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Abstract. Based on a strengthened form of the strong Goldbach conjecture, this paper
constitutes an antinomy within ZFC.

Notations. Let Y denote the natural numbers starting from 1, let I{n denote the natural
numbers starting from n > 1 and let [’s denote the prime numbers starting from 3.

Strengthened strong Goldbach conjecture (SSGB): Every even integer greater than 6 can
be expressed as the sum of two different primes.

Theorem. [Hs # [Ha,
Proof. We define the set Sg :={ (pk, mk, gk) |k, me [: p,qePs,p<gm=(p+q)/2}.

SSGB is equivalent to saying that every integer x = 4 is the arithmetic mean of two different
odd primes and so it is equivalent to saying that all integers x = 4 appear as m in a middle
component mk of Sg.

There are two possibilities for Sg, exactly one of which must occur: Either there is an n € [l4
in addition to all the numbers m defined in Sg or there is not. The latter corresponds to
SSGB and the former corresponds to the negation -SSGB.

The set Sg has the following property: The whole range of [{s can be expressed by the
triple components of Sg, since every integer x =2 3 can be written as some pk with k = 1
when x is prime, as some pk with k # 1 when x is composite and not a power of 2, or as
(3 +5)k / 2 when x is a power of 2; p € P’s, k € [,

We can split Sg into two complementary subsets: For any y € [{a, Sg = Sg+(y) U Sg-(y), with
So+(y) :={(pk’, mk', gk) € Sg| T ke [ pk'=yk v mk'=yk Vv gk'=yk}and

So-(y) :={(pk’, mk', gk) € Sg | ¥ ke [ pk'#yk A mk' #yk A gk'#yk}.

In the case of ~SSGB, there is at least one n € [ different from all the numbers m that are
defined in Sg. In the case of SSGB, there is no such n. The following steps work regardless
of the choice of n if there is more than one n.

According to the above three types of expression by Sg triple components, for n we have

(C) Vkeld I (pk, mk,gk)€Sg nk=pk v nk=mk'=4Kk.
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Moreover, due to the definition of Sg, we have

M) Zp,gePs,p<qg n=(p+q)/2

Because the properties (C) and (M) hold for any n given by -SSGB, under the assumption
—~SSGB the set Sg can be written as the union of the following triples, which would
otherwise be impossible.

(i) Sq triples of the form (pk' = nk, mk’, gk') with k' = k in case n is prime, due to (C)

(i) Sg triples of the form (pk' = nk, mk', gk') with k' # k in case n is composite and not a
power of 2, due to (C)

(iii) Sg triples of the form (3k’, 4k’ = nk, 5k’) in case n is a power of 2, due to (C)

(iv) all remaining Sg triples of the form (pk' = nk, mk’, gk’), (pk’, mk' = nk, gk’) or (pk’, mk’, gk'
= nk)

and

(v) Sg triples of the form (pk' # nk, mk' # nk, gk' # nk), i.e. those Sgq triples where none of the
nk’s equals a component.

We can formalize this as follows.

Let Sg+ be shorthand for Sg+(n) and let Sg- be shorthand for Sg-(n). Then, as Sg+ denotes
the union of the triples of types (i) to (iv) and Sg- denotes the union of the triples of type (v),
we can state

—SSGB => ((Sg = Sg+ U Sg-) or —=(C) or —(M)).

Since (C) and (M) are true, we get

—SSGB => Sg = Sg+ U Sg-.

Sg+ U Sg- is independent of n, since for every n it equals Sg. So, we can write

(1) Vye¥s —SSGB => Sg = Sg+(y) U Sg-(y).

Under the assumption SSGB there is no n, which only means that the numbers m defined
in Sg take all integer values x = 4. So, in addition to (1), here we also have

(2) Vyelds SSGB => Sg=Sg+(y) U Sg-(y).

Because of the rule "(¥ x P(x)) and (¥ x QX)) <=> ¥ x (P(x) and Q(x))", by (1) and (2) for
each set Sg+(y) U Sg-(y), y € [*3, we have

—SSGB => Sg = Sg+(y) U Sg-(Y)



and

SSGB => Sg = Sg+(y) U Sg-(y).

For each k = 1, we define M(k) := { mk | (pk, mk, gk) € Sg }. Then, for some set M,
(1) =SSGB => M(1)=M
and

(2) SSGB => M(1) = M.

On the other hand, under the assumption SSGB the numbers m defined in Sg take all
integer values x = 4 whereas under -SSGB they don't. By this, we get

(3) =SSGB => M(1) # 4
and

(4) SSGB => M(1) = Ma.

The statements (1), (2), (3), (4) were each derived from an assumption, that is, they were
derived without using the tautology "False => Q" or the tautology "Q => True", i.e. none of
the four statements is based on the fact that SSGB or —=SSGB is false, and the proofs for
(1) and (2) don't use Sg = Sg+(y) U Sg-(y).

Therefore, from (1') and (3) we obtain M # Il4 and from (2') and (4) we obtain M = ¥4 So,
we have the contradiction 4 # [,

Note. The proof is based on the following general principle.

Let P be a proposition. Suppose we can show the following.

There exist sets A, B, C, D with C # D such that

(1) P=>A=B
(2 -P=>A=B
@) P=>A=C

(4) -P =>A=D.



Each proof is genuine which means the following: None of the four proofs is based on the
tautology "False => Q" or the tautology "Q => True", i.e. none of the four proofs is based on
the fact that P or —P is false, and the proofs for (1) and (2) are not based on A = B.
Furthermore, the sets C and D are independent of the proposition P, i.e. C under the
assumption P equals C under the assumption —P, the same for D (as in the proof above
where C = [y).

Then, (1) to (4) lead to the conclusion B = C and B = D, and therefore to a contradiction.



