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A Learning-based Approach for Adaptive
Closed-loop Control of a Soft Robotic Arm
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Abstract—The characteristic compliance of soft/continuum
robot manipulators entails them with the desirable features of
intrinsic safety, low power to actuation ratio and adaptability
to the environment. At the same time, it makes analytical
models excessively slow for efficient use in control. We propose
a recurrent neural network (RNN) approach for adaptive model
based closed-loop control of a continuum robot. First, the forward
dynamic model is trained offline on data obtained by continuous
motor babbling, learning the relationship between the actuators’
inputs and the robot tip position. Then another network, named
inverse model, is used as a closed loop controller and trained
by minimizing the forward model tracking error. We show that
using the trained controller, the continuum robot is able to track
a circular task with a low RMS error, and to maintain its
performance under an external load, after updating the networks’
weights.

Index Terms—soft robotics, control, learning

I. INTRODUCTION

Unlike industrial robots, which are equipped with rigid links

and can be modeled with closed form equations and with a fi-

nite number of parameters, soft and continuum robots are hard

to model due to under-actuation, redundancy and hysteresis of

materials [1]. The most well known modeling approximation

for soft robot control is the constant curvature (CC) assump-

tion, which by assuming a constant curvature an all the length

of the soft manipulator and by ignoring the dynamics of the

robot, enables steady state control with low computational cost

[2]. Joining several constant curvature sections provides the

piecewise constant curvature assumption, which also enables

soft robotic control with relative ease [3]. However these

model based methods tend to fail when the soft robot is highly

nonlinear, non-uniform and subject to external uncertainties

[1]. Learning based approaches are an optimal solution since

they do not require a priori knowledge of the manipulator

dynamics, which can be derived by supervised learning. The

first attempt to use a feed-forward neural network component

for soft robot control was published in [4]. Several more

recent works have shown the capability of neural networks

for both open-loop and closed-loop control of soft robots [5]

[6]. In this work we propose an adaptive control framework

based on recurrent neural networks (RNN). Our contribution

is a control framework which is adaptive, since the neural

networks of which it is composed can update their parameters

to accommodate for external unmodeled perturbations. We are

able to control a circular trajectory tracking experiment on a
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real soft robotic manipulator. We apply an external load to

the manipulator, and show that, after a retraining phase, the

control is able to adapt itself to the perturbation introduced by

the load, and to maintain the previous tracking performance.

II. METHODS

A soft robotic manipulator for the assistance of elderly

people has been used in this work [7]. It is composed of

three soft modules, each actuated by means of three pneumatic

McKibben actuators. The McKibben actuators are controlled

by pneumatic valves (Camozzi K8P) which are controlled by

a simple PID implemented on an Arduino Due board. The

Arduino is in turn controlled by a PC using a serial port. In

this work, the proximal module of the robot has been selected

and used independently of the others.

Input/output data were acquired by means of continuous

motor babbling. The inputs are chosen randomly in the 0 to

100 value range (corresponding 0 to 0.83 bar) so as not to risk

damage to the actuator, keeping every actuator value in a ± 40

bit range of the previous value. This range is chosen as a trade-

off between avoiding motor saturation (the pneumatic chamber

is able to reach the desired pressure before the next actuation

sample) and having a sufficiently explored workspace (a low

actuator range means more samples are needed for exhaustive

exploration) [5]. Since the relationship between the applied

pressures and the commanded values is quite linear, the latter

are considered directly as input data. Conversely, the position

of the tip of the manipulator, measured with an electromag-

netic tracking system (NDI Aurora ®), is considered as output

data. A dataset of 10000 samples was acquired at a frequency

of 10 Hz and split in training set (7000 samples) and test set

(3000 samples).

The forward model of the manipulator is built as the

mapping between the current control input ut, containing

the commanded values for the pneumatic actuators, the two

previous end-effector positions xt−1 and xt−2, and the current

end effector position xt (Fig. 1). The network consists of a

RNN layer of 100 neurons followed by a linear layer and a

tanh layer. The model’s weights are optimized on the training

set by supervised learning for 1200 epochs, with a mean square

error (MSE) loss function and a learning rate of 10−4. After

1200 training epochs the RMS error is as low as 3 mm.

The forward model is then exploited to learn an inverse

model, which acts as a feedback controller of the forward

model (Fig. 1). The controller is a neural network of the same

structure as the forward model, with a sigmoid layer instead of

a tanh layer, to prevent actuator saturation. The controller is
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Fig. 1: The proposed adaptive control architecture.

TABLE I: RMS Error

Experiment X [mm] Y [mm] Z [mm]
Simple tracking 6 17 2
External load 23 17 11
External load with retraining 14 13 5

trained to have the forward model follow a circular task. The

loss function is the MSE between the forward model output xt

and the desired task. Finally the real robot is substituted to the

forward model, for testing the trained controller by carrying

out a circular trajectory tracking experiment.

To assess the adaptability of the control, an external load

of 50 g was applied to the manipulator. Firstly we use the

previously trained controller to track a circular trajectory using

the manipulator with the applied load, while simultaneously

recording the robot’s tip position. The obtained task space

error is used to update the weights of the previously trained

forward model. The weights are updated by supervised learn-

ing for 100 epochs using only the data acquired by performing

the tracking task with the external load, minimizing the MSE

error between the target circle and the real robot tip position.

A weight decay of 10−5 is introduced to prevent over-fitting,

measured with the electromagnetic tracking system. Similarly,

the inverse model (controller) is updated on the newly trained

forward model. The newly trained controller is finally used to

have the robot with the added weight follow the same circular

task.

III. RESULTS

We show that, by using the proposed control architecture,

the soft robot is able to track a circular trajectory with an RMS

error as low as 6 mm on the x-axis, 17 mm on the y-axis and 2

mm on the z-axis. Once the external load is applied, it causes

the robot to deviate from the previously learnt trajectory, with

an increase of the RMS error both on the x-axis and on the

z-axis. After updating the weights of the forward and of the

inverse model, the tracking performance of the manipulator

improves an all axes, tracing a trajectory similar to the one of

the tracking without weight experiment, making the proposed

controller adaptive (Fig. 2). Although the accuracy in the

simple tracking experiment can be improved, it is significant

to note the ability of the control to improve its accuracy by

retraining, after applying an external unmodeled load. Table I

shows the RMS error of the experiments described above.

.

Fig. 2: Circular tracking experiment a) without external load,

b) with external load, c) with external load after model

retraining. In d) the soft robot used for the experiments is

shown.

IV. CONCLUSION

We have proposed a control framework based on recurrent

neural networks for soft/continuum robots. This framework en-

ables trajectory tracking for soft manipulators, and is suitable

for tracking under disturbances such as external loads, after

a retraining phase. The system is applicable also to different

soft manipulators and can be used for future work in learning

based approaches for control of soft robots.
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