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Abstract—Combining computational neuroscience tools with
robotic devices allows to reproduce and investigate the interac-
tions between embodied functional brain models and sensory-
rich environments, integrating neural activity and behavioral
data. As these models seldom include faithful biological features,
their development can be used to suggest and test hypotheses
on neurophysiological or pathological mechanisms, eventually
impacting on challenging clinical applications. This project imple-
mented a virtual neurorobotic experiment aimed at investigating
the functional role of cerebro-cerebellar interactions in motor
learning tasks, specifically designed to clarify the contribution of
different brain areas in motor preparation and execution during
rewarded goal-oriented actions.

Index Terms—Neurorobotics, reward-based learning, compu-
tational neuroscience

I. INTRODUCTION

Adaptive behavior in biological organisms results from

interactions among brains, bodies, and environments [1]. Neu-

rorobotics allows to incorporate features of neuroanatomy

and neurophysiology within robotic devices to generate

biologically-comparable experimental data to study such

mechanisms through supervised protocols. In particular, a

neurorobotic device is a device that engages in a behavioral

task, is situated in a structured environment and whose be-

havior is controlled by a simulated nervous system having a

design that reflects, at some level, the brain’s architecture and

dynamics [1]. Thus, neurorobotic models allow to develop and

test theories of brain-environment interactions with devices

either implemented with hardware solutions or reconstructed

via software. This project was developed using the Neurobotics

Platform (NRP), an integrated software toolkit developed

within the Human Brain Project (HBP) specifically aimed

at allowing researchers to design and execute neurorobotic

experiments with simulated robots using customized brain

models [2].

II. MATERIALS AND METHODS

A. The Neurorobotics Platform

To simulate behaviors, the NRP combines 3D physical envi-

ronment reconstructions with realistic brain models based on

spiking neural networks (SNN), whose information-processing

mechanisms mimic the action potentials of biological neurons.

Connections between these two components are implemented

with transfer functions translating either the robot sensory

information to brain model inputs (robot to neuron (R2N)

functions) or neural network outputs to robotic motor com-

mands (neuron to robot (N2R) functions). Therefore, this

project required the implementation of both a virtual envi-

ronment and a neural network model, with their respective

transfer functions, to simulate the execution of a reward-based

behavioural task by the robotic subject.

B. Behavioural task and virtual environment

The behavioural task that the robotic subject engages in

is a reach-to-grasp associative task: in standing position, the

robot places its hands on a resting bar and waits for a

directional somatosensory stimulus, modelled as a rotating bar

that touches the robot left/right shoulder. After this anticipatory

signal, the robot waits without moving for a visual go-cue

(given by a color-changing screen) after which it is required to

reach one of the two cylindrical objects in front of it, mirroring

the direction of the somatosensory stimulus: if no reaching

contact is detected after a certain time delay, the task fails

and the robot has to place its arms back on the resting bar

to start a new trial, otherwise the task is completed and the

subject receives a reward input signal. Among the available

NRP robotic models, the iCub humanoid robot was chosen

[3], being able to perform forelimb movements involved in

the protocol. The virtual environment setup (Fig. 1) included

all the objects required for the task execution, embedding
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Fig. 1. Virtual environment. The virtual environment in which the neu-
rorobot is situated includes a color-changing screen to deliver a visual go-
cue, two floating cylinders representing the reaching movement targets and
a custom-designed 3D model of a sensorized handrail (resting bar) with one
rotating bar for each side, delivering a directional somatosensory stimulus on
the neurorobot’s shoulders.

different sensors to monitor the experiment phases completion;

R2N transfer functions were implemented to carry the virtual

stimuli from the robotic sensors to the brain model as well as

N2R transfer functions to drive the robot through the SNN.

C. Brain model

The reconstructed brain model, designed following biolog-

ical findings from literature, is composed by two identical

modules to discriminate the directional stimuli involved in

the protocol. Feedback loops between premotor and frontal

cortices, motor thalamus and cerebellum implement short-term

memory and temporal decisions mechanisms. More specifi-

cally, the directional stimulus is conveyed through the sensory

cortex to the premotor cortex of the corresponding module.

This area acts as an integrator [4], producing movements

through signals to the motor cortex when reaching a spiking

threshold, and engages in a feedback loop with the thalamus

to store the directional stimulus information before the go-

cue [5]. The spiking activity in this loop is prevented from

letting the premotor cortex reach the threshold thanks to

sustained inhibitory inputs from the medial prefrontal cortex,

which effectively blocks impulsive actions [6]. The timing

of this silencing mechanism is regulated by the cerebellum

with thalamic projections that influence cortical areas [7]: by

learning the association between the go-cue and the reward

availability, it suppresses the medial prefrontal cortex upon

the go-cue stimulus, allowing the premotor cortex to surpass

the threshold, causing the robot to perform the reach.

III. RESULTS

With all the necessary NRP components implemented, ex-

periments were carried out controlling the correct flow of

sensory information and monitoring the spiking activity of

the brain simulation. We assessed that the proposed brain

model was able to sustain preparatory activity and that the

neurorobotic agent was able to carry out the behavioural pro-

tocol, once provided with the cerebellar contribution expected

at the end of reward-based learning as direct input to the

cortical loops in the SNN. Figure 2 shows a temporal plot

of the spiking activity recorded from the network during the

Fig. 2. Spiking neural network activity during task execution. The
observed spiking activity demonstrates the proper functioning of the brain
model, showing sustained working memory activity in the motor cortex (ALM
planner) / thalamus (VL-VLA excitatory) loop and the medial prefrontal cortex
(mPFC) suppressing the movement during waiting phase (yellow to green dot).
The go-cue (green dot) silences the medial prefrontal cortex through thalamic
inhibitory connections (VL-VLA excitatory), causing subsequent premotor
and motor cortex (ALM premotor, CFA-RFA) firing. Spikes encoding reward
signals are observed after a successful grasping movement performed by the
neurorobot towards the water-delivering object on the right side (blue dot),
mirroring the preparatory stimulus direction.

different task execution phases, depicted in the colored boxes

and temporally marked by the colored dots.

IV. DISCUSSION

The neurorobot correctly executing the protocol suggests

that, although representing an initial simplified implemen-

tation, the proposed brain model describes a good scheme

of the neural activity underlying the behavioral task in the

different areas involved. The resulting network represents a

novelty with respect to available neurorobots driven by single-

module cerebellar networks [8] as it is driven by a multi-area

brain model including cerebro-cerebellar loops, it critically

involves thalamic contribution in preparatory activity and it

is composed by two identical modules to take into account

the directional-selectivity nature of the protocol. These results

pose a solid basis on which to refine the neural network model

(e.g. scaling up the network, including other brain areas such

as the basal ganglia, and embedding distributed plasticity) and

simulate the full learning protocol, eventually exploiting high-

performance computing resources.
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