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Abstract—The outstanding ability to detect implicit cues in
everyday gestures makes the interaction between humans smooth
and seamless. We propose a method to provide a robot with
the same capability, studying the scenario of objects handling.
The final goal of our on-going work is to enable robots to
autonomously infer the properties of an object manipulation
action by observing how humans perform it.

Index Terms—Human Motion Understanding, Human-Robot
Interaction, Non-Verbal Communication, Deep Learning

I. INTRODUCTION

As humans, we exchange a considerable amount of informa-

tion with non-verbal signals, through body posture and body

movements. People are able to correctly estimate the weight of

an object, simply by observing another person lifting it, and the

same information can be communicated by the lifting action of

a humanoid robot [7]. In human-human interaction, the ability

to infer object properties, while observing others manipulating

it, is linked to motor resonance between the observer and the

performer. The same set of neurons are activated during both

action execution and observation, and this provides a common

description of our and others’ behavior. Since in normal

conditions we know the consequences of our own actions,

when we observe others we can immediately recognize and

understand theirs [5].

In order to achieve a seamless collaboration, robots should

understand the relevant characteristics of human actions, also

by correctly interpreting the implicit signals concealed in them

[1]. If we consider a collaborative scenario, estimating the

characteristics of handled objects allows the robot to plan

a safe and efficient coordinated motion. For instance being

cautious is an optimal robot behaviour when in presence of

fragile or slippery objects. The scientific question we address

in our research is whether and how the features of an object

can be inferred just by looking at the human transporting it

[3]. Our approach of estimating objects properties by relying

on human kinematics information during manipulation allows

us to generalize over previously unseen items. We focused on

two features that influence how we handle an object, namely

its weight and the carefulness required to move it. The first

relates to the velocity we adopt to lift an object; the latter can
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Fig. 1: View of the experimental setup with a volunteer in a

rest position. The two shelves with the glasses on them, the

motion capture markers and the iCub robot are visible

be influenced by multiple factors, such as the item stiffness,

the content about to be spilled, the risk for the object to fall or

its fragility. After a preliminary analysis, we found that human

motion profiles change depending on object properties. This

is confirmed by a recent study on the same topics, where the

carefulness in the handling was detected on the basis of wrist

position and velocity [2]. Therefore, we used some kinematic

features, derived from the observed motion, to train Deep

Learning classifiers with the intention to discriminate between

different features of handled objects.

II. METHODS

The experimental setup is shown in Figure 1. We acquired

the data of 15 participants while performing a series of reach-

ing, lifting and transportation movements of four transparent

glasses, identical in shape and appearance. The four glasses

were characterized by two weight levels, and by two different

levels of carefulness required in their handling, obtained by

filling two of them with water till the brim. The data were

collected using two different sensors for comparison. The

kinematics of human motions was recorded with the Optotrak

Certus®, NDI, motion capture (MoCap) system, via active

infrared markers placed on the right hand. The other source of

information was the left camera of the iCub, which was located

opposite to the table. As motion descriptor, from the saved raw

images we computed the Optical Flow (OF), estimating the

apparent motion vector for each pixel of the image. The same

set of motion representations was then extracted from both

the motion capture data and the optical flow, i.e., the norm of

the velocity, the angular velocity, the radius of curvature and
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the curvature (see [3], [8] for a detailed description). These

features were chosen since they can be easily estimated at

every time instant, ideally allowing for classifying the object

before the end of the observed action. Weight and carefulness

discrimination were approached using two binary classifiers,

one for each feature, trained with the four motion features

extracted during transportation movements. Two possible deep

models for classifying time dependent data were adopted. The

former is inspired by [6] and consists of a combination of

a Convolutional Neural Network (CNN), Long-Short Term

Memory (LSTM), and a Deep Neural Network (DNN). The

latter is a simpler LSTM-DNN model. The dataset consisted

of 876 total trials. A Leave-One-Out approach was chosen,

using for every fold the data of a different participant as test

set.

III. RESULTS

As presented in Figure 2a, the performance of the care-

fulness classification are good with both the models and the

sensing modalities. Interestingly, even the OF from the robot’s

camera (single point of view) grants an accuracy above 85-

90%. The classification of the weight is more difficult, and

the results are not as good (Figure 2b). Indeed, we obtained

an accuracy around 60% for the first model trained with

the MoCap data, while 55% in the other cases. This result

may be due to different concurrent factors. The presence

of water in some of the glasses may have led the subjects

to focus mainly on the carefulness feature, unconsciously

overlooking the weight difference. Moreover, previous studies

showed how the vertical component of the velocity in a

movement is informative about the weight transported [7]. In

this dataset, there was a great variability in such dimension,

with movements going from the table to the shelves, from

top to bottom and vice versa. The first classifier was tested

against these two hypotheses, but no significant improvements

in accuracy have been achieved. A possibility for future work

is focusing on the vertical component of the velocity and

exploring these additional hypotheses on reasonably extended

datasets to obtain more reliable results.

IV. CONCLUSIONS

The proposed classification approach relies exclusively on

human body kinematics, overlooking the external appearance

of the object, granting the ability of generalizing over pre-

viously unseen items. Given the promising results in the

carefulness classification, despite the variability in the data,

we are currently working on a real-time discrimination while

manipulations occur. It should be noted that the movements

used in the training phase were acquired in a non-social

context. The participants were simply asked to move the

glasses from one position to another, but no communicative

intention towards observers was required. It is possible, as

the signaling theory suggests, that in a collaborative context

humans’ gestures would become more communicative of the

objects features, to facilitate the observer’s interpretation of

the action [4].

(a) Carefulness classification

(b) Weight classification

Fig. 2: Mean accuracy obtained in the carefulness (2a) and the

weight classification (2b), using the features extracted from

MoCap data, in shades of blue, and from the Optical Flow, in

shades of green
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