial tissues 
(Delattre 2000; Sakoda et al. 2000). Posterior teeth are generally rather protected and their crown fragmentation 
is more predictable than that of anterior teeth, with cracks appearing first along the grooves that separate the cusps 
(Schmidt 2015). An early but seminal study on the effect of heat on dental tissues was by Harsányi (1976). The 
key findings regarding heat-induced macroscopic and microscopic alterations to enamel and dentin are presented 
in Tables 14-15. Shipman et al. (1984) also systematically explored microscopic heat-induced dental changes, as sum-
marised in Tables 16-17.

Table 14. Macroscopic and microscopic effects on enamel of one-hour heat exposure at different temperatures  
(drawn from Harsányi 1976; reprinted by Fairgrieve 2008 Table 7.2)

oC Macroscopic changes Microscopic changes

200 Color changes None

300 Dark grayish brown color; enamel starts to peel 
off via small crevices

Small crevices; enamel intact between crevices

500 Gray color; longitudinal furrows Crevice network; multiangular plates

700 Light grayish-white color;  fragmentation Fine grained granules; original surface 
unrecognizable

900 Almost white color; more pronounced 
fragmentation

Fusion of enamel grains; unrecognizable 
structure

1000 Porcelain-white color “Structureless” smooth plates

1100 Porcelain-white color; fragmentation Same as at 1000oC

1300 Tiny smooth porcelain-white fragments with 
glass-like surface

Inorganic salts fused into round formations
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Table 15. Macroscopic and microscopic effects on dentin of one-hour heat exposure at different temperatures (drawn 
from Harsányi 1976; reprinted by Fairgrieve 2008 Table 7.5)

oC Macroscopic changes Microscopic changes

200 Color changes None

300 Light grayish-brown color Structure preserved; tubules opened horizontally 
or longitudinally; morphology unaffected

500 Dark grayish-black color; pulp chamber and root 
canal preserved 

Preserved-open dental canalicules, no 
narrowing

700 Pale gray color; parts of pulp chamber and root canal 
recognizable but narrowed

Tubules narrowed but visible; peritubular zone 
heat-resistant relative to intertubular dentin

900 Almost white color; large pieces with root present Narrowed dentin tubules 1.5 to 1.7 μm in diame-
ter; anastomoses between tubules not visible

1000 Porcelain-white color; narrowed pulp chamber; root 
canal slightly distinguishable

Tubular structure preserved; minute “pearls” of 
material in string formation

1100 Porcelain-white root color; narrowed pulp chamber 
and root canal still observable

Tubular structure preserved; narrow portions 
and anastomoses not observable; round plates 
and granules of varying size

1300 Minute porcelain-white fragments; remains of narrowed 
pulp chamber and root canal may be observable

Structures decomposed and fused into 
granules of varying size

Table 16. Microscopic heat-induced alterations to enamel (drawn from Shipman et al. 1984; reprinted by Fairgrieve 2008 
Table 7.3)

Stage I 20-185°C: enamel normal 

Stage II 185-285°C: dimples develop, but overall surface texture smoother than in Stage I 

Stage III 285-440oC: rounded particles form and cover the surface 

Stage IV 440-800°C: vitrified or glassy particles separated by pores and fissures; enamel close to the CEJ 
breaks up 

Stage V 800-940°C: fine particles of stage IV coalesce into larger, smooth-surfaced globules that fuse into an 
irregularly-shaped mass pierced by rounded holes 

Table 17. Microscopic heat-induced alterations to dentin (drawn from Shipman et al. 1984; reprinted by Fairgrieve 2008 
Table 7.6)

Stage I 20-185°C: dentinal surface of pulp cavity normal; calcospherites clearly visible and pierced by 
smooth-edged, circular openings to the dentinal tubules

Stage II 185-285°C: peritubular matrix shrunken and separated from intertubular matrix; surface of 
intertubular matrix showing small asperities that produce roughened texture

Stage III 285-440°C: asperities of stage II have melted and smoothed out; division between peritubular and 
intertubular matrix rarely visible; elongated openings of dentinal tubules; intertubular matrix forming 
a network of bars between openings

Stage IV 440-800°C: appearance of many particles which create frothy or fleecy texture; increasing elongation and 
enlargement of tubule openings; some areas of glassy texture, perforated by irregularly-shaped openings

Stage V 800-940oC: frothy protuberances of stage IV have coalesced into globules that fuse into nodular 
spikes; spaces between spikes are remnants of tubules and spikes are remnants of intertubular bars
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A series of recent experimental studies by Sandholzer and his colleagues (Sandholzer 2015; Sandholzer et al. 2013, 
2014a, 2014b) complemented these earlier works and found that the enamel was fully preserved and attached to 
the dentin at 400°C, with small cracks visible in the crown and multiple small cracks in the root. Between 500°C and 
700°C the enamel was partially separated from the coronal dentin or fragmented; deep cracks were present in the 
root, and small cracks on the enamel surface, with the majority appearing in the dentin-enamel junction. At tempera-
tures above 800°C, the enamel and dentin were separated and fragmented. 

Recent studies have also examined systematically color changes in the tooth crown and root (Figure 7). Changes in 
the enamel are subtle, from natural pale yellow color to pale brown, light grey and white (Beach et al. 2015). Heat-
related color changes in roots go from pale yellow to black, brown, greyish-blue, light grey, chalky-white and, finally, 
white-pink (Beach et al. 2015; Fairgrieve 2008; Sandholzer et al. 2013). It must be noted that the part of the root that 
lies inside the socket during heat exposure is better protected, and its color will often differ from that of the exposed 
part of the root (Schmidt 2015).

Figure 7. Color alteration of human teeth after 30-minute heat exposure at 400oC (A) to 1000oC (G) (adapted from 
Sandholzer 2015 Figure 21.1)

Important dimensional changes also take place during dental exposure to heat, as is the case with bones. Sandholzer 
(2015) and Sandholzer et al. (2013) found mean dentinal shrinkage in tooth roots to be between 4.78% (at 400°C) 
and 32.53% (at 1000°C), showing a sharp increase between 700°C and 800°C (11.5–24.2%) (Table 18). Similarly, 
Beach et al. (2015) examined the degree of weight loss at different temperatures and for different durations of expo-
sure, and the results are summarised in Table 19.

Table 18. Mean dentinal volume shrinkage at different temperatures after constant 30-minute exposure 
(Sandholzer et al. 2013 Table 1)

Temperature (oC) Shrinkage (% ± 1 SD)

400 4.78 ± 0.80

500 5.94 ± 1.36

600 8.66 ± 0.83

700 11.53 ± 1.53

800 24.20 ± 4.23

900 27.50 ± 4.35

1000 32.53 ± 5.35
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Table 19. Average percentage weight loss for teeth at different temperatures after constant 30- and 60-minute exposure 
(Beach et al. 2015 Table 7.2)

Temperature (oC) Average percentage weight loss at 
30 min

Average percentage weight loss at 
60 min

204 16.3 13.1

260 17.3 17.3

316 13.3 23.1

371 16.9 21.3

427 37.9 22.5

482 25.1 30.9

538 27.4 24.1

593 36.0 33.3

The stage of development of a tooth needs to be taken into consideration when examining the effect of fire. Silva 
et al. (2009) found that in teeth with more than two thirds of the crown formed, a clear distinction may be seen 
between the forming enamel that has higher organic content, and more completely mineralised enamel. Similarly, it 
is important to consider if teeth are deciduous or permanent. Most of the abovementioned research examined per-
manent teeth. An important study focused on the deciduous dentition is by Karkhanis et al. (2009); the results are 
summarized in Table 20 and partly visualized in Figure 8.

Table 20. Heat-induced changes in deciduous teeth (Karkhanis et al. 2009 Table 1)

oC Color Stereomicroscopic and SEM traits

100 • Crown: pale yellow, very pale brown
• Root: yellowish brown

• Crown fracturing in anterior teeth 
• Surface crazing
• Melting of external surface

200 • Crown: pale yellow, gray
• Cervical patches: very dark brown
• Root: shiny black

• Surface bubbling and vesicle formation on root 
surface

• Silvery deposits on root surface

300 • Crown: light gray
• Patches: very dark gray
• Root: shiny black

• Surface bubbling on root surface
• Globular knob-like formations on predentinal 

surface

400 • Enamel: very pale brown
• Patches: very dark brown
• Dentin: very dark gray
• Cementum: light yellowish brown

• Initial separation of enamel and dentin 
• Deep fissures on root surface and through dentin

500 • Enamel: light gray
• Patches: dark gray
• Dentin: dark bluish gray
• Cementum: grayish brown, light grayish brown

• Crown-root separation
• Complete separation of enamel and dentin
• Loss of enamel lustre
• Reduction in tubular diameter, especially near 

dentino-enamel junction

600 • Enamel: light gray
• Cervical patches: very dark gray
• Dentin: dark bluish gray
• Cementum: bluish black

• Extreme fragility; deep fissures in dentin and 
cementum
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oC Color Stereomicroscopic and SEM traits

700 • Enamel: light bluish gray
• Dentin: dark bluish gray
• Cementum: light bluish black

• Extreme reduction in dentinal tubule diameter

800 • Enamel: bluish gray
• Dentin: very dark bluish gray
• Cementum: very dark bluish gray

• Specular appearance in predentinal surface

900 • Enamel: neutral white
• Dentin: light bluish gray
• Cementum: light bluish gray
• Patches: very dark bluish gray

• Star-shaped fibrillar structures emerging from 
intertubular dentin matrix

• Cementum unidentified, with  granular 
appearance

1000 • Enamel: light bluish gray 
• Dentin: light bluish gray
• Cementum (external): bluish black
• Cementum (subsurface): light bluish gray

• Obliteration of dentinal tubules 
• Identifiable prismatic structure of enamel and 

tubular morphology of dentin 

1100 • Enamel/dentin/cementum: light bluish gray 
• Predentin: light greenish gray, pink discoloration 

of the crown

• Identifiable enamel and dentin 
• Granular appearance of intertubular dentin
• Cementum unidentifiable, with granular 

appearance

Figure 8. SEM images of deciduous tooth alteration after heat exposure. A. dentin after exposure to 500oC for 30 mins, B. 
enamel subsurface after exposure to 700oC for 30 mins (note prismatic structure), C. dentin after exposure to 900oC for 30 
mins (note star-shaped crystals), D. cementum after exposure to 900oC for 30 mins (note melted surface) (Karkhanis et al. 
2009 Figures 2-3 and 6-7)
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RECORDING SHEETS

RECORDING SHEET FOR BURNED HUMAN SKELETAL REMAINS

This recording sheet largely draws from that proposed for commingled remains (STARC Guide No. 2) 
The forms given here are for individual unassociated skeletal elements, which is the most common state in which 
burned remains are retrieved. Note that when working with such remains, it is generally impractical to use printed 
forms. Instead, try to fit the information given below in a spreadsheet (e.g. in Excel) whereby each individual element 
occupies a row and each variable is given in a column.

GENERAL INFORMATION

Archaeological site: 

Curation site: 

Recorder: 

Date: 

Burial No: 

Grave type: 

Grave size: 

Field methods for site identification: 

Field methods for site excavation: 

Cleaning methods: 

Restoration methods: 
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BONE INVENTORY
Key: Zones as defined by Knüsel and Outram (2004); record expression per zone as 0 = absent,  
1 = present <25%, 2 = present 26-50%, 3 = present 51-75%, 4 = present >76% or simply as  
0 = absent, 1 = present

CRANIUM, MANDIBLE, EAR OSSICLES & HYOID

Element Zone/Side Expression Element Zone/Side Expression

Frontal 1 Vomer –

2 Lacrimal

Parietal 3 Palatine

4 Ethmoid –

Occipital 5 Mandible 1

Temporal 6 2

7 3

Sphenoid 8 4

9 5

Zygomatic 10 6

11 7

Maxilla 12 Malleus

13 Stapes

Nasal 14 Incus

15 Hyoid –

Inferior nasal 
concha
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THORACIC CAGE & VERTEBRAE

Element Zone Left Right Element Zone Expression

Sternum 1 Atlas 1

2 2

3 3

Rib 1 1 4

2 Axis 1

3 2

Rib 2 1 3

2 4

3 C3-7 1

Rib 3-10 1 2

2 3

3 4

Rib 11 1 T1-12 1

2 2

3 3

Rib 12 1 4

2 L1-5 1

3 2

3

4

SHOULDER GIRDLE

Element Zone Left Right Element Zone Left Right

Clavicle 1 Scapula 1

2 2

3 3

4

5

6

7

8

9
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UPPER AND LOWER LIMB LONG BONES & PATELLA

Element Zone Left Right Element Zone Left Right

Humerus 1 Femur 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

Radius 1 Patella –

2 Tibia 1

3 2

4 3

5 4

6 5

7 6

8 7

9 8

10 9

11 10

J Fibula 1

Ulna A & B 2

C 3

D 4

E 5

F 6

G

H

J
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HAND BONES

Element Zone Left Right Element Zone Left Right

Scaphoid – MC4 1

Lunate – 2

Triquetral – 3

Pisiform – MC5 1

Trapezium – 2

Trapezoid – 3

Capitate – Proximal 
phalanx

1

Hamate – 2

MC1 1 3

2 Middle 
phalanx

1

3 2

MC2 1 3

2 Distal 
phalanx

1

3 2

MC3 1 3

2
3

PELVIC BONES

Element Zone Left Right Element Zone Left Right

Os coxa 1 Sacrum 1

2 2

3 3

4 4

5

6

7

8

9

10

11

12
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FOOT BONES

Element Zone Left Right Element Zone Left Right

Talus 1 MT3 1

2 2

3 3

4 MT4 1

Calcaneus 1 2

2 3

3 MT5 1

4 2

5 3

Navicular – Proximal 
phalanx

1

Cuboid – 2

1st Cuneiform – 3

2nd Cuneiform – Middle phalanx 1

3rd Cuneiform – 2

MT1 1 3

2 Distal phalanx 1

3 2

MT2 1 3

2

3
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BROADLY IDENTIFIED BONE

Type Size class No of  
fragments

Weight Type Size class No of  
fragments

Weight

Cranium <1 cm Pelvic girdle <1 cm

1-3 cm 1-3 cm

3-5 cm 3-5 cm

>5cm >5cm

Thorax <1 cm Lower limb <1 cm

1-3 cm 1-3 cm

3-5 cm 3-5 cm

>5cm >5cm

Pectoral 
girdle

<1 cm Unidentifiable <1 cm

1-3 cm 1-3 cm

3-5 cm 3-5 cm

>5cm >5cm

Upper limb <1 cm

1-3 cm

3-5 cm

>5cm

UNIDENTIFIED BONE

Type Size class No of  
fragments

Weight Type Size class No of  
fragments

Weight

Flat <1 cm Long - 
epiphysis

<1 cm

1-3 cm 1-3 cm

3-5 cm 3-5 cm

>5cm >5cm

Short <1 cm Long - 
diaphysis

<1 cm

1-3 cm 1-3 cm

3-5 cm 3-5 cm

>5cm >5cm
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DENTAL INVENTORY

Key: 1 = Present, not in occlusion, 2 = Present, development completed, in occlusion, 3 = Missing, no 
associated alveolar bone, 4 = Missing, antemortem loss, 5 = Missing, postmortem loss, 6 = Missing, 
congenital absence, 7 = Present, damage renders measurement impossible, 8 = Present, unobservable

DECIDUOUS TEETH

I1 I2 C M1 M2

Maxilla Left

Maxilla Right

Mandible Left

Mandible Right

PERMANENT TEETH

I1 I2 C P3 P4 M1 M2 M3

Maxilla Left

Maxilla Right

Mandible Left

Mandible Right

Skeletal/
dental 
fragment

Preservation 
of organics1

Fracturing2 Shrinkage3 Warping4 Discoloration5 Pre-
incineration 
state6

Crystallinity 
index

1 Record as ‘carbonization’or ‘calcination’
2 Record as longitudinal, step, transverse, patina, splintering and delamination, burn line, and curved transverse
3 Record only when clearly visible (e.g. when bilateral asymmetry is noted in elements diferentially exposed to heat); 
otherwise leave blank
4 Record as present/absent
5 Record using Munsell Soil Color Chart or any other available method (e.g. RGB)
6 Record as dry or fleshed; assessed via warping, fracturing, and discoloration

HEAT-INDUCED ALTERATION



55

SEX ASSESSMENT (ONLY FOR ADULT REMAINS)
Key: Record as Female, Probable Female, Ambiguous, Probable Male, Male, Indeterminate

Element Trait/Method Sex

AGE-AT-DEATH ESTIMATION (FOR NONADULTS)

Element Trait/Method Age-at-death

Classify individuals in one of the following categories: fetus = before birth, infant = 0-3 yrs, 
child = 3-12 yrs, adolescent = 12-20 yrs, nonadult = <18 yrs, indeterminate = unable to estimate 
age-at-death

AGE-AT-DEATH ESTIMATION (FOR ADULTS)

Element Method Stage Age-at-death

Classify individuals in one of the following categories: young adult = 20-35 yrs, middle adult = 
35-50 yrs, old adult = 50+ yrs, adult = 18+ yrs, indeterminate = unable to estimate age-at-death
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PATHOLOGICAL LESIONS

Element affected Type of lesion Degree of expression
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