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Cleaning tasks knowledge transfer between
heterogeneous robots: a deep learning approach
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Abstract—In this paper, a robot is taught to perform two
different cleaning tasks over a table, using a learning from
demonstration paradigm. Robustness to robot posture and illu-
mination changes is achieved using data augmentation techniques
and camera images transformation. This robustness allows the
transfer of knowledge regarding execution of cleaning tasks be-
tween heterogeneous robots operating in different environmental
settings. To demonstrate the viability of the proposed approach, a
CNN network trained in Lisbon to perform cleaning tasks, using
the iCub robot, is successfully employed by the DoRo robot in
Peccioli, Italy.

Index Terms—Learning from demonstration, Transfer learn-
ing, Data augmentation, Convolutional neural networks, Task
parametrized Gaussian mixture models

I. INTRODUCTION

In order to adapt to unknown environment and acquire new

skills, cleaning robots should be able to learn from past and

new experience. In Learning from Demonstration (LfD) algo-

rithms robot cleaning skills are derived from observations of

human demonstrations and generalized to new environments.

Dynamic Movement Primitives (DMPs) and Gaussian Mixture

Models (GMM) are typically used to encode action in LfD.

Calinon et al. [1] proposed the Task-Parameterized Gaussian

mixture model (TP-GMM), a technique to generalize trajecto-

ries from demonstrated ones using task parameters (frames).

While several TP-GMM systems have been successfully used

to generate robotic cleaning motions, none of them is able to

autonomously learn the task parameters from raw images.

One powerful solution to extract information from raw pixel

data and learn important features on the images are Convo-

lutional neural networks (CNNs). Pervez et al. [2] proposed

to use a CNN to learn the parameters of a TP-DMP directly

from camera images, calling the system Deep-DMP (D-DMP).

D-DMP was used to swipe different objects from a table.

In a recent work of our [3], we used a similar approach

to learn the parameters of a TP-GMM to control a robot
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performing sweeping and wiping movements while cleaning

a table. In this paper, we extend the works presented in [3]

and [4] using a CNN/TP-GMM system, trained on a dataset

collected on the iCub robot in Lisbon-Portugal, to control the

Domestic Robot (DoRo) in Peccioli-Italy while cleaning a

table.

The main contributions of this paper are:

1) Demonstration of successful transferring of knowl-
edge from a robot to another: CNN and TP-GMM

trained on the iCub are used to control the DoRo robot.

To achieve this, geometric image transformation (bird-

eye view) and data augmentation are used.

2) Finding an optimal number of demonstrations
needed to learn a cleaning motion: CNN are trained

with different number of kinesthetic demonstrations in

order to detect a good compromise between size of the

dataset and performance of the network.

3) Proving the importance of domain randomization in
our scenario: Augmenting the dataset adding random

Perlin noise to the background of the images is funda-

mental to generalize from iCub to DoRo.

II. PROPOSED APPROACH

The goal of this paper is to transfer the knowledge acquired

by the iCub robot in Lisbon, during a kinesthetic demonstra-

tion of a cleaning task, to the DoRo robot in Peccioli. Two

different cleaning movements are taught to the iCub in order

to clean a table: a sweeping motion to remove lentils from the

table and a wiping motion to clean marker scribbles. The robot

holds a sponge in its hand to perform the cleaning trajectories.

In order to generalize to different robot camera positions and

table heights, camera images are transformed to a canonical

virtual image plane, similarly to what has been done in [4]. The

canonical virtual camera is placed at a fix distance from the

table, right on top of it, generating a bird-view image. Specific

sizes and positions of objects placed on the table correspond

to particular sizes and positions in the virtual image plane.

From the virtual images, the robot estimates the correct

cleaning hand trajectories using the same architecture intro-

duced in [3]: a CNN estimate the initial, intermediate and final

positions of the desired trajectory used to create the parameters

of the TP-GMM and GMR algorithm is used to estimate

the desired trajectory from the TP-GMM. We analytically

calculate the reference frames orientations from the reference

frame positions predicted by the CNN.
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80% 50% 20% 10%
(527 original samples) (330 original samples) (132 original samples) (66 original samples)

O T P O T P O T P O T P
Effective Training Samples 527 5797 11067 330 3630 6930 132 1452 2772 66 726 1386

Training Loss [×10−3] 2.70 2.96 3.04 1.25 2.43 2.76 1.29 2.09 2.81 1.18 2.17 3.66

Validation Loss [×10−3] 2.65 1.65 1.94 14.5 2.01 2.64 27.54 2.76 3.15 45.21 5.02 4.10

TABLE I: Loss after training the Network for 30000 iterations. The dataset is composed with 80%, 50%, 20% and 10% of

the initial dataset (527, 330, 132 and 66 samples, respectively) to train the Network using three types of data. (O: Original;

T: Translation and illumination changes and O; P: Perlin noise augmentation and T.

Marker Lentils
Area cleaned Standard Deviation Distance reduced Standard Deviation

Cauli et al. (iCub) [4] 80% 15% 45% 2%
Our results (DoRo) 75% 20% 50% 10%

TABLE II: Comparison between the previous results of [4] on the iCub robot and our results on the DoRo robot. The test

scenario is the same on both. The two systems have a different network architecture and a different data augmentation strategy.

To collect the dataset for training we placed the iCub

robot in front of a white table of size 50x50 cm. For each

demonstration some dirt was placed on the table (lentils

clusters or marker scribbles). A human guided the iCub right

hand cleaning as much as possible of the dirt spot with a

specific motion for each dirt type. This 659 demonstrations

dataset was then augmented resulting in a bigger dataset.

III. RESULTS

The evaluation of the cleaning task is defined according to

the different type of dirt presented on the environment. For the

case of marker scribbles, the percentage of dirty area after each

repetition was calculated. For the lentils case, the performance

is the reduction in distance of the weighted centroid of the dirt

region from the bottom right corner of the table (expressed in

percentage from the initial position).

A. Network tests

To access the performance of the Network according to the

data present in the training set, we run the Network several

times with different types of data augmentation and with

different amounts of initial kinesthetic teaching examples. We

have created 12 (different) training sets combining four (4)

percentages of the original dataset with three (3) data types (O,

T and P). The performance of the Network on the validation

set taking into consideration the amount of data used and

augmentation strategy performed can be seen in Table I. The

Perlin noise will be essential when generalizing to another

background (on the DoRo robot). After this evaluation, we

conclude that T20% and P20% are suitable to test on the real

robot and are a good trade-off between number of kinesthetic

teaching and accuracy achieved.

B. Robot experiments

The proposed architecture was tested on a real scenario

using the DoRo robot to determine the transferring capabilities

of the cleaning system to a different robotic platform. The

robot should try to clean the dirty table (with marker scribbles

or cluster of lentils) using a budget of five (5) repetitions.

The DoRo robot performed 15 cleaning experiments on

marker scribbles setting the table at 3 different heights. We

reduced the dirt in 75% of its initial area with a standard

deviation of 20%. In the lentils case, the table was set at the

same 3 different heights and the robot performed 15 different

experiments. The percentage of the initial distance from the

bottom right corner of the table (the target point when cleaning

this type of dirt) was reduced in 50% with a standard deviation

of 10%.

Table II shows the comparison between the results obtained

on the DoRo and the results of [4] obtained on the iCub. The

results on the DoRo are close to the results obtained on the

iCub, showing how a system trained on one robot can be used

to control a second one.

IV. CONCLUSIONS AND FUTURE WORK

We presented a framework for learning how to perform a

given cleaning task from human kinesthetic demonstrations,

directly from raw camera images, and later transferring the

knowledge gathered in this process to a different robot. The

use of a virtual camera and data augmentation strategies

reduced the need for a large training set (only 20% of the

recorded data was needed). A possible future direction is to

use a deep reinforcement learning approach [5], where the

robot can learn from trial and error how to clean the table.
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