A strengthened form of the strong Goldbach conjecture

Ralf Wüsthofen

Abstract. Based on a strengthened form of the strong Goldbach conjecture, this paper constitutes an antinomy within ZFC.

Notations. Let \mathbb{N} denote the natural numbers starting from 1, let \mathbb{N}_n denote the natural numbers starting from n > 1 and let \mathbb{P}_3 denote the prime numbers starting from 3.

Strengthened strong Goldbach conjecture (SSGB): Every even integer greater than 6 can be expressed as the sum of two different primes.

Theorem. $\mathbb{N}_4 \neq \mathbb{N}_4$.

Proof. We define the set $S_g := \{ (pk, mk, qk) \mid k, m \in \mathbb{N}; p, q \in \mathbb{P}_3, p < q; m = (p + q) / 2 \}.$

SSGB is equivalent to saying that every integer $x \ge 4$ is the arithmetic mean of two different odd primes and so it is equivalent to saying that all integers $x \ge 4$ appear as m in a middle component mk of S_g .

There are two possibilities for S_g , exactly one of which must occur: Either there is an $n \in \mathbb{N}_4$ in addition to all the numbers m defined in S_g or there is not. The latter corresponds to SSGB and the former corresponds to the negation $\neg SSGB$.

The set S_g has the following property: The whole range of \mathbb{N}_3 can be expressed by the triple components of S_g , since every integer $x \ge 3$ can be written as some pk with k = 1 when x is prime, as some pk with $k \ne 1$ when x is composite and not a power of 2, or as (3+5)k/2 when x is a power of 2; $p \in \mathbb{P}_3$, $k \in \mathbb{N}$.

We can split S_g into two complementary subsets: For any $y \in \mathbb{N}_3$, $S_g = S_g + (y) \cup S_g - (y)$, with

$$S_g+(y) := \{ (pk', mk', qk') \in S_g \mid \exists \ k \in \mathbb{N} \ pk' = yk \lor mk' = yk \lor qk' = yk \}$$
 and

$$S_g\text{-}(y) := \{ \; (pk', \, mk', \, qk') \in S_g \mid \forall \; k \in \mathbb{N} \quad pk' \neq yk \; \land \; mk' \neq yk \; \land \; qk' \neq yk \; \}.$$

In the case of $\neg SSGB$, there is at least one $n \in \mathbb{N}_4$ different from all the numbers m that are defined in S_g . In the case of SSGB, there is no such n. The following steps work regardless of the choice of n if there is more than one n.

According to the above three types of expression by S_g triple components, for n we have

(C)
$$\forall k \in \mathbb{N} \exists (pk', mk', qk') \in S_g \quad nk = pk' \lor nk = mk' = 4k'.$$

Moreover, due to the definition of Sg, we have

(M)
$$\nexists p, q \in \mathbb{P}_3, p < q \quad n = (p + q) / 2.$$

Because the properties (C) and (M) hold for any n given by $\neg SSGB$, under the assumption $\neg SSGB$ the set S_g can be written as the union of the following triples, which would otherwise be impossible.

- (i) S_g triples of the form (pk' = nk, mk', qk') with k' = k in case n is prime, due to (C)
- (ii) S_g triples of the form (pk' = nk, mk', qk') with k' \neq k in case n is composite and not a power of 2, due to (C)
- (iii) S_g triples of the form (3k', 4k' = nk, 5k') in case n is a power of 2, due to (C)
- (iv) all remaining S_g triples of the form (pk' = nk, mk', qk'), (pk', mk' = nk, qk') or (pk', mk', qk' = nk)

and

(v) S_g triples of the form (pk' \neq nk, mk' \neq nk, qk' \neq nk), i.e. those S_g triples where none of the nk's equals a component.

We can formalize this as follows.

Let S_g + be shorthand for S_g +(n) and let S_g - be shorthand for S_g -(n). Then, as S_g + denotes the union of the triples of types (i) to (iv) and S_g - denotes the union of the triples of type (v), we can state

$$\neg SSGB \Rightarrow ((S_q = S_q + \cup S_q -) \text{ or } \neg (C) \text{ or } \neg (M)).$$

Since (C) and (M) are true, we get

$$\neg SSGB \Rightarrow S_q = S_q + \cup S_q$$
.

 $S_g+ \cup S_{g-}$ is independent of n, since for every n it equals S_g . So, we can write

(1)
$$\forall y \in \mathbb{N}_3 \ \neg SSGB \implies S_g = S_g + (y) \cup S_g - (y)$$
.

Under the assumption SSGB there is no n, which only means that the numbers m defined in S_g take all integer values $x \ge 4$. So, in addition to (1), here we also have

(2)
$$\forall y \in \mathbb{N}_3$$
 SSGB => Sg = Sg+(y) \cup Sg-(y).

Because of the rule " $(\forall x \ P(x))$ and $(\forall x \ Q(x))$ <=> $\forall x \ (P(x) \ and \ Q(x))$ ", by (1) and (2) for each set $S_g+(y) \cup S_g-(y)$, $y \in \mathbb{N}_3$, we have

$$\neg SSGB \Rightarrow S_g = S_g+(y) \cup S_g-(y)$$

and

SSGB =>
$$S_g = S_g + (y) \cup S_g - (y)$$
.

For each $k \ge 1$, we define M(k) := { mk | (pk, mk, qk) $\in S_g$ }. Then, for some set M,

(1')
$$\neg SSGB => M(1) = M$$

and

(2') SSGB =>
$$M(1) = M$$
.

On the other hand, under the assumption SSGB the numbers m defined in S_g take all integer values $x \ge 4$ whereas under $\neg SSGB$ they don't. By this, we get

(3) ¬SSGB => M(1) ≠
$$\mathbb{N}_4$$

and

(4) SSGB =>
$$M(1) = N_4$$
.

The statements (1'), (2'), (3), (4) were each derived from an assumption, that is, they were derived without using the tautology "False => Q" or the tautology "Q => True", i.e. none of the four statements is based on the fact that SSGB or \neg SSGB is false, and the proofs for (1) and (2) don't use $S_9 = S_9 + (y) \cup S_9 - (y)$.

Therefore, from (1') and (3) we obtain $M \neq \mathbb{N}_4$ and from (2') and (4) we obtain $M = \mathbb{N}_4$. So, we have the contradiction $\mathbb{N}_4 \neq \mathbb{N}_4$.

Note. The proof is based on the following general principle.

Let P be a proposition. Suppose we can show the following.

There exist sets A, B, C, D with $C \neq D$ such that

- (1) P => A = B
- (2) $\neg P => A = B$
- (3) P => A = C
- (4) $\neg P => A = D$.

Each proof is genuine which means the following: None of the four proofs is based on the tautology "False => Q" or the tautology "Q => True", i.e. none of the four proofs is based on the fact that P or \neg P is false, and the proofs for (1) and (2) are not based on A = B. Furthermore, the sets C and D are independent of the proposition P, i.e. C under the assumption P equals C under the assumption \neg P, the same for D (as in the proof above where C = \mathbb{N}_4).

Then, (1) to (4) lead to the conclusion B = C and B = D, and therefore to a contradiction.