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   Abstract: 

The following is a collection of two proofs, submitted in 21 March 2021.Methods used in 

each proof: PNP – set theory, calculus of variations and category theory. Riemann conjecture 

– differential topology, group theory, calculus of variations and category theory. Using those 

methods on the Riemann conjecture yield an astonishing insight – primes form a non-abelian 

group with one condition regarding addition.    

  

Introduction  

 P < NP 

Let it be a set -     

                                                 A =  {a (1) … . a (n)}                                           (1)  

Define a condition on the set: 

                                                K ∶  A   B                                            (2)   

Let B =  {a (1) … . a (m)} a subset of A which satisfy the condition K.   

m <  n.   

Allocate: 

                                                       K  t (1)                                          (3).  

 Time in which the subset B was obtained after running the condition. Allow the elements of 

A to vary over time. 

                                              Δt ∶ A  A′                                           (4) 

                                              Δt: B  B′                                           (5)  

Let an isomorphism exit between the sets after the operation Δt. Define a functor on the 

subset B: 

                                          V: set  Top                                         (6) 

In order to obtain an EL equation of the subset L (B, B', t) on a topological space. Set the 

space to be complex analytical to ensure differentiation is possible at all time.  

                                         
𝛛𝐋

𝛛𝐁
−

𝛛𝐋

𝛛𝐁′
∗

𝐝

𝐝𝐭
= 𝟎                                        (𝟕) 
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Or  

                                            B −  B′ ∗  Δt =  0.                                            (8) 

 Since we allocated to obtaining the subset B the time t(1) – we can write:  

                                       (t(1))B −  B′ ∗ (t(1) + Δt)  =  0                             (9)  

For a given condition we impose on a set, which yield a subset to satisfy it, in order to ensure 

the subset to be a valid solution we are required to examine it will stay invariant under time 

translations after we operate a functor on it and switch to a topological space. 

 In other words, the variations of the subset to vanish at border.  One can say that the subset 

has to be close with respect to time.   

 Thus, time obtaining a suggested solution will always to shorter than the time required 

deciding the existence of a solution The time of making a decision regarding the existence of 

a solution and obtaining the solution will be equal if the set is not varying over time.  Δt =  0. 

𝑬𝒏𝒅 𝒐𝒇 𝒑𝒓𝒐𝒗𝒆.  
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Riemann Conjecture 

Define a Lorentz manifold  

                                                   𝐬 = (𝐌, 𝐠)                                        (1) 

Use it to assemble a Lagrangian and require it to be stationary:   

                                                 L = (s, s′, t)                                            (2)    

                                           
𝛛𝐋

𝛛𝐬
−

𝛛𝐋

𝛛𝐬′ ∗
𝐝

𝐝𝐭
= 𝟎                                       (3) 

Allow arbitrary variations of the manifold. Ensure it will vanish:  

ⱷ𝐬 =  0 

Turn it to a series of arbitrary variations:  

                                     ⱷ𝐬 =  ⱷ𝐬𝟏 +  ⱷ𝐬𝟐 + ⱷ𝐬3 …                              (4)    

If there are only four elements in the series, and we require them all to vanish, than we can 

allocate two pluses and two minuses:  

ⱷ𝐬𝟏 +  ⱷ𝐬𝟑 > 0  

ⱷ𝐬𝟐 +  ⱷ𝐬𝟒 < 0 

 If   

                    ⱷ𝐬𝟏 +  ⱷ𝐬𝟑 +  ⱷ𝐬𝟐 +  ⱷ𝐬𝟒 ≠ 0                          (5)  

Than the overall series cannot vanish, by that logic we need equal amounts of plus and 

minuses. The overall amount must be even and summed as zero.  

Suppose that we had three distinct elements, two pluses and minus: 

ⱷ𝐬𝟏 +  ⱷ𝐬𝟑 +  ⱷ𝐬𝟐   > 0 

or  

ⱷ𝐬𝟏 +  ⱷ𝐬𝟑 +  ⱷ𝐬𝟐 < 0  

Demanding the series to vanish this forbid this result, and so there could not be three distinct 

elements in the series, else the overall series will not vanish. As a result of those sceneries, we 

require the series to have an even amount of variation elements, manifesting as two distinct 

elements in the series, which differ in sign.  

If we allow those sub elements in the series to vary as well, and by the above reasoning, there 

are only two elements in the series, they are varying in a discrete way, or forming a group. Let 

it be only four elements in the series and one of the pluses just changed its nature 

𝐎: ⱷ𝐬𝟏 → ⱷ𝐬𝟐 
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ⱷ𝐬𝟏 +  ⱷ𝐬𝟏 +  ⱷ𝐬𝟐 +  ⱷ𝐬𝟐 =  0 

To: 

ⱷ𝐬𝟏 +  ⱷ𝐬𝟐 +  ⱷ𝐬𝟐 +  ⱷ𝐬𝟐 ≠ 0 

 

There must be a way to bring it back to where it was, so the overall series can vanish, it takes 

another map, on the varying element to bring it back to where it was.  

Y∶  ⱷ𝐬𝟐 → ⱷ𝐬𝟏 

Therefore, to bring an element to itself given only two varying elements in the series we need 

two distinct maps, which attach a varying element to itself, by a threefold combination.  

ⱷ𝐬𝟏(O) ⱷ𝐬𝟐(Y) ⱷ𝐬𝟏 For example.   

Even though the sub elements in the series are varying, the overall series can vanish.  

Now, count all the ways of possible combinations of those elements. We are going to analyze 

by the integral signs. Since it is a group, there is a natural map, which change an element to 

itself. One built his analysis firstly on those natural maps.  

 

(1(e)1(e)1) 

2(e)2(e)2  

(221) 

(112) 

(211) 

(122) 

(212) 

(121) 

The first two combinations are by the natural maps and one used them to build the other 

combinations. Overall, there are eight such combinations and additional one arrow 

combination, which yield (333) 

Here is how one built it, starting from those two natural maps. (Arrows to variations, colors to 

pairings): 
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2𝟏𝟏 − − −  212                  𝟏𝟐𝟐 − − − − 121 

 

              221 − − − − − − − − 112  

 

  

                  222 − − − − 111 

 

                            333 

 

Now that we have a series of 2N elements, varying to one another and forming threefold 

combinations, which we require to vanish at end, we can set the stage for a proof of primes: 

Define: Pᵐ as the set of {2 , 3} as "minimal primes"  

In addition, all the other primes to be in a set of Pẖ as meant "prime higher". 

Define Pẖ =  {2n + 1} not divisible by Pᵐ as "prime higher" set – 2n taken as amount of 

Lorentz manifold arbitrary variations.   

{2n + 1} as an odd amount of variations not divisible by minimal primes  

Pṱ =  Pẖ +  Pᵐ ; to be the set of all primes  

. 

Define a functor V on Pẖ: 

                                       V: set  ring                             (6)  

 

Analyze any multiplication or addition combination of Pẖ on the ring. Let the ring 

exist on a Lorentz manifold, a topological space.  
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𝐌𝐮𝐥𝐭𝐢𝐩𝐥𝐢𝐜𝐚𝐭𝐢𝐨𝐧: 

 

Define T to be a number aspiring infinity: T ∞ Multiply an even or odd series aspiring 

infinity of distinct higher primes to obtain:  

[(2n1 + 1)(2n2 + 1)(2n3 + 1). . . (2n + 1])  = 

2 [T ((n1 n2 … )) +  (n1 + n2 + n3 … ) +
1

2
] 

 =  2([T ((n1 n2 … ))  +  N(s)  + 1/2] 

 

                        N(s) =  (n1 + n2 + n3 … ) =  0                      (7) 

 As sums of even amounts of arbitrary variations vanish. Since all the elements are 

two multiples, they all vanish. Final form: 

  

                                          2 ([T (n1 n2 … )] +
1

2
)                               (8)  

       

𝐀𝐝𝐝𝐢𝐭𝐢𝐨𝐧 

Add any infinite even series of distinct higher primes to obtain 

(2n1 + 1) +  (2n2 + 1) +  (2n3 + 1) …  =  [2(n1 + n2 … ) +  even]  =   

                                           [2(n1 + n2 … )]                                   (9) 

as even =  0.  

Prime cannot form, as even amount of variations vanish exactly to zero. That is the 

reason the paper begins with deriving fermions, their anti-commutation relation. Even 

amount of distinct higher primes added will never form a prime.  

Add any infinite odd series of distinct higher primes to obtain 

(2n1 + 1) +  (2n2 + 1) +  (2n3 + 1) …  = 

[2(n1 + n2 … ) +  odd]  =  

                          [2(n1 + n2 … ) + (even +  1)]                                (10)  
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However, even amounts of arbitrary variations vanish:  

even = 0  

 [2(n1 + n2 … ) + 1]  or: 

                            2[n1 + n2 … + 1/2]                    (11) 

______________________________________________________________ 

𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐲 𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧𝐬 

Define a functor on "Primes higher" ring  

G: ring  group  

All "primes higher" are forming a closed non-abelian group with 1/2 as generator. The 

condition to group forming is to have an odd amount of primes under addition and 

eliminating even amounts of arbitrary variations taken as an axiom. 

Define additional functor 

G′: group  set  

Add the sets: 

Pẖ +  Pᵐ =  Pṱ  ; 

 Define a functor on Pṱ:  

 

G′′: set  group  

All primes are forming a non-abelian group of generator 1/2. Minimal primes are part 

of the group by nature of the proof, defined technically to be prime.  

Primes are forming a non-abelian group under addition and multiplication. The 

condition to satisfy is to have an odd amount of primes under operation of addition. 

No matter how far into infinity we will go, the framework of vanishing of even 

amount of variations will ensure that all primes take the same form – aligned on 
1

2
.     
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Setting the stage and examining primes not as numbers, but rather as arbitrary 

variations of a manifold, which vanish in pairs of even variations, we are able to 

show primes to form a non-abelian closed group under 2(n+1/2).  Final functor on the 

total group of primes:  

Riemann: Group  ring  

All primes are forming an infinite ring on the critical line of 1/2 and only there.   

𝑬𝒏𝒅 𝒐𝒇 𝒑𝒓𝒐𝒐𝒇. 

_____________________________________________________________________ 

 

The reasoning for choosing the numbers of "prime minimal" is due to the nature of fermions, 

which yield a series of two distinct elements in threefold combinations. Fermions behave 

according to an anti- commutation relation and vanish in pairs.    

 There could not be a "quark" or an arbitrary variation of the manifold by itself.  The series 

must be two and three divisible. Even amounts of opposite signs and threefold combination of 

elements.  

  Overview of reasoning 

1. Deriving fermions as arbitrary variations of a Lorentz manifold 

2. Arbitrary variations to vary to form threefold combinations 

3. Using the fact that arbitrary variations must vanish – to derive their pairing. 

Threefold combinations pairs in color. 

4. Defining a prime in a context of variations – knowing that even amount of variations 

cancel. 

5. Changing the setting from sets to rings – so we can operate addition and multiplication 

6.  Showing that under any multiplication – (1/2) will be invariant 

7. Showing that under addition – only odd amount of primes will ensure a prime, 

as even amounts of variations vanish. thus, could not be a prime there. 

8. Changing the settings from ring to group, from group to set, adding minimal primes, 

from set to group again, and group to ring. 

prime.  yieldnot every odd combination of distinct higher primes will mportant note:  I

Certain cases will yield an odd. However, that does not diminish the beautiful result Obtained, 

as every distinct higher prime will be formed as a combination of odd higher Primes Of lower 

magnitude. Primes are forming non Abelian group of the above form.   
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