
Propagation of
Electron-Acoustic Waves

in a Plasma with
Suprathermal Electrons

Ashkbiz Danehkar

A thesis submitted to

the Queen’s University Belfast

for the Degree of Master of Science

in Plasma Physics

Centre for Plasma Physics

Department of Physics & Astronomy

Queen’s University Belfast

Belfast BT7 1NN, United Kingdom

December 2009





Abstract

Electron-acoustic waves occur in space and laboratory plasmas where two

distinct electron populations exist, namely cool and hot electrons. The ob-

servations revealed that the hot electron distribution often has a long-tailed

suprathermal (non-Maxwellian) form. The aim of the present study is to inves-

tigate how various plasma parameters modify the electron-acoustic structures.

We have studied the electron-acoustic waves in a collisionless and unmagne-

tized plasma consisting of cool inertial electrons, hot suprathermal electrons,

and mobile ions. First, we started with a cold one-fluid model, and we ex-

tended it to a warm model, including the electron thermal pressure. Finally, the

ion inertia was included in a two-fluid model. The linear dispersion relations for

electron-acoustic waves depicted a strong dependence of the charge screening

mechanism on excess suprathermality. A nonlinear (Sagdeev) pseudopoten-

tial technique was employed to investigate the existence of electron-acoustic

solitary waves, and to determine how their characteristics depend on various

plasma parameters. The results indicate that the thermal pressure deeply af-

fects the electron-acoustic solitary waves. Only negative polarity waves were

found to exist in the one-fluid model, which become narrower as deviation

from the Maxwellian increases, while the wave amplitude at fixed soliton speed

increases. However, for a constant value of the true Mach number, the am-

plitude decreases for increasing suprathermality. It is also found that the ion

inertia has a trivial role in the supersonic domain, but it is important to support

positive polarity waves in the subsonic domain.
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σ . (b) Variation of velocity ũ with ξ for different temperature

ratio σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Compressive (positive) solitary structures at subsonic region (M ≪
Θ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 Compressive solitary structures at subsonic region. . . . . . . . . 44

4.9 Variation of pseudopotential Ψ(φ) with φ for different tempera-

ture ratio σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.10 The existence domains for stationary solitary structures. . . . . . 47

4.11 Variation of the lower limit M1 and the upper limit M2 with κ for

1-fluid cold model, 1-fluid warm model, and 2-fluid warm model. 49

4.12 Positive potential soliton existence domain in the parameter space

of β and Mach number M for different temperature ratio σ . . . . 50

4.13 Positive potential soliton existence domain in the parameter space

of σ and Mach number M. . . . . . . . . . . . . . . . . . . . . . . 51

B.1 The existence domains for stationary solitary structures. . . . . . 66

Ashkbiz Danehkar xi



LIST OF FIGURES

xii Propagation of EAWs in a plasma with suprathermal electrons



1

Introduction

The electron-acoustic waves (EAWs) usually occur in a plasma, where inertial

cool electrons oscillates against inertialess hot electrons. EAWs may exist in

plasmas with two electrons population referred to as cool 1 (hot) electrons with

respective temperatures Tc (Th). These are typically high-frequency (in com-

parison with the ion plasma frequency) electrostatic waves propagating with

the phase velocity intermediate between hot and cool electron thermal veloci-

ties. At such high frequency, the positive ions behave like uniformly distributed

charge background providing charge neutrality, but they have no essential role

in the dynamics (of supersonic negative solitary waves; see 4.3). The phase

velocity of the EAWs is much larger than the cool electron thermal velocity and

much smaller than the hot electron thermal velocity. The cool electrons pro-

vide the inertial effects needed to maintain the EAWs, while the restoring force

comes from the pressure of the hot electrons.

As the temperature rises in a collisionless plasma, the phase velocity of

waves become comparable with the electron thermal velocities. In a situation

depends on the electron thermal velocity (faster/slower than the phase veloc-

ity), a direct interaction between electrons and waves produces the Landau

1We distinguished “cool” (Tc/Th ≪ 1) from “cold” (Tc/Th = 0).
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1. INTRODUCTION

damping (wave heating) or inverse Landau damping (instabilities) through the

Vlasov kinetic theory (no need of a collision term). When the phase velocity

goes near the thermal velocity for a short wavelength, the Landau damping be-

come very strong, i.e., the wave cannot propagate in the plasma. This means

that the propagation of EAWs is possible within a restricted range of param-

eters. It has been proven that the EAWs are not damped at the temperature

ratio Tc/Th . 0.1 [1, 2] and the cool electrons at a significant fraction of the

total electron density: 0.2 . nc/(nc +nh) . 0.8 [2, 3], as illustrated in Fig. 1.1.

The wave number k of the weakly damped EAW is between roughly 0.2λ−1
Dc and

0.6λ−1
Dc (where λDc is the cool electron Debye length). The temperature and the

number density of the cool and hot electrons modify the stable range of the

wave number (see e.g. Figs. 1–3 in [2]; or Fig. 2.1(b) and Fig. 3.1).

The EAWs often occur in laboratory experiments [4, 5, 6] and space plas-

mas e.g. the Earth’s bow shock [7, 8, 9] and the auroral magnetosphere [3, 10].

Another example is the Broadband Electrostatic Noise (BEN), a common wave

activity in the plasma sheet boundary layer (PSBL) region, which has been ob-

served by the satellites missions [11, 12, 13, 14]. The BEN emissions forming

as EAWs, which include a series of isolated bipolar pulses, have the frequency

range from ∼ 10 Hz upto the local electron plasma frequency (∼ 10 kHz) [11].

This suggests that the emissions are related to electron dynamics rather than

ions [11, 14].

In two electron temperature plasmas, two electrons population are often

characterized by a thermal Maxwellian distribution [15, 16, 17, 18]. However,

some space and laboratory plasmas have such a suprathermal electron popula-

tion, whose behaviors are extremely different from a Maxwellian distribution.

Electrons obey an inverse power law distribution at a velocity much higher

than the electron thermal velocity. We describe this suprathermal population

by a generalized Lorentzian or κ-distributions [19, 20, 21].

The common form of the isotropic (three-dimensional) generalized Lorentzian

2 Propagation of EAWs in a plasma with suprathermal electrons



Figure 1.1: The parameter space of the cool-to-total electron density ratio

versus the hot-to-cool temperature ratio for weakly damped electron-acoustic

waves and ion-acoustic waves [2].

or κ-distribution function is given by [20, 21, 22]

fκ(v) = n0(πκθ 2)−3/2 Γ(κ +1)

Γ(κ − 1
2
)

(

1+
v2

κθ 2

)−κ−1

. (1.1)

where n0 is an equilibrium number density of the electrons, v the species veloc-

ity, θ is a generalized thermal velocity related to the actual thermal velocity of

the electrons vth,e = (2kBTe/me)
1/2 by θ = vth,e

(
(κ − 3

2
)/κ
)1/2

; kB the Boltzmann

constant, me and Te the mass and temperature of the electrons, respectively.

We note that κ is the spectral index of κ-distributions with κ > 3
2
. For κ → ∞,

we have a Maxwellian, while low values of κ are associated with significant

numbers of suprathermal particles. The gamma function Γ arises from the nor-

malization of fκ(v), i.e.
∫

fκ(v)d
3v = n0.

Ashkbiz Danehkar 3



1. INTRODUCTION

The κ-distribution has been firstly applied to model velocity distribution of

particles observed in space plasmas, often in the range 2 < κ < 6 [23]. The

κ-distribution function can describe laboratory experiments and space plasmas

more effectively than a Maxwellian function [8, 19, 24, 25, 26, 27]. For exam-

ple, measurements of plasma sheet electron and ion distributions can be treated

by κi = 4.7 and κe = 5.5 [24] (here, e denotes electrons and i ions), observations

in the earth’s foreshock satisfying 3 < κe < 6 [8], and coronal electrons in solar

wind model with 2 < κe < 6 [27].

Studies of linear and nonlinear EAWs in plasmas with nonthermal electrons

have received a great deal of interest in recent years [25, 28, 29, 30, 31, 32, 33,

34, 35, 22]. The linear analysis of EAWs, which provided a dispersion relation,

was firstly described in an unmagnetized homogenous plasma [36]. It exhib-

ited a heavily damped acoustic-like solution in addition to the Langmuir waves

and ion-acoustic waves (IAWs) [36]. The linear properties with suprathermal

particles provided dispersion functions [25, 28, 29, 30]. It shows the effect

of suprathermal electrons on propagation of EAWs, which increase the Landau

damping of the wave at small wave numbers (acoustic regime) [29], and the

dependence of the Landau damping on the fraction of suprathermal electrons

[30]. Large values of κ (quasi-Maxwellian) produce weaker Landau damping

in the acoustic regime, while Landau damping increases by hot electrons for

small values of κ [29].

The nonlinear analysis of the EAWs in a one-dimensional unmagnetized

plasma composed of cold and hot electrons has been shown the existence of

negative potential soliton [31], while additional electron beam component leads

to a positive potential soliton [32]. The nonlinear aspects of EAWs in an un-

magnetized plasma consisting of nonthermal electrons, fluid cold electrons, and

ions provided negative potential solitary structures [33].

4 Propagation of EAWs in a plasma with suprathermal electrons



1.1. THESIS OUTLINE

1.1 Thesis Outline

We used a strategic workplan and some steps for this work. The analytical

basis for the 3 models is presented in the Appendix A. We discuss the outcomes

of each model for the linear dispersion relation and the existence conditions of

stationary profile solitary structures. The organization of the thesis is as follows:

In Chapter 2, we have performed a preliminary work on a one-fluid cold

(Tc = 0) model consisting of cold electron and background of hot suprather-

mal electrons and stationary ions, i.e., only cold electrons treated as a fluid.

We study the linear and nonlinear effects of the hot suprathermal electrons on

electron-acoustic (EA) waves, namely the weakly damped region and the prop-

agation velocity range.

In Chapter 3, we extended it to the one-fluid warm electrons model, which

includes the pressure of the cool (Tc 6= 0) electrons. Comparing with the one-

fluid cold model, we investigate the effect of the “cool-electron”temperature.

We distinguish two regimes for the propagation velocity, namely subsonic (slow)

and supersonic (fast) scales. We have treated the cool electrons to be supersonic

(i.e. having a propagation speed above the electron thermal speed), and have

found that only negative solitary structures can exist on this (fast) scale.

In Chapter 4, we assume that ions are no longer stationary, i.e., treated as

a fluid to make a two-fluid model consisting of cool electron-fluid, ion-fluid,

and hot background of suprathermal electrons. We see that the ion-fluid does

not influence much the fast negative solitons, while producing novel positive

solitary structures on the slow scale. We also investigate the nonlinear effects

of the hot suprathermal electrons on the positive acoustic solitary waves, i.e.,

the electric potential pulse and the propagation velocity range.

Finally, our main findings and conclusions are summarized in Chapter 5.

Ashkbiz Danehkar 5
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2

Cold Electron Fluid with

Suprathermal Electrons

In this chapter, we study the EAWs in an unmagnetized plasma composed of

cold (Tc = 0) electron fluid, hot suprathermal κ-distributed electrons, and uni-

formly distributed ions. We present the basic set of equations of the model

in §2.1. In §2.2, we derive the dispersion relation for the linear dynamics of

EAWs. In §2.3, we obtain the nonlinear structures of the electrostatic solitary

waves and describe the soliton existence domain.

2.1 Basic Equations

We consider a plasma with three components, namely cold electron-fluid, iner-

tialess hot electron component with a suprathermal (non-Maxwellian) electron

velocity distribution, and uniform ion background. The cold electron-fluid gov-

erning the linear and nonlinear dynamics of electron-acoustic waves (EAWs)

feels the effect of the hot suprathermal electrons. To study the linear and non-

linear results, we obtain the normalized fluid-moment equations and the Pois-

son’s equation through some appropriate scales.

7



2. COLD ELECTRON FLUID WITH SUPRATHERMAL ELECTRONS

The number density of cold electrons is governed by the continuity equation

∂nc

∂ t
+

∂ (ncuc)

∂x
= 0, (2.1)

The cold electrons obey the momentum equation

∂uc

∂ t
+uc

∂uc

∂x
=

e

me

∂φ

∂x
. (2.2)

The densities of suprathermal hot electron, fluid cold electrons and uniform

ions are related to the electrostatic potential by the Poisson’s equation:

∂ 2φ

∂x2
=− e

ε0
(ni −nc −nh) , (2.3)

where ε0 is the permittivity constant.

The uniform ions mean that ni = ni,0 = const, where ni0 is the undisturbed ion

density. We need an expression for the number density of the hot electron, nh,

which takes into account the suprathermal distribution (1.1). Integrating Eq.

(1.1) over velocity space, we obtain the number density of the suprathermal

hot electrons given by [21]

nh(φ) = nh,0

(

1− eφ

kBTh(κ − 3
2
)

)−κ+1/2

(2.4)

where nh,0 is the density of hot electrons in the undisturbed plasma, Th the tem-

perature of hot electron, φ the electrostatic wave potential, e the elementary

charge, and κ a spectral index which measures deviation from thermal equilib-

rium.

At equilibrium, the plasma is assumed to be quasi-neutral

nc,0 +nh,0 = Zni,0. (2.5)

In addition, we define the equilibrium density ratios of the ions to the cold

electrons and of the hot electrons to the cold electrons, respectively:

α ≡ ni,0

nc,0
, β ≡ nh,0

nc,0
. (2.6)

8 Propagation of EAWs in a plasma with suprathermal electrons



2.2. LINEAR DISPERSION RELATION

We assume that Z = 1 everywhere. Using above definition, Eq. (2.5) take the

form as α = 1 + β . According to [3], the propagation of the EAWs remain

undamped in the range 0.2 . nc,0/(nc,0 + nh,0) . 0.8. Therefore, the following

condition is satisfied: 0.25 < β < 4. This is a range for the existence of electron-

acoustic solitary waves.

If we scale densities by nc,0, we can write Eq. (2.4) in dimensionless form as

nh(φ) = β

(

1− φ

κ − 3
2

)−κ+1/2

. (2.7)

In the limit κ → ∞, Eq. (2.7) is reduced to n(φ) = β exp(φ), the Maxwellian

distributions for the electrons.

It is convenient to use the nondimensional form of Eqs. (2.1)–(2.3):

∂n

∂ t
+

∂ (nu)

∂x
= 0, (2.8)

∂u

∂ t
+u

∂u

∂x
=

∂φ

∂x
, (2.9)

∂ 2φ

∂x2
=−(1+β )+n+β

(

1− φ

κ − 3
2

)−κ+1/2

, (2.10)

which is done by choosing the variables as

nc

nc,0
→ n,

φ

kBTh/e
→ φ ,

uc

ch,s
→ u, tωpc → t,

x

λ0
→ x, (2.11)

where the sound speed of hot electrons is defined by ch,s = (kBTh/me)
1/2, the

plasma frequency of cold electrons ωpc = (nc,0e2/ε0me)
1/2, and a characteristic

length scale λ0 = (ε0kBTh/nc,0e2)1/2.

2.2 Linear Dispersion Relation

In this section, we use linear analysis to derive the dispersion relation for the

linear dynamics of EAWs. The linear dispersion relation exhibits that the fre-

quency of the EAWs are less than the cold electron plasma frequency and in the

long-wavelength mode the EAWs behave like an ion-acoustic wave.

Ashkbiz Danehkar 9



2. COLD ELECTRON FLUID WITH SUPRATHERMAL ELECTRONS

Let S be any of the system variables n, u, and φ , describing the system’s state

at a given position x and instant t. We shall consider small deviations from the

equilibrium state S(0), explicitly n(0) = 1, u(0) = 0 and φ (0) = 0, by taking

S = S(0)+S
(1)
1 ei(kx−ωt). (2.12)

Accordingly, the derivatives of the first order amplitudes are treated as

∂S
(1)
1

∂ t
=−iωS

(1)
1 ,

∂S
(1)
1

∂x
= ikS

(1)
1 . (2.13)

Eqs. (2.8) and (2.9) lead to the following expressions for density and veloc-

ity in terms of potential, namely

n
(1)
1 =− k2

ω2
φ
(1)
1 , u

(1)
1 =− k

ω
φ
(1)
1 . (2.14)

where ω is the wave frequency and k the wavenumber.

Similarly, the Poisson’s equation (2.10) provides the compatibility condition

as

− k2φ
(1)
1 =−β − k2

ω2
φ
(1)
1 +β

(

1− φ
(1)
1

κ − 3
2

)−κ+1/2

. (2.15)

Let us make use of the expansion keeping up to first order:

nh(φ)≈ 1+
κ − 1

2

κ − 3
2

φ . (2.16)

Using above approximate relation, Eq. (2.15) provide the familiar EAWs dis-

persion relation:

ω2
1 =

k2

k2 + k2
D

, (2.17)

where we define kD as

kD ≡ 1

λD

≡
(

β (κ − 1
2
)

κ − 3
2

)1/2

. (2.18)

Restoring dimensions, we get the standard dispersion relation

ω2
1 = ω2

pc

k2λ 2
Dh

k2λ 2
Dh

+

(

κ − 1
2

κ − 3
2

) , (2.19)

10 Propagation of EAWs in a plasma with suprathermal electrons



2.2. LINEAR DISPERSION RELATION

where λDh is the (hot electron) Debye length defined by

λDh =

(
ε0kBTh

nh,0e2

)1/2

= β−1/2λ0. (2.20)

Eq. (2.19) is recognized as the linear dispersion equation governing our model.

This can be represented as curves on a k–ω plane, as dimensionless dispersion

relation (2.17) shown in Fig. 2.1. It is important that the EAWs will be deeply

damped for the wave number k greater than 0.6kD. Particularly, the linear EAWs

are weakly damped between roughly 0.2kD and 0.6kD [2, 3]. The stable range of

the wave number rises with growing the equilibrium density ratio β = nh,0/nc,0.

The linear EAWs (unlike the well-known Langmuir waves) extends only up to

the cold electron plasma frequency. On the other hand, the dispersion relation

in the long-wavelength limit (in comparison with λDh) is ω ≃ kCs where Cs is

the electron-acoustic sound speed given by

Cs = β−1/2

(

κ − 3
2

κ − 1
2

)1/2

ch,s. (2.21)

The long-wavelength mode is analogous to an ion-acoustic (IA) mode. Here,

the cold electron plays the role of cold ions in the IA mode.

2.2.1 Hot suprathermal effect on linear waves

As the temperature of the hot electrons is increased, the sound speed within

the range of the long-wavelength increases. But, increasing βor decreasing κ

reduces the sound speed.

As illustrated in Fig. 2.1, the dispersion curve depends on the parameters κ

and β . In the weakly damped region (0.25 < β < 4), the slope of the dispersion

curve rises with either the increase in κ or the decrease in β . Thus, growing β

broadens the range of permitted frequencies, within the weakly damped region

(0.2kD < k < 0.6kD).

Ashkbiz Danehkar 11
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Figure 2.1: Dispersion curves for the linear EAWs. (a) Variation of the disper-

sion function curve for different values of κ and β = 2. Curves from bottom

to top: κ = 15 (solid), 3 (dashed), 2(dot-dashed curve). (b) Variation of the

dispersion function curve for different values of β and κ = 4. Curves from top

to bottom: β = 1 (solid), 2 (dashed), 3 (dot-dashed curve).

2.3 Nonlinear Electron-Acoustic Solitary Waves

Now, we employ the Sagdeev pseudopotential approach [37] to investigate the

nonlinear propagation properties of the cold electrons in a plasma under the ef-

fect of the hot suprathermal electrons. In §2.4, we discuss necessary conditions

for the generation of solitary structures in the plasma.

We consider solutions of Eqs. (2.8)–(2.10), that are stationary in a frame

moving with velocity M. We use the Galilean transformation, ξ = x−Mt and

τ = t, where M is called the Mach number. This means that all derivatives shall

be replaced as follows

∂

∂x
=

d

dξ
,

∂

∂ t
=−M

d

dξ
. (2.22)

Therefore, Eqs. (2.8)–(2.10) take the following form

−M
dn

dξ
+

d(nu)

dξ
= 0, (2.23)
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2.3. NONLINEAR ELECTRON-ACOUSTIC SOLITARY WAVES

−M
du

dξ
+u

du

dξ
=

dφ

dξ
, (2.24)

d2φ

dξ 2
=−(1+β )+n+β

(

1− φ

κ − 3
2

)−κ+1/2

. (2.25)

Integration of the continuity equation and the equation of motion provide

u = M(1− 1

n
), u = M− (M2 +2φ)1/2. (2.26)

Combining the above equations, we get

n =

(

1+
2φ

M2

)−1/2

. (2.27)

Substitution of the density expression (2.27) into Poisson’s equation (2.25)

leads to

d2φ

dξ 2
=−Ψ′

1(φ ,M,β ,κ) =−(1+β )+

(

1+
2φ

M2

)−1/2

+β

(

1− φ

κ − 3
2

)−κ+1/2

,

(2.28)

where we use the definition Ψ′ ≡ dΨ/dφ and Ψ′′ ≡ d2Ψ/dφ 2 everywhere.

We impose the appropriate boundary conditions for localized waves: densi-

ties are set to their unperturbed value at infinity, cold electron velocities and the

electrostatic potential are set to zero, i.e. n = 1, u = 0, and φ = 0. The Poisson

Eq. (2.25) can be integrated to yield the energy integral,

1

2

(
dφ

dξ

)2

+Ψ1(φ ,M,β ,κ) = 0, (2.29)

where Ψ1(φ ,M,β ,κ) is the Sagdeev pseudopotential given by

Ψ1(φ ,M,β ,κ) = (1+β )φ +M2

(

1−
(

1+
2φ

M2

)1/2
)

+β



1−
(

1+
φ

−κ + 3
2

)−κ+3/2


 . (2.30)

The Sagdeev pseudopotential depends on the Mach number M, the density ra-

tio β , and κ, and that Ψ1(φ ,M,β ,κ)|φ=0 = 0. To obtain the electron-acoustic

Ashkbiz Danehkar 13
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Figure 2.2: Variation of φm: (a) with β for different values of κ. Curves from

bottom to top: κ = 2 (solid), 4 (dashed), 15 (dot-dashed). (b) with κ for dif-

ferent values of β . Curves from top to bottom: β = 1 (solid), 2 (dashed), 3

(dot-dashed curve). Here, the Mach number is 0.8.
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Figure 2.3: (a) Variation of pseudopotential Ψ(φ) with φ for different density

ratio β . (b) Variation of potential φ with ξ for different density ratio β . Curves

from top to bottom: β = 1.1 (solid), 1.2 (dashed), 1.3 (dot-dashed curve). Here,

κ = 3 and M = 1.
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Figure 2.4: Variation of electric field of the EAWs E(ξ ) with ξ for different

density ratio β . Curves from bottom to top: β = 1.1 (solid), 1.2 (dashed), 1.3

(dot-dashed curve). Here, parameters are same as used in Fig. 2.3.

solitons, we must have an upper limit φ = φm, in which Ψ1(φ ,M,β ,κ)|φ=φm
= 0.

Here, we see that Eq. (2.29) shows the form of an energy balance equation.

Accordingly, it can describe a motion of a particle inside an anharmonic poten-

tial, i.e. the particle moves forward and backward between the origin φ = 0

and the maximum position φ = φm. Obviously, Eq. (2.27) is a real (non-

imaginary) expression for φ > −M2/2, so the maximum position for real so-

lution is given by φmax =−M2/2. A negative potential solitary wave may exist if

we can find a maximum peak of electrostatic wave potential φm (< 0) by solving

Ψ1(φ ,M,β ,κ) = 0.

2.3.1 Hot electron effect on EA Solitons

Fig. 2.2 shows the variation of the maximum electrostatic potential φm with β

for different values of κ , and vice versa. We can see that the absolute maximum
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electrostatic potential |φm| increases with either the rise in the ratio β or the

decline in the parameter κ.

In Fig. 2.3, it is seen that the electron-acoustic solitons have negative per-

turbations of the electric potential. It shows the variation of Ψ(φ) versus φ for

different density ratio β . As the density of the hot suprathermal electrons is

increased, the potential amplitude increases. In this case the associated electric

field structures of the EAWs are found to be bipolar, as shown in Fig. 2.4 for

different value of β . We can see that the increase in the number density of the

hot electrons raises the electric field’s peak.

2.4 Existence conditions for solitons

To obtain the electron-acoustic solitons, the conditions for the existence of soli-

tons, namely Ψ′
1(φ ,M,β ,κ)= 0 and Ψ′′

1(φ ,M,β ,κ)< 0 at φ = 0, must be satisfied

(physically, φ = 0 is equilibrium; the potential Ψ needs to have a maximum, an

unstable fixed point, at equilibrium; see Fig. 2.3a). The lower limit for the

Mach number is then obtained from the condition

F1(M,β ,κ)≡− Ψ′′
1(φ ,M,β ,κ)

∣
∣
φ=0

=
β (κ − 1

2
)

κ − 3
2

− 1

M2
> 0 (2.31)

Eq. (2.31) in terms of the Mach number defines a critical value as a lower limit

for M, i.e.

M1(β ,κ) =

(

κ − 3
2

β (κ − 1
2
)

)1/2

. (2.32)

Soliton solutions may exist only for values of the Mach number M > M1(β ,κ)

(lower limit). We notice that M1 depends on the parameters β and κ. Figure

2.5 (a) illustrates the modification in the existence domains for different values

of κ.

We obtain the largest possible value of M through Ψ1(φ ,M,β ,κ)> 0 at φ =

16 Propagation of EAWs in a plasma with suprathermal electrons
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Figure 2.5: The existence domains for stationary solitary structures: (a) the

lower limit (M1), (b) the upper limit (M2). Curves from top to bottom: κ = 2

(solid), 3 (dashed), 10 (dot-dashed curve). Here, β = 3, and the quantities F1

and F2 are defined in (2.31) and (2.33).

φmax =−M2/2. This leads to the following equation:

F2(M,β ,κ)≡ M2

(

1− 1

2
(1+β )

)

+β

(

1−
(

1+
M2

2κ −3

)−κ+3/2
)

> 0. (2.33)

The upper limit of the Mach number M (say, M2(β ,κ)) is thus obtained by

solving the associated equation. As illustrated in Fig. 2.5 (b), the upper limit

for the Mach number depends on the parameter κ. From Eq. (2.33), the upper

limit (M2) is obviously modified by the density ratio β .

2.4.1 Hot suprathermal effect on velocity range

The existence domain is therefore derived from solving F1(M,β ,κ) > 0 and

F2(M,β ,κ)> 0. As illustrated in Fig. 2.5, M1 and M2 increase with the increase

in the parameter κ. The range of Mach number (M1 < M < M2) are shown in

Fig. 2.6, as function of equilibrium density ratio β with the various κ. As the

density of the hot suprathermal electrons is increased, the lower and upper lim-

its of the Mach number decline. Hence, the increase in the hot electrons causes
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Figure 2.6: Negative potential soliton existence domain in the parameter space

of β and Mach number M. Solitons may be supported in the region between

M1(β ) (gray curve) and M2(β ) (black curve). It shows variation of M1(β ) and

M2(β ) with β for different values of κ. Curves from bottom to top: κ = 2 (solid),

4 (dashed), 15 (dot-dashed curve).

the existence domain for stationary solitary structure to become dramatically

narrow. The minimum Mach number, M1, is generally less than the value of 1.

Especially, for the large density ratio, β > 2.5, the Maximum Mach number, M2

becomes less than 1.5 as shown in Fig. 2.6.

2.4.2 Velocity range in Maxwellian vs. suprathermal plasmas

In the Maxwellian distributions for the hot electrons (κ → ∞), Eq. (2.31) takes

the following form

F1(M,β ) = β − 1

M2
> 0 (2.34)
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Figure 2.7: EAWs in a plasma with hot Maxwellian electrons (κ → ∞). (a)

Soliton existence domain in the parameter space of β and Mach number M.

Solitons may be supported in the region between M1(β ) (dashed curve) and

M2(β ) (solid curve). (b) Variation of Ψ1(φ ,M,β ) for β = 2 and different values

of Mach number, M. Curves from top to bottom: M = 1.2 (dotted), M = 1.4(dot-

dashed), M = 1.6 (dashed), and M = 1.8 (solid).

This means that the lower limit becomes M1(β ) = (β )−1/2. Eq. (2.33) tends to

an exponential form

F2(M,β ) = M2

(

1− 1

2
(1+β )

)

+β
(
1− exp(−1

2
M2)

)
> 0, (2.35)

The above equation solves the upper limit M2(β ). Negative potential solitary

wave solutions of the cold electron fluid system of equations exist for values of

the Mach number M in the range M1(β ) < M < M2(β ), which depends on the

density ratios of the hot electrons to the cold electrons. In Figure 2.7 (a), we

have plotted the lower and upper limits, M1 and M2, respectively, over the range

1.1 < β < 4 in the limit κ → ∞, and hence show the permitted range of Mach

numbers for the electron-acoustic solitons in the Maxwellian distributions. As

illustrated in Fig. 2.7 (b) for the Maxwellian distributions, the maximum elec-

trostatic potential of the negative solitary structure increases with the growth

in the Mach number M within the existence range M1 < M < M2. Furthermore,
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Figure 2.8: Soliton existence domain in the parameter space of κ and Mach

number M. Solitons may be supported in the region between M1 (gray curve)

and M2 (black curve). Curves from top to bottom: β = 1.1 (solid), 1.3 (dashed),

1.5 (dot-dashed curve). In the limit κ → 3/2 easily see that M1 = M2 = 0.

we can see that M1 = M2 = 0 in the limit κ → 3/2, as shown in Fig. 2.8.
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3

Warm Electron Fluid Model:

Temperature Effects

In this chapter, we consider a collisionless and unmagnetized plasma consisting

of cool (Tc 6= 0) inertial electrons, hot suprathermal electron, and inertialess

ions. We extend the thermal pressure to the model described in §2. In §3.1, we

obtain the linear dispersion relation through using small deviations from the

equilibrium state. In §3.2, we investigate the existence domain of the electron-

acoustic solitary waves.

The continuity equations of the cool electron fluid can be written as

∂nc

∂ t
+

∂ (ncuc)

∂x
= 0. (3.1)

Due to the thermal pressure of the cool electrons, the equation of momentum

contains an extra term (compare to Eq. (2.2))

∂uc

∂ t
+uc

∂uc

∂x
=

e

me

∂φ

∂x
− 1

menc

∂Pc

∂x
. (3.2)

The pressure of the cool electrons is given by

∂Pc

∂ t
+uc

∂Pc

∂x
+ γPc

∂uc

∂x
= 0, (3.3)

where Pc is the thermal pressure of the cool electrons, γ = f + 2/ f denotes the

specific heat ratio, and f denotes the number of degree of freedom, e.g., γ = 3
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in the one-dimensional case, also γ = 1 in an adiabatic evolution. We define the

temperature ratio of the cool electrons to the hot electrons as σ = Tc/Th. The

suprathermal hot electron, fluid cool electrons and uniform ions are linked to

the wave potential by the Poisson’s equation (2.3).

The normalized one-dimensional (γ = 3) model equations are written as

∂n

∂ t
+

∂ (nu)

∂x
= 0, (3.4)

∂u

∂ t
+u

∂u

∂x
=

∂φ

∂x
− σ

n

∂P

∂x
, (3.5)

∂P

∂ t
+u

∂P

∂x
+3P

∂u

∂x
= 0, (3.6)

∂ 2φ

∂x2
=−(β +1)+n+β

(

1− φ

(κ − 3
2
)

)−κ+1/2

(3.7)

The density nc are normalized with the unperturbed density (nc,0), the velocity

uc with the hot electron thermal velocity (ch,s = (kBTh/me)
1/2), time with the in-

verse cool electron plasma frequency, ω−1
pc , where ωpc = (nc,0e2/ε0me)

1/2, length

with the characteristic length scale, λ0 = (ε0kBTh/nc,0e2)1/2, the wave potential

φ with kBTh/e, and the thermal pressures with nc,0kBTc.

3.1 Dispersion Relation

Let S= (n,P,u,φ) be any of the system variables describing the system’s state at a

given position x and instant t. We shall consider small deviations from the equi-

librium state S(0) = (1,1,0,0). Using the harmonic wave definition (2.12), and

the temporal and spatial derivatives of the first order amplitudes, Eq. (2.13),

we get the expressions for density, velocity, and pressure, namely

n
(1)
1 =

k

ω
u
(1)
1 , u

(1)
1 =− k

ω

(

φ
(1)
1 −σP

(1)
1

)

, P
(1)
1 = 3n

(1)
1 . (3.8)

The density in terms of potential are written as

n
(1)
1 =−

(
k2

ω2 −3σk2

)

φ
(1)
1 . (3.9)
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3.1. DISPERSION RELATION

The system is closed by the Poisson’s equation

− k2φ
(1)
1 =−(β +1)+1+n

(1)
1 +β

(

1− φ
(1)
1

κ − 3
2

)−κ+1/2

. (3.10)

Let us expand the κ-distribution as Eq. (2.16), keeping up to first order. Com-

bining Eqs. (3.9) and (3.10), we get

− k2φ
(1)
1 =−

(
k2

ω2 −3σk2

)

φ
(1)
1 +β

(

κ − 1
2

κ − 3
2

)

φ
(1)
1 . (3.11)

After a simplification, we recover the linear dispersion relation for the electron-

acoustic waves propagating in the warm model:

ω2
2 =

k2

k2 + k2
D

+3σk2. (3.12)

where
√

3σ is the normalized thermal velocity. We note that ω2
2 (k) = ω2

1 (k)+

3σk2, where ω1 the cold model frequency defined by Eq. (2.17), and the warm

model frequency ω2 as in Eq. (3.12).

Restoring dimensions, the warm model dispersion relation is derived as

ω2
2 = ω2

pc

k2λ 2
Dh

k2λ 2
Dh +

(

κ − 1
2

κ − 3
2

) +3σk2c2
h,s. (3.13)

For the limit k ≪ kD Eq. (3.13) reduces to ω ≃ kvph where vph is the phase speed

given by

vph ≃
(

β−1

(

κ − 3
2

κ − 1
2

)

+3σ

)1/2

ch,s. (3.14)

The thermal pressure manifests its physical effect in a small modification on the

k–ω plane. The linear dispersion relation is affected by the thermal pressure.

3.1.1 Temperature effect on linear waves

Figure 3.1 shows that the slope of the ω(k) curve increases with a rise in the

temperature ratio σ . Comparing Eqs. (2.21) and (3.14) we can see that grow-

ing σ = Tc/Th increases the phase speed. It is obvious that in the limit σ → 0,

Eq. (2.17), the cold model dispersion relation, is given.
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Figure 3.1: Variation of the dispersion function curve for different values of σ ,

β = 3, and κ = 4. Curves from bottom to top: σ = 0 (solid), 0.01 (dashed), 0.02

(dot-dashed curve).

3.2 Sagdeev Pseudopotential Method

We take Eqs. (3.4)–(3.7) to be stationary in a frame traveling with velocity

M (the Mach number). Using the transformation ξ = x−Mt, all temporal and

spatial derivatives shall be replaced as Eq. (2.22), so Eqs. (3.4)–(3.7) take the

following form:

−M
dn

dξ
+

d(nu)

dξ
= 0, (3.15)

−M
du

dξ
+u

du

dξ
=

dφ

dξ
− σ

n

dP

dξ
, (3.16)

−M
dP

dξ
+u

dP

dξ
+3P

du

dξ
= 0, (3.17)

d2φ

dξ 2
=−(β +1)+n+β

(

1− φ

(κ − 3
2
)

)−κ+1/2

. (3.18)
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3.2. SAGDEEV PSEUDOPOTENTIAL METHOD

Comparing Eqs. (3.15)–(3.18) with Eqs.(2.23)–(2.25), we see a thermal pres-

sure in momentum equation that classifies the propagation velocity as faster or

slower than the electron thermal velocity.

Applying the appropriate boundary conditions, namely n = 1, P = 1, u = 0,

and φ = 0, and integrating the equation of continuity, the equation of motion,

and the equation of state provide

u = M(1− 1

n
), u = M− (M2+2φ −3n2σ +3σ)

1/2
, (3.19)

P = n3 → dP = 3n2dn. (3.20)

Combining Eqs. (3.19) and (3.20), we obtain the following solutions through

the biquadratic equation (see Appendix C for more detail):

n =
1

2

(
n(+)±n(−)

)
, (3.21)

n(+)≡
(

2φ+
(
M+

√
3σ
)2

3σ

)1/2

, n(−)≡
(

2φ +
(
M−

√
3σ
)2

3σ

)1/2

. (3.22)

In Eq. (3.21), the upper sign (+) is for subsonic cool electrons (M <
√

3σ) soli-

ton while the lower sign (−) is for supersonic cool electrons (M >
√

3σ), because

it must satisfy the condition at equilibrium (n = 1 at φ = 0). We notice that the

normalized density has two regions in the Mach number domain, namely sub-

sonic and supersonic for hot species and cool species, respectively. We obtain

the condition at equilibrium (n = 1) at φ = 0. In the limit σ → 0, we recover the

cold limit expression (2.27). To have the real solution, 2φ +
(
M−

√
3σ
)2

> 0, so

it yields φmax =−1
2

(
M−

√
3σ
)2

to the negative solitary structures.

Substituting the density expression (3.21) into the Poisson’s equation (3.18)

leads to the equation of motion:

d2φ

dξ 2
=−Ψ′

2(φ ,M,β ,κ ,σ) =−(β +1)+β

(

1− φ

(κ − 3
2
)

)−κ+1/2

+
1

2
√

3σ

([

2φ+
(

M+
√

3σ
)2
]1/2

±
[

2φ +
(

M−
√

3σ
)2
]1/2

)

. (3.23)
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Figure 3.2: (a) Variation of pseudopotential Ψ(φ) with φ for different tem-

perature ratio σ . (b) Variation of the electron-acoustic potential φ with ξ for

different temperature ratio σ . Curves from bottom to top: σ → 0 (dot-dashed

curve), σ = 0.01 (dashed), 0.02 (solid). Here, β = 1.1, κ = 3 and M = 1.

The above equation can be integrated to yield the energy balance equation:

1

2

(
dφ

dξ

)2

+Ψ2(φ ,M,β ,κ ,σ) = 0, (3.24)

where the Sagdeev pseudopotential Ψ1(φ ,M,β ,κ ,σ) reads as

Ψ2(φ ,M,β ,κ ,σ) = (1+β )φ +β



1−
(

1+
φ

−κ + 3
2

)−κ+3/2




+
1

6
√

3σ

((

M+
√

3σ
)3

±
(

M−
√

3σ
)3

−
[

2φ+
(

M+
√

3σ
)2
]3/2

∓
[

2φ +
(

M−
√

3σ
)2
]3/2

)

. (3.25)

Here, the upper sign is for subsonic soliton and the lower sign for supersonic. It

is easily seen that we get the cold model in the limit σ → 0, i.e., limσ→0 Ψ2(φ ,M,β ,κ ,σ)=

Ψ1(φ ,M,β ,κ).

26 Propagation of EAWs in a plasma with suprathermal electrons



3.2. SAGDEEV PSEUDOPOTENTIAL METHOD

−5 0 5

−0.1

−0.05

0

0.05

0.1

0.15

ξ

E
(ξ

)

 

 

σ = 0.02

σ = 0.01

σ ®  0

Figure 3.3: Variation of electric field of the EAWs E(ξ ) with ξ for different

temperature ratio σ . Curves from top to bottom: σ → 0 (dot-dashed curve),

σ = 0.01 (dashed), 0.02 (solid). Here, parameters are same as used in Fig. 3.2.

3.2.1 Temperature effect on EAWs

We have numerically solved Eq. (3.25) for a plasma which consists of cool elec-

trons and hot suprathermal electrons. Figure 3.2 (a) shows the variation of

Sagdeev pseudopotential Ψ2(φ) with normalized potential for different temper-

ature ratio σ . Figure 3.2 (b) shows the variation of solitary waves for the cool

electrons for different values of the temperature ratio σ = Tc/Th as shown on

the curves for β = 1.1, κ = 3 and Mach number, M = 1. The amplitude of the

wave potential decreases with the increase in σ . The associated bipolar electric

field structures are shown in Fig. 3.3. We can see a decline in the electric field

structures with an increase in the thermal velocity
√

3σ . As illustrated in Fig.

3.4, the number density and the velocity of the cool electrons decline with the
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Figure 3.4: (a) Variation of density n with ξ for different temperature ratio σ .

(b) Variation of velocity u with ξ for different temperature ratio σ . Curves from

top to bottom: σ → 0 (dot-dashed curve), σ = 0.01 (dashed), 0.02 (solid). Here,

parameters are same as used in Fig. 3.2.
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(solid), 4 (dashed), 3 (dot-dashed curve). Here, σ = 0.02, β = 1.1, and M = 1.
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Figure 3.6: Variation of electric field of the EAWs E(ξ ) with ξ for different κ.

Curves from top to bottom: κ = 6 (solid), 4 (dashed), 3 (dot-dashed curve).

Here, parameters are same as used in Fig. 3.5.

growth in the thermal velocity.

3.2.2 Suprathermal effect on EAWs

Figure 3.5 (a) shows the variation of Sagdeev pseudopotential Ψ2(φ) versus

φ for different κ. The absolute maximum electrostatic potential |φm| decrease

with the rise in κ, while the large κ turns into Maxwellian distribution. The

value of κ between 3/2 and 6 effectively describe the solitary structure of the

electron-acoustic wave in a suprathermal plasma. Figure 3.6 shows the varia-

tion of the associated bipolar electric field structures for different values of κ. In

Fig. 3.7, we can see the density n and the velocity u increase, as the parameter

κ is decreased.
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velocity u with ξ for different κ. Curves from top to bottom: κ = 6 (solid), 4

(dashed), 3 (dot-dashed curve). Here, parameters are same as used in Fig. 3.5.

3.3 Soliton Existence

We require to find out if the conditions for the existence of solitons are satisfied

for Eq. (3.25), i.e., Ψ′
2(φ ,M,β ,κ ,σ) = 0 and Ψ′′

2(φ ,M,β ,κ ,σ)< 0 at φ = 0. We

derive the lower limit for the existence domain from the condition

F1(M,β ,κ ,σ) =− Ψ′′
2(φ ,M,β ,κ ,σ)

∣
∣
φ=0

=
β (κ − 1

2
)

κ − 3
2

− 1

M2 −3σ
> 0. (3.26)

Eq. (3.26) provides the minimum value for the Mach number:

M1(β ,κ ,σ) =

(

κ − 3
2

β (κ − 1
2
)
+3σ

)1/2

. (3.27)

Soliton solutions may exist only for the Mach number greater than M1(β ,κ ,σ).

We can see that M1 depends on the parameters β , κ, and σ . This shows that

electron thermal effects increase the Mach number threshold. In the limit σ →
0, it provides the expression for cold model (2.32).

We obtain the largest possible value of M through F2(M,β ,κ ,σ) = Ψ2(φ ,M,
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β ,κ ,σ)|φ=φmax
> 0. This yields the following equation:

F2(M,β ,κ ,σ) =−1

2
(1+β )

(

M−
√

3σ
)2

+M2+σ − 4

3
M

√

M
√

3σ

+β



1−
(

1+

(
M−

√
3σ
)2

2κ −3

)−κ+3/2


 . (3.28)

Solving Eq. (3.28) provides the upper limit M2(α,κ) for the Mach number.

Figure 3.8 illustrates a modification in the existence domains (M1 < M < M2)

for different values of σ . We find out that “cool”electrons need to be supersonic

(in the sense M >
√

3σ) and “hot”suprathermal electrons subsonic (M <
√

3σ)

[38, 39, 40]. Negative solitary structures of the cool electron-fluid may be

found in the range M1 < M < M2, which depends on the parameters β , κ, and

σ .

3.3.1 Velocity range in Maxwellian vs. suprathermal plasmas

In the Maxwellian distributions (κ → ∞), we get

F1(M,β ,σ) = β − 1

M2 −3σ
> 0. (3.29)

F2(M,β ,σ) =−1

2
(1+β )

(

M−
√

3σ
)2

+M2+σ − 4

3
M3/2 (3σ)1/4

+β

(

1− exp(−1
2

(

M−
√

3σ
)2

)

)

. (3.30)

The above equation solves the upper limit M2(β ), while the lower limit becomes

M1(β ,σ) = (1/β +3σ)1/2. As shown in Figures 3.9–3.11, growing the thermal

pressure pushes up the lower limit M1, but turns down the upper limit M2 of the

Mach number. We can also see the decline in both M1 and M2 with the increase

in β and decrease in κ, which has been previously described in §2.4.

In the limit κ → 3/2, the lower limit of the Mach number takes the form

M1(β ,σ) =
√

3σ . It is non-zero, in contrast to the cold model in §2.4 which

turned into zero. The upper limit M2 can be solved by

F2(M,β ,σ) =−1

2
(1+β )

(

M−
√

3σ
)2

+M2+σ − 4

3
M3/2 (3σ)1/4 > 0. (3.31)
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It also appears to be, nonvanishing, in proportion to the thermal velocity, M2 ∼
√

3σ . In the limit σ → 0, we obtain the cold model results (M1 = M2 = 0).

3.3.2 Temperature effect on velocity range

The existence condition (M1 < M < M2) is obtained through F1(M,β ,κ ,σ) > 0

and F2(M,β ,κ ,σ)> 0. Fig. 3.9 shows that M1 and M2 decline with the increase

in the parameter β , i.e., the density of the hot electrons. We notice the existence

domain becomes narrower, as the hot electrons density is increased. The range

of the Mach number are shown in Fig. 3.10, as function of κ with the various σ .

In this figure, one can see that, moving into the Maxwellian distribution (κ →∞)

will broaden the Mach number range. However, the lower Mach number limit

tend to
√

3σ , and the upper Mach number limit to
√

3σ as κ → 3/2, the limiting

value of κ. As illustrated in Fig. 3.11 for suprathermal situation (3/2 < κ < 6),

the lower Mach number limit, M1, is generally less than the value of 0.75, and

the upper Mach number limit, M2, for very warm model (σ > 0.005) becomes

less than 1.
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Two-Fluid Model: Ion Inertia Effects

In this chapter, we consider a collisionless and unmagnetized plasma with three

components, namely, cool inertial electrons, inertialess hot suprathermal elec-

trons, and inertial ions. We include the inertial ions in the model described in

Chapter 3. We employ the cool electrons described by Eqs. (3.1)–(3.3), the hot

suprathermal electrons, assumed to obey the kappa velocity distribution (2.4),

and ions, described by the fluid-moment equations. The electron-fluid and ion-

fluid are coupled through Poisson’s equation (2.3). In §4.1, we derive the linear

dispersion relation from a linear methodology. In §4.2, we develop a Sagdeev

pseudopotential method and determine the existence domain of stationary soli-

tary waves.

The fluid equations for the ions read

∂ni

∂ t
+

∂ (niui)

∂x
= 0, (4.1)

∂ui

∂ t
+ui

∂ui

∂x
=−Ze

mi

∂φ

∂x
, (4.2)

where ni,0 is the density of the ions in the undisturbed plasma, me the mass of

the ions, Z the number of ions (everywhere, Z = 1).

The normalized fluid-moment equations of the cool electron and the ions,
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and the Poisson’s equation are written as Eqs. (3.4)–(3.6), and

∂ ñ

∂ t
+

∂ (ñũ)

∂x
= 0, (4.3)

∂ ũ

∂ t
+ ũ

∂ ũ

∂x
=−µ

∂φ

∂x
, (4.4)

∂ 2φ

∂x2
=−ñ+n+β

(

1− φ

(κ − 3
2
)

)−κ+1/2

, (4.5)

All densities are normalized with the unperturbed density of the cool electrons

(nc,0), all velocities with the hot electron thermal velocity (ch,s =
√

kBTh/me):

nc

nc,0
→ n,

ni

nc,0
→ ñ,

uc

ch,s
→ u,

ui

ch,s
→ ũ, (4.6)

space and time variables are scaled by the characteristic length scale, λ0 =
(
ε0kBTh/nc,0e2

)1/2
, the inverse cool electron plasma frequency ω−1

pc = (ε0me/

nc,0e2)1/2, the potential scale reads φ0 = kBTh/e, and the thermal pressures scale

P0 = nc,0kBTc. We also define the mass ratio of electron to ion as µ = me/mi =

1/1836 (proton) and the number of ions as Z = 1 (Hydrogen).

4.1 Linear Method

Let us assume that S = (n,u, ñ, ũ,P,φ) be the system variables that describe the

system’s state at a given space and time. The small deviations from the equilib-

rium state are S(0) = (1,0,1+β ,0,1,0). We use the first-order derivatives of the

harmonic wave amplitude as Eq. (2.13), we get the following expressions for

velocity, density of the cool electrons and the ions, and thermal pressure,

n
(1)
1 =

k

ω
u
(1)
1 , u

(1)
1 =− k

ω

(

φ
(1)
1 −σP

(1)
1

)

, P
(1)
1 = 3n

(1)
1

(4.7)

ñ
(1)
1 =

k

ω
ũ
(1)
1 , ũ

(1)
1 = µ

k

ω
φ
(1)
1 , (4.8)

The Poisson’s equation closes all system variables together.

− k2φ
(1)
1 =−β − ñ

(1)
1 +n

(1)
1 +β

(

1− φ

(κ − 3
2
)

)−κ+1/2

(4.9)
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Using the fact that µ ≪ 1, we use the Taylor expansion to first order. If we

approximate to first order, we obtain the linear dispersion relation ω3 = ω3(k):

ω2
3 (k)≃ ω2

2 (k)+
µk2

(
k2 + k2

D

)[
1+3σ

(
k2 + k2

D

)] (4.10)

where kD is defined by Eq. (2.18), and ω2(k), the wave frequency of the one-

fluid warm model, is given by Eq. (3.12). In the limit µ → 0, we get the

one-fluid warm model as Eq. (3.12).

4.1.1 Ion inertia effects on linear waves

To understand how inertial ions affect the linear dispersion function, we may

write Eq. (4.10) as follows

ω2
3 ≃

(

1+
µ

1+3σ
(
k2 + k2

D

)

)

ω2
1 +3σk2 (4.11)

We see that the thermal effect has an dramatic effect on the results of the inertial

ions. Hence, there is extremely small difference between the dispersion curve of

this model and the model described in §3, as shown in Fig. 4.1. In the limit σ →
0, we obtain ω3 ≃ (1+µ)1/2 ω1 ≈

(
1+ 1

2
µ
)

ω1, with the result that the electron-

acoustic phase speed increases by order of 1
2

µ (for the Hydrogen µ = me/mi =

1/1836). Figure 4.2 shows the difference between two-fluid warm model (σ =

0.02) and two-fluid cold model (σ = 0). We see that the thermal effect (
√

3σ)

plays a role in modifying the dispersion curve more than the inertial ions (while

µ ≪ 1). It seems that the inertial ions make some minor effects to the electron-

acoustic phase speed.

4.2 Nonlinear Pseudopotential Technique

To investigate the existence of the electron-acoustic solitary waves, we use the

pseudopotential approach by assuming that all dependent variables depend on
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Figure 4.1: Variation of the dispersion function curve for different values of µ.

Curves from top to bottom: µ = 1/1836 (solid), and 0 (dashed). Here, κ = 3,

β = 2, σ = 0.02, and Z = 1.

the traveling coordinate ξ = x−Mt, where M is the Mach number. Using this

transformation, we get Eqs. (3.15)–(3.17), and the ion-fluid equations take the

following form

−M
dñ

dξ
+

d(ñũ)

dξ
= 0, (4.12)

−M
dũ

dξ
+ ũ

dũ

dξ
=−µ

dφ

dξ
, (4.13)

d2φ

dξ 2
=−ñ+n+β

(

1− φ

(κ − 3
2
)

)−κ+1/2

. (4.14)

Integrating Eqs. (3.15)–(3.17) and Eqs. (4.12)–(4.13) yield

u = M(1− 1

n
), u = M−

(
M2+2φ −3n2σ +3σ

)1/2
, (4.15)

ũ = M

(

1− (1+β

ñ

)

, ũ = M−
(
M2−2µφ

)1/2
. (4.16)

Combining Eqs. (4.15)–(4.16), we get

n =
1

2
√

3σ

([

2φ+
(

M+
√

3σ
)2
]1/2

±
[

2φ +
(

M−
√

3σ
)2
]1/2

)

, (4.17)
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Figure 4.2: Variation of the dispersion function curve for different values of

σ . Curves from top to bottom: σ = 0.02 (solid), and 0 (dashed). Here, κ = 3,

β = 2, Z = 1, and µ = 1/1836.

ñ = (1+β )

(

1−µ
2φ

M2

)−1/2

. (4.18)

The upper/lower sign in Eq. (4.17) is for subsonic/supersonic solitons, respec-

tively. In the limit µ → 0, we recover the inertialess ions (ñ = 1+β). We also

obtain the condition at equilibrium (n = 1 and ñ = 1 + β) through the limit

φ → 0.

Eq. (4.17) shows that φ
(−)
max = −1

2

(
M−

√
3σ
)2

, which is considered to be the

maximum (in absolute value) limit for the negative electrostatic wave potential.

Meanwhile, two-fluid model, Eq. (4.18), gives a maximum limit for the positive

electrostatic wave potential φ
(+)
max =

1
2

µ−1M2. We can see that the maximum limit

for the positive solitary waves is in proportion to µ−1 (for the proton µ−1 =

1836). This means that the two-fluid model may support a positive soliton with
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Figure 4.3: (a) Variation of pseudopotential Ψ(φ) with φ for µ = 1/1836 (solid)

and 0 (dot-dashed curve). As zoomed in on (b) and (c), difference between two

curves are extremely small due to small value of µ. Here, β = 1.1, κ = 3, M = 1,

and Z = 1.

very large amplitude (by order of µ−1) in comparison with negative solitons.

However, we must also think of the possible range of the propagation velocity

(M), which is valid for the positive solitary waves. In the two-fluid model, the

positive pulses usually appear to be subsonic (M < 1), i.e., heavy species (ion)

propagating slowly. Hence, we may not observe very large positive pulses due

to small velocity (M ≪ 1).

Substituting equations (4.17) and (4.18) into equation (4.14), we get the
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µ. Curves from top to bottom: µ = 0.1 (solid) and 0 (dot-dashed curve). Here,

µ = 0.1 has not physical mean and other parameters are same as used in Fig.

4.3.

equation of motion:

d2φ

dξ 2
=−Ψ′

3(φ ,M,β ,κ ,σ ,µ) =−(1+β )

(

1−µ
2φ

M2

)−1/2

+β

(

1− φ

(κ − 3
2
)

)−κ+1/2

+
1

2
√

3σ

([

2φ+
(

M+
√

3σ
)2
]1/2

±
[

2φ +
(

M−
√

3σ
)2
]1/2

)

. (4.19)

Multiplying the above equation by dφ/dξ , integrating, and applying boundary

condition, namely n = 1, ñ = 1+β , P = 1, and u = ũ = φ = 0, we find the energy

balance equation:

1

2

(
dφ

dξ

)2

+Ψ3(φ ,M,β ,κ ,σ ,µ) = 0, (4.20)
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where the Sagdeev pseudopotential Ψ3(φ ,M,β ,κ ,σ ,µ) is written as

Ψ3(φ ,M,β ,κ ,σ ,µ) = (1+β )
M2

µ

(

1−
(

1−µ
2φ

M2

)1/2
)

+β



1−
(

1− φ

κ − 3
2

)−κ+3/2




+
1

6
√

3σ

((

M+
√

3σ
)3

±
(

M−
√

3σ
)3

−
[

2φ+
(

M+
√

3σ
)2
]3/2

∓
[

2φ +
(

M−
√

3σ
)2
]3/2

)

.

(4.21)

In the limit µ → 0, we obtain one-fluid warm model, i.e., limµ→0 Ψ3(φ ,M,β ,κ ,σ ,µ)=

Ψ2(φ ,M,β ,κ ,σ) as in Eq. (3.25). We also get the cold model from the limit

σ → 0 (see Eq. (2.17))

4.2.1 Ion inertia effects on EA Solitons

As illustrated in Fig. 4.3, the ion-fluid has a trivial role in modifying negative

supersonic (M >
√

3σ) solitary waves. Figure 4.4 shows the difference between

two-fluid model for µ = 0.1 and one-fluid model. However, µ = 0.1 has not

physical mean, and only was used to distinguish between them.

Numerically solving Eq. (4.21) provides the number density and the velocity

of the ions. Figure 4.6 shows the variation of ñ and ũ for different temperature

ratio σ are slight. We see a decline in the absolute ion quantities (density

and velocity) with an increase in the thermal velocity
√

3σ . Figure 4.5 shows

the variation of the ion density and the ion velocity for different κ. We note

that, by increasing κ (closer to the Maxwellian background), the ion quantities

decreases. Hence, the inertial ions are more affect by suprathermal species than

the Maxwellian distribution
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4.2.2 Positive solitary wave structure

It is interesting to see the subsonic solution (M <
√

3σ), which is associated with

the upper sign in Eq. (4.21). Previously (§3.2), we classified the Mach number

under two regions, i.e., subsonic/supersonic for hot/cool species, respectively.

The cool electron-fluid can generally support a negative supersonic electrostatic

wave. But, ion-fluid may possess a subsonic soliton, which gives a positive

pulse. We have numerically solved Eq. (4.21) for the subsonic condition. As

illustrated in Fig. 4.7, this makes the positive electrostatic wave potential. We

see that the amplitude of pulse rises as the Mach number is increased. Figure
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4.8 shows that increasing κ (approach the Maxwellian distribution) reduces the

positive solitary pulse amplitude, but extends the full width at half maximum

(FWHM).

It is important to note that the two-fluid cold model (σ → 0) may not pro-

duce the positive solitary structures. In the limit σ → 0, the number density

(4.17) approaches n =
(
1+2φ/M2

)−1/2
and the Sagdeev pseudopotential reads

as

Ψ3(φ ,M,β ,κ ,µ) = (1+β )
M2

µ

(

1−
(

1−µ
2φ

M2

)1/2
)

+β



1−
(

1− φ

κ − 3
2

)−κ+3/2




+M2

(

1−
(

1+
2φ

M2

)1/2
)

. (4.22)

It is difficult to find a positive solution to Eq. (4.22) in the same way as given in

Eq. (4.21). As shown in Fig. 4.9, reducing the electron thermal velocity affects

the positive soliton existence. Indeed, it seems there is no possibility of positive

solitary structure for very small σ .

4.3 Negative Electron-acoustic Soliton Existence

For the existence of negative potential solitons moving at velocity M, we require

Ψ′
3(φ ,M,β ,κ ,σ ,µ)|φ=0 = 0 and Ψ′′

2(φ ,M,β ,κ ,σ)|φ=0 < 0. Hence, the lower Mach

number limit can be obtained through the following function

F1(M,β ,κ ,σ ,µ) =−Ψ′′
3 |φ=0 =

β (κ − 1
2
)

κ − 3
2

− 1

M2 −3σ
− (1+β )

µ

M2
> 0. (4.23)

Eq. (4.23) leads to graphs where the existence domains for stationary soli-

tary structures are illustrated. As shown in Fig. 4.10, the thermal velocity

classifies the Mach number under two regions, namely “fast”(M >
√

3σ) and

“slow”(M <
√

3σ) scales, i.e., the thermal velocity is smaller or larger than the
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Figure 4.10: The existence domains for stationary solitary structures. The quan-

tities F1 for 1-fluid cold model (dashed curve), 1-fuild warm model (solid), and

2-fluid warm model (dot-dashed) are defined in (2.31), (3.26) and (4.23), re-

spectively. As shown in (a), the 2-fluid warm model has two existence domains,
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scale. As zoomed in on (b), difference between 1-fuild warm model and 2-fluid

warm model are extremely small in supersonic region (M >
√

3σ) due to small

value of µ. Here, κ = 3, β = 3, σ = 0.02, Z = 1, and µ = 1/1836.
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Mach number, respectively. We will see that the thermal velocity divides the

propagation speed into two ranges: negative and positive solitary waves.

Eq. (4.23) provides the lower Mach number limit for negative solitary struc-

tures (note: Eq. (4.23) gives us two solutions; also Eq. (4.26)):

M
(−)
1 (β ,κ ,σ ,µ) =

1

2




(κ − 3

2
) [µ(1+β )+1]

β (κ − 1
2
)

+3σ +2

(

3σ µ(1+β )(κ − 3
2
)

β (κ − 1
2
)

)1/2




1/2

+
1

2




(κ − 3

2
) [µ(1+β )+1]

β (κ − 1
2
)

+3σ −2

(

3σ µ(1+β )(κ − 3
2
)

β (κ − 1
2
)

)1/2




1/2

.

(4.24)

In the limit µ → 0, we get the same expression (3.27) for the one-fluid warm

model.

We obtain the higher limit for the Mach number through F2(M,β ,κ ,σ ,µ) =

Ψ3(φ ,M,β ,κ ,σ ,µ)|
φ=φ

(−)
max

> 0, where φ
(−)
max =−1

2

(
M−

√
3σ
)2

. This gives:

F
(−)
2 (M,β ,κ ,σ ,µ) = (1+β )

M2

µ



1−
(

1+µ +
µ(3σ −2M

√
3σ)

M2

)1/2




+β



1−
(

1+

(
M−

√
3σ
)2

2κ −3

)−κ+3/2


+M2 +σ − 4M
√

M
√

3σ

3
.

(4.25)

Hence, the upper limit M
(−)
2 (β ,κ ,σ ,µ) is obtained by solving the above equa-

tion.

4.3.1 Ion inertia effects on negative soliton

Figure 4.11 shows that the ion inertia effects have trivially negative soliton exis-

tence altered. We notice that there is a extremely small difference between one-

fluid warm model and two-fluid warm model. At the supersonic domain, pos-

itively charged heavy species behave like uniformly distributed positive back-

ground with negligible role in the dynamics of EAWs.
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fluid cold model (dashed curve), 1-fluid warm model (solid), and 2-fluid warm

model (dot-dashed). As zoom-in shows difference between 1-fluid warm model

and 2-fluid warm model are extremely small. Here, β = 2, σ = 0.02, Z = 1, and

µ = 1/1836.

4.4 Positive Electron-acoustic Soliton Existence

However, Eq. (4.23) has another solution, which yields the lower Mach number

limit for positive solitary structures:

M
(+)
1 (β ,κ ,σ ,µ) =

1

2




(κ − 3

2
) [µ(1+β )+1]

β (κ − 1
2
)

+3σ +2

(

3σ µ(1+β )(κ − 3
2
)

β (κ − 1
2
)

)1/2




1/2

− 1

2




(κ − 3

2
) [µ(1+β )+1]

β (κ − 1
2
)

+3σ −2

(

3σ µ(1+β )(κ − 3
2
)

β (κ − 1
2
)

)1/2




1/2

.

(4.26)

Ashkbiz Danehkar 49



4. TWO-FLUID MODEL: ION INERTIA EFFECTS

1 2 3 4
0.015

0.02

0.025

β

M
2

 

 

1 2 3 4
0.005

0.01

0.015

β

M
2

 

 

σ = 0.01

σ = 0.02

σ = 0.03

σ = 0.01

σ = 0.02

σ = 0.03

Figure 4.12: Positive potential soliton existence domain in the parameter space

of β and Mach number M for different temperature ratio σ . (a) Variation of
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top: σ = 0.01 (solid), σ = 0.02(dashed), 0.03 (dot-dashed curve). Here, κ = 3,

Z = 1, and µ = 1/1836.

It is interesting to see that limµ→0 M
(+)
1 (β ,κ ,σ ,µ) = 0. This means that the one-

fluid model involving inertial (cold or cool) electrons and inertialess ions may

not produce positive solitons due to the dynamics of positively charged species

being negligible.

We also derive the upper Mach number limit from F2(M,β ,κ ,σ ,µ) = Ψ3(φ ,

M,β ,κ ,σ ,µ)|
φ=φ

(+)
max

> 0, where φ
(+)
max =

1
2
µ−1M2. This yields the following equa-

tion:

F
(+)
2 (M,β ,κ ,σ ,µ) = (1+β )

M2

µ
+β



1−
(

1− M2

2µ
(
κ − 3

2

)

)−κ+3/2




+
1

6
√

3σ

((

M+
√

3σ
)3

+
(

M−
√

3σ
)3

−
[

1

µ
M2+

(

M+
√

3σ
)2
]3/2

−
[

1

µ
M2 +

(

M−
√

3σ
)2
]3/2

)

.

(4.27)

In the limit µ → 0, we find no solution to Eq. (4.27). This confirms our previ-
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ous statement that the one-fluid model described in §2 and §3 cannot produce

positive solitary waves.

4.4.1 Hot electron effects on positive soliton

Fig. 4.12 shows that M1 and M2 rise with the increase in the parameter β ,

i.e., the density of the hot electrons. This result is in contrast to the negative

potential solitary wave (see Fig. 3.9). The existence domain for the positive

potential solitary widens, as the hot electrons density is increased.

4.4.2 Temperature effects on positive soliton

We also see that the two-fluid cold model (σ → 0) may not propagate the pos-

itive solitary pulse, since limσ→0 M
(+)
1 (β ,κ ,σ ,µ) = 0. Numerically solving Eq.

(4.27) shows that the upper Mach number limit approaches zero in the limit

σ → 0. As illustrated in Fig. 4.13, the existence domain becomes narrower as
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the thermal velocity is decreased. This make difficult to find positive solitons at

very low σ . In this figure, we see that moving into the Maxwellian distribution

(κ → ∞) will increase M1 and M2.
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5

Conclusions

In this research, we have investigated linear and nonlinear EAWs in a suprather-

mal plasma consisting of cool (or cold) electrons, in the presence of hot suprather-

mal electrons and mobile (or motionless) ions. We began with the one-fluid cold

(Tc = 0) model, and advanced toward the one-fluid warm (Tc 6= 0) in the next

step. Including mobile ions, we then approached the two-fluid warm model.

Using small deviations from the equilibrium state to first order, we have ob-

tained the linear dispersion relation for all three models. We use a Sagdeev

pseudopotential method to investigate nonlinear structures of the electrostatic

solitary waves. Our linear analysis has shown the weakly damped region for

the EAWs, where waves can propagate, under the influence of hot suprathermal

electron, thermal pressure, and ion inertia effects. Using nonlinear method, we

determine the propagation speed and the existence of stationary profile solitary

waves.

In the linear analysis, we found out that growing the suprathermal distri-

bution, the hot electron number density and temperature, i.e., decreasing κ,

increasing β = nh,0/nc,0, and decreasing σ = Tc/Th, stretch the weakly damped

region. We saw that the temperature effects dramatically change the dispersion

relation. But, the ion inertia effect is trivial.

We can see that the absolute maximum electrostatic potential increases with
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the rise in the suprathermal distribution (decreasing κ), the hot electron num-

ber density, the hot electron temperature (decreasing σ). Nonetheless, the mo-

bile ions have no essential role in the dynamics of supersonic negative solitary

waves. The thermal velocity classifies the Mach number under two regions,

namely supersonic (M >
√

3σ) and subsonic (M <
√

3σ) ranges. It is interest-

ing to see that the ion-fluid supports positive subsonic acoustic-solitary waves,

while the cool electron-fluid provides the negative supersonic solitons.

Finally, the nonlinear pseudopotential technique permits existence ranges

for acoustic-solitary waves. The existence domain for the negative potential

soliton becomes narrower with the increase in the suprathermal distribution,

the hot electron number density, and the temperature ratio σ . The ion-fluid

does not affect the negative soliton existence, but is necessary to maintain the

positive solitary wave structure. The results showed that the positive acoustic-

waves deeply depends on the suprathermal hot electron parameters (κ, density,

and temperature). We saw that the two-fluid cold model (Tc = 0) cannot predict

the positive solitary pulses. The existence domain for the positive potential

solitary becomes wider, as the hot electron number density and the temperature

ratio σ are increased, in contrast to the results for the negative solitary pulse.

To summarize, chapter 2 showed how the hot suprathermal electrons have

an effect on the weakly damped region and the propagation velocity range of

the EAWs. The bipolar electric field structures rise as the hot electron number

density is increased. Nonetheless, increasing the hot electron number density

narrows the propagation velocity range. In chapter 3, we saw how growing

the cool temperature increases the damped region, and decreases the bipolar

electric field amplitudes and the soliton existence. In chapter 4, we studied

the ion inertia effects on the EAWs, which does not affect much the negative

solitary structures, but providing positive solitons on the slow scale. We also

notice the positive acoustic solitary waves cannot be propagated in the two-

fluid cold model.
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To conclude, the electron temperature affects both negative and positive

solitary wave structures. It was found that the mobile ion component has a

trivial role in the supersonic (fast) region, but it appear to be very important

in the subsonic (slow) region, leading to a novel acoustic wave. In the linear

methodology, the ion inertia effect is also negligible. The ion temperature can

be fully included to investigate any different possibilities (see Appendix B), but

it is beyond the scope of this work.
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Appendix B

An Alternative to Two-Fluid Model:

Ion Temperature Effects

We may also consider the ion thermal pressure. Due to the thermal pressure

of the ions, the equation of momentum contains an extra term (compare to Eq.

(4.2))
∂ui

∂ t
+ui

∂ui

∂x
=−Ze

mi

∂φ

∂x
− 1

mini

∂Pi

∂x
, (B.1)

The pressure of the ions is given by

∂Pi

∂ t
+ui

∂Pi

∂x
+ γPi

∂ui

∂x
= 0, (B.2)

where Pi is the thermal pressure of the ions, in the one-dimensional model γ = 3.

We define the temperature ratio of the ions to the hot electrons as σ̃ = Ti/Th.

The normalized forms of Eqs. (B.1)–(B.2) are written as (Z = 1 and γ = 3):

∂ ũ

∂ t
+ ũ

∂ ũ

∂x
=−µ

∂φ

∂x
− µσ̃

ñ

∂ P̃

∂x
(B.3)

∂ P̃

∂ t
+ ũ

∂ P̃

∂x
+3P̃

∂ ũ

∂x
= 0, (B.4)

The density ni are normalized with the unperturbed cool density (nc,0), the

velocity ui with the hot electron thermal velocity (ch,s = (kBTh/me)
1/2), time with

the inverse cool electron plasma frequency, ω−1
pc , where ωpc = (nc,0e2/ε0me)

1/2,
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Figure B.1: The existence domains for stationary solitary structures. The quan-

tities F1 for 1-fuild warm model (solid), 2-fluid warm model for Ti = 0 (dot-

dashed), and 2-fluid cold model for Ti 6= 0 (dashed curve), are defined in (3.26),

(4.23), and (B.8) respectively. Here, κ = 3, β = 3, σ = 0.02, σ̃ = 0.04, Z = 1,

and µ = 1/1836.

length with the characteristic length scale, λ0 = (ε0kBTh/nc,0e2)1/2, the wave

potential φ with kBTh/e, and the pressure Pi with nc,0kBTi.

Integrating Eqs. (B.3) and (B.4) yield

ũ = M−
√

M2−2µφ −3µσ̃ [ñ2 − (1+β )2], P̃ = ñ3. (B.5)

Combining Eqs. (4.16a)–(B.5), we get

ñ =
1

2

√
(
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√
3µσ̃

)2−2µφ

3µσ̃
± 1

2

√
(
M− (1+β )

√
3µσ̃

)2−2µφ

3µσ̃
(B.6)
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Therefore, the Sagdeev pseudopotential (4.21) is rewritten as

Ψ4(φ ,M,β ,κ ,σ , σ̃ ,µ) =−β




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− 1
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6µ
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√

3µσ̃
)2

−2µφ

]3/2

(B.7)

In the limit σ̃ → 0, we get Eq. (4.21).

For the existence of acoustic-solitary waves moving at velocity M, we require

Ψ′
4(φ ,M,β ,κ ,σ , σ̃ ,µ)|φ=0 = 0 and F1(M,β ,κ ,σ , σ̃,µ) ≡ −Ψ′′

4(φ ,M,β ,κ ,σ , σ̃ ,µ)

|φ=0 > 0. Here, the function F1(M) reads as

F1(M,β ,κ ,σ , σ̃ ,µ) =
β (κ − 1

2
)

κ − 3
2

− 1

M2 −3σ
− (1+β )µ

M2−(1+β )23µσ̃
. (B.8)

where (1+β )
√

3µσ̃ is the normalized ion thermal velocity.

We see that Eq. (B.8) contains an extra term corresponding to the ion ther-

mal pressure (compare to Eq. (4.23)). The ion thermal velocity classifies

the Mach number under two regions, namely “cool ion” (M > (1+β )
√

3µσ̃)

and “hot ion” (M < (1+β )
√

3µσ̃), in the sense that the thermal velocity is

smaller/larger than M, respectively. As illustrated in Fig. B.1, including the

hot ion component (Ti 6= 0) divides the propagation speed into three ranges.

Nonetheless, there are two existence ranges for solitary waves as § 4. The exis-

tence range for positive acoustic-solitary waves has been effectively changed.
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Appendix C

Solving Biquadratic Equation

The quartic equation takes the form as

Q(x) = a4x4 +a3x3 +a2x2 +a1x+a0. (C.1)

If a3 = a1 = 0, then we get the biquadratic equation

Q(x) = a4x4 +a2x2 +a0. (C.2)

Let assume x =
√

x1 ±
√

x2, we get x2 = x1 + x2 ±2
√

x1x2, and

x1 + x2 =− a2

2a4
, x1 − x2 =

√
a0

a4
. (C.3)

We then find the following solution to the biquadratic equation (C.2):

x =

√

− a2

4a4
+

1

2

√
a0

a4
±
√

− a2

4a4
− 1

2

√
a0

a4
. (C.4)
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