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Response to reviewers

Reviewers comments are in black, our responses are in red

Reviewer 1

First, the largest issue I see is still minor. The new LiDAR data in the Guatemalan 
Biosphere Reserve is given a lot of credit (page 8 lines 114-117). However, that project 
has yet to produce a peer reviewed article on their dataset. While Inomata works in 
Guatemala (and is a good reference) he was not part of that LiDAR consortium. The 
Guatemalan data has made some drastic statements, but until they manage to pass 
peer review, I might not give them so much credit ... yet. While the data will certainly 
impact interpretations, it does a disservice to other scholars in the region who have 
already used LiDAR data to advance our understanding of the Maya (such as Prufer 
and Thompson already cited later in the paper). I could recommend other citations here 
as well, but they aren't absolutely necessary to the paper. Instead, on page 8 lines 114-
117. Would you consider separating the list of LiDAR study areas? Most of those 
papers do not cover Guatemalan LiDAR data, so instead I would recommend something 
along the lines of this in place of "see also", "... as has the past decade of LiDAR use 
worldwide" followed by the non-Guatemalan LiDAR citations. This will at least highlight 
the impact of previous research along with the new research out of Guatemala, even if 
Inomata's article is from a separate LiDAR project.

The project from Guatemala was finally published in October (Canuto et al, 2018) which we 
have now cited in conjunction with the other references. With the addition of this reference, we 
have also modified the citations on page 8 with accordance to the suggestions of the reviewer. 
After citing the Guatemala case study, we include “This is accompanied by a decade of LiDAR 
studies worldwide” followed by the string of related citations.

As an addition to Evans on page 4 line 62, I would also recommend citing the following 
reference, which describes LiDAR use in archaeology in a historical context.

We have added the reference to Chase et al. (2017) as suggested by the reviewer.

On page 8 line 118. There are algorithms used for LiDAR analysis that create 
alternative visualizations. As such, could you change the line to "Two general classes of 
automated detection algorithms exist ..."

We have rephrased the sentence as suggested by the reviewer.

On page 15, line 255. Could you please provide the specific inputs used for the Focal 
Statistics tool (shape and size used probably) and include the version of ArcGIS used 
for this analysis?

The inputs and the version of ArcGIS have been added to the sentence.

On page 26-27, lines 393-403. What is the minimum feature size that you would expect 
to be able to identify through the four methods provided? How does the quality of the 
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input dataset/DEM affect the size of detectable objects? If this comment is too difficult to 
answer in text, then absolutely feel free to ignore it.

Our methods and datasets allow us to detect “features as small as a few meters across and about 
half-a-meter tall” (lines 403-404). The second question regarding quality and its effect on the 
detection of different sized objects is addressed in the following paragraph on lines 409-410 
“Increasing the ability to detect smaller features requires higher resolution dataset: greater the 
spatial resolution, the smaller the objects that can be detected.”

Reviewer 2

 - LINE 26: The Howe,2014 reference may not be the most authoritative source to 
estimate the number of mounds in the eastern US. Just saying "thousands" get the 
point across. If you would like to suggest a higher number perhaps some additional 
citations might bolster this claim. 

We have changed the sentence to say “thousands” as suggested by the reviewer and we have 
added several other sources in addition to Howe (2014).

LINE 61,62: "Active sensors, such as light detecting and ranging (LiDAR), offer maps of 
topography (Evans et al., 2013)" It's not just the ability to map the terrain, but a non-bias 
topographic mapping technique, which is substantially different (and much quicker) than 
traditional total station mapping.

We have rephrased the sentence to include this information. It now reads: “Active sensors, such 
as light detecting and ranging (LiDAR), provide a mapping technique that permits direct 
measurements of surface topography that is faster, more systematic, and more accurate than 
other forms of manual mapping.”

LINE 214: In the section on Template Matching it appears that the target objects are 
switched to only pre-contact mounds? Are the shell rings and other archaeological 
features eschewed for this methodology?

We have rephrased the statement to include the fact that rings are included in this template 
dataset. Both shell rings and earthen/shell mound features in the study areas are included in these 
templates. The statement now reads as “We created templates using a selection of 29 mound and 
ring features using characteristics of elevation, slope, focal statistics, and openness.” (lines 218-
220).

GENERAL: Standardize formatting in all figures. Legends, scales and text font are not 
consistent. 

The formatting of all legends and fonts has been standardized for all figures. In instances of 
different scaling for different panels of a figure, multiple scale-bars are used to indicate the 
difference.



10/24/18 Davis, Lipo, and Sanger

GENERAL: Would be interesting to provide a comparison between the computer 
algorithmic detection and manual detection for at least one of the areas. Does a human 
operator provide fewer false positives or would they miss a number of features the 
algorithms detect?

We added a paragraph to our discussion/conclusion section which briefly goes over some 
comparisons between manual evaluation and automatic evaluation in this area (lines 419-429). 
Most of the features used for our template process were identified via manual evaluation in the 
LiDAR datasets. But within these same areas in Beaufort County the automated algorithms 
identified many other confirmed sites that were not picked out via manual means.
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Highlights

 4 different automatic detection methods are examined

 Segmentation, inverse depression analysis, template matching, combined method

 Most effective method of mound detection combines segmentation and template 

matching

 Inverse Depression Analysis is highly effective with several hundred iterations

 Template matching can reduce false positives resulting from natural features

 A previously unknown shell ring is identified using the proposed OBIA approach
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1 Abstract

2 One persistent archaeological challenge is the generation of systematic documentation for the 

3 extant archaeological record at the scale of landscapes. Often our information for landscapes is 

4 the result of haphazard and patchy surveys that stem from opportunistic and historic efforts. 

5 Consequently, overall knowledge of some regions is the product of ad hoc survey area 

6 delineation, degree of accessibility, effective ground visibility, and the fraction of areas that have 

7 survived destruction from development.  These factors subsequently contribute unknown biases 

8 to our understanding of chronology, settlements patterns, interaction, and exchange. Aerial 

9 remote sensing offers one potential solution for improving our knowledge of landscapes. With 

10 sensors that include LiDAR, remote sensing can identify archaeological features that are 

11 otherwise obscured by vegetation. Object-based image analyses (OBIA) of remote sensing data 

12 hold particular promise to facilitate regional analyses thorough the automation of archaeological 

13 feature recognition. Here, we explore four OBIA algorithms for artificial mound feature 

14 detection using LiDAR from Beaufort County, South Carolina: multiresolution segmentation, 

15 inverse depression analysis, template matching, and a newly designed algorithm that combines 

16 elements of segmentation and template matching. While no single algorithm proved to be 

17 consistently superior to the others, a combination of methods is shown to be the most effective 

18 for detecting archaeological features.

19

20 Keywords: Object based image analysis, template matching, automatic feature identification, 
21 remote sensing, shell rings, LiDAR, American Southeast

22

23
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24 1.1 INTRODUCTION

25 At the time of European arrival into Eastern North America, the archaeological record 

26 included thousands of intact earth and shell mound structures (Anderson, 2012; Howe, 2014; 

27 Thomas, 1894). Beginning in the 19th century, these deposits became the focus of archaeological 

28 research due to their ability to produce artifacts that shed light on cultural affinity and 

29 chronology (Lyman et al. 1997; e.g., Claflin, 1931; Fairbanks, 1942; Ford and Willey, 1941; 

30 Jones et al., 1933; Moore, 1894a, 1894b, 1899; Moorehead, 1891; Putnam, 1875; Squier and 

31 Davis, 1848; Swallow, 1858; Wauchope, 1948; Willey, 1939). Over time, archaeological interest 

32 in mounds has grown to include studies of pre-contact technology, diet, social behavior, trade, 

33 exchange, interaction, and settlement (e.g., Anderson, 2004; Caldwell, 1952; Calmes, 1967; 

34 Claassen, 1986, 1991, 2010; Crusoe and DePratter, 1976; Marquardt, 2010; Matteson, 1960; 

35 Russo, 2004, 2006; Thompson et al., 2011; Trinkley, 1985). 

36 Our knowledge of the distribution of mound features, however, tends to be biased 

37 towards some areas more than others. These areas may come from regions that have seen a 

38 greater number of field studies (e.g., Michie’s (1980) survey of the coastal plains of the Port 

39 Royal Sound) but also include those that are easier to survey due to a lack of substantial ground 

40 cover such as in areas of beaches and shallow intertidal zones (South, 1960) as well as piedmonts 

41 and coastal plains (House and Ballinger, 1976). Specifically, environments that are dominated by 

42 heavy vegetation (e.g., woodlands, bayous, and coastal marshes) are often missing from our 

43 knowledge of the record as they are difficult to evaluate using systematic pedestrian tactics. The 

44 most recent example of this lapse in knowledge is the discovery of thousands of monumental 

45 complexes in the dense forests of Guatemala (Canuto et al., 2018). Prior to the use of LiDAR 
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46 survey, these archaeological features were unknown, and their discovery may rewrite the history 

47 of this area. 

48 This aspect of past archaeological surveys raises the possibility that our knowledge of the 

49 record is biased towards features that appear in the best cleared and most visible landscapes 

50 (Banning et al., 2017; Bintliff, 2000; Bintliff et al., 1999; Hirth, 1978; Nance 1979; Stark and 

51 Garraty, 2008). The potential for increasing our understanding of the archaeological record is 

52 likely greatest in the exploration of areas that have seen little systematic observation.  Given that 

53 unknown deposits are often least visited and impacted, those that remain hidden in vegetation 

54 potentially hold some of the most promising opportunities for new archaeological discovery. To 

55 address the challenges of large-scale documentation presented by heavily-vegetated landscapes, 

56 and to aid in the study of these poorly studied regions, new kinds of techniques are required. 

57 Remote sensing using computational algorithms for automatic feature detection offers 

58 one promising solution. High-resolution aerial imagery provides detailed information about the 

59 structure of landscapes. Multispectral imagery expands the wavelengths that can be used for 

60 sensing to include bands that are sensitive to vegetation and sediment composition (Jensen, 

61 2007). Active sensors, such as light detecting and ranging (LiDAR), provide a mapping 

62 technique that permits direct measurements of surface topography that is faster, more systematic, 

63 and more accurate than other forms of manual mapping (Chase et al., 2017; Evans et al., 2013). 

64 New computational methods greatly facilitate the use of these many classes of data as they can 

65 be configured to automatically identify features of interest (Freeland et al., 2016; Magnini et al., 

66 2016; Sevara et al., 2016; Trier et al., 2015). Object-based image analysis (OBIA) covers a broad 

67 array of promising algorithms for archaeological prospection (Sevara et al., 2016). These 
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68 compositional techniques include shape templates (Kvamme, 2013; Trier et al., 2008), machine 

69 learning algorithms (Wu et al., 2015, 2016), and image segmentation (Witharana et al., 2018). 

70 Here, we evaluate an application of four OBIA methods – multiresolution segmentation, 

71 inverse depression analysis, template matching, and a method combining segmentation and 

72 template matching – as tools for identifying artificial mounds and rings.  In our example 

73 applications, we make use of LiDAR data from coastal South Carolina. Our goal is to compare 

74 the results obtained by implementing these methods on a single shared set of data.  In this way, 

75 the results can provide suggestions for the best practices in the use of these remote sensing tools 

76 for documenting the archaeological record. 

77 1.2 Study Area

78 The coastal plains of South Carolina contain a rich archaeological record but have been 

79 subjected to only limited ground surveys due to the prominence of forests and bayous (Anderson 

80 et al., 2017). Beaufort County, South Carolina, in particular, contains one of the largest number 

81 of recognized archaeological deposits in the state, a significant number of which are mound 

82 features (Frierson, 2000; Stephenson, 1971). A majority of the area, however, is densely 

83 vegetated and only limited systematic surface surveys having been conducted (e.g., Michie, 

84 1980; South, 1960, 1976). 

85 The lack of systematic surveys in the region is more than an academic issue. By 2040, 

86 warming due to climate change will result in the submergence of 30,000 acres of presently dry 

87 land in this area (NOAA, 2015; see also Anderson et al., 2017). The effects of sea-level change, 

88 combined with recent urban development and population increases will potentially result in the 

89 loss of many archaeological deposits before they can be recognized. In this way, the application 
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90 of new approaches for rapid assessment of the otherwise hidden landscape of Beaufort County is 

91 particularly urgent. 

92 To evaluate the potential of new remote sensing approaches, we chose three study areas 

93 in Beaufort County (Figure 1). Areas 1 (Victoria Bluff Heritage Preserve) and 2 (Pinckney Island 

94 Wildlife Refuge) consist of a total of 25 km2 of forested land. Area 3 is composed of 3 km2 of 

95 land on Hilton Head Island. These areas were chosen for evaluation based on the presence of 

96 known features, public access, and the availability of high resolution remote sensing data. 
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97

98 Figure 1: Study Area in Beaufort County, SC (Color online).
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99 2.1 OBJECT-BASED IMAGE ANALYSIS (OBIA)

100 Aerial imagery has long provided archaeologists a source of information for studying 

101 archaeological features across landscapes in an efficient and cost-effective fashion (e.g., Agache, 

102 1968; Bradford, 1956; Buettner-Januch, 1954; Campbell, 1981; Capper, 1907; Drager, 1983; 

103 Engelbach, 1929; Harp, 1966; Lindbergh, 1929a, 1929b; Madry and Crumley, 1990; McKinley, 

104 1921; Parrington, 1983; Schaedel, 1951; Williams-Hunt, 1950). While visible light cameras were 

105 the first sensors used by archaeologists on aerial platforms, new instruments have expanded the 

106 ability of researchers to remotely sense landscapes using wavelengths across the electromagnetic 

107 spectrum. These new sensors can be passive – as in the case of multispectral cameras – or active 

108 – as in the case of light detecting and ranging (LiDAR) data.  

109 LiDAR data are produced using a laser and sensor that records the return speeds of pulses 

110 of light that are reflected off of distant surfaces. LiDAR data often contain responses from 

111 multiple surfaces and can therefore provide information about feature elevations that are 

112 otherwise obscured by vegetative canopies. Consequently, LiDAR has proven to be particularly 

113 useful for detecting architectural structures (Eskew, 2008; Freeland et al., 2016; Johnson and 

114 Ouimet, 2014; Krasinski et al., 2016; Magnini et al., 2016; Prufer et al., 2015; Riley, 2009; 

115 Thompson and Prufer, 2015; Trier and Pilø, 2012; Trier and Zortea, 2012). Similar to the 

116 pioneering work in Guatemala (Canuto et al., 2018), there has been over a decade of productive 

117 studies using LiDAR that have taken place around the world (e.g., Inomata et al. 2018; Chase et 

118 al., 2014; Evans et al., 2013; Johnson and Oiumet, 2018; Wieshample et al., 2011; Witharana et 

119 al., 2018). 

120 Two general classes of automated detection algorithms exist for analyzing remote sensing 

121 data: pixel- and object-based approaches. Pixel-based algorithms rely on spectral values encoded 
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122 in raster data. These approaches identify regions of data that match specific spectral values 

123 associated with targets of interest. Object-based image algorithms (OBIA), in contrast, use 

124 morphological characteristics such as texture, shape, and size – in addition to spectral values – to 

125 divide images into recognizable components with similar qualities. This feature of OBIA allows 

126 archaeologists to use attributes for identification that are often distinctive of cultural forms: 

127 shape, size, and spatial organization. With this ability, research over the past 15 years has 

128 demonstrated the potential of OBIA to efficiently identify anthropogenic structures from remote 

129 sensing data (e.g., De Laet et al., 2007; Larsen et al., 2008; Riley, 2009; Trier et al., 2015; Sevara 

130 et al., 2016; also see Davis, 2018 for a review of this literature). 

131 2.2 Segmentation 

132 Segmentation is a process that groups pixels into spectrally-similar segments. Software 

133 algorithms can then characterize these segments in terms of their geometric and textural 

134 properties. In the case of LiDAR data, these objects represent distinct topographic land forms on 

135 the ground. There are many forms of segmentation, but one of the most common processes used 

136 by archaeologists is multiresolution segmentation. Multiresolution segmentation adds to this 

137 process by iteratively dividing data into segments based on additional morphological differences 

138 such as shape, size, and texture (Magnini et al., 2016). For this reason, multiresolution 

139 segmentation provides greater ability to discriminate features of interest than segmentation 

140 methods that rely on just one set of criteria (Mao and Jing, 1992).

141 2.3 Inverse Depression Analysis 

142 OBIA methods can focus on the use of hydrological depression algorithms (Lindsay and 

143 Creed, 2006; Wu et al., 2015, 2016) to identify archaeological mound features (Freeland et al., 
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144 2016). This process requires the creation of an “inverse raster” in which a DEM is inverted so 

145 that mounds are represented as depressions. Freeland et al. (2016) has demonstrated this method 

146 in a study of a landscape in Tonga, revealing thousands of mounded features.

147 Stochastic depression analysis (SDA) is one algorithm that uses Monte Carlo simulation 

148 to map topographic depressions by evaluating morphological uncertainty (Lindsay and Creed, 

149 2006). The method works by estimating the likelihood that a given area contains an elevation 

150 change based on variability in topography. The benefit of SDA is that it highlights small 

151 elevation changes due to its sensitivity to topographic differences in elevation data. Here, we 

152 utilize an inversed version of SDA to identify mounded features in South Carolina.  We initially 

153 process LiDAR data following Freeland et al. (2016) by creating an inversed DEM. We then 

154 apply an SDA algorithm and classify the results using morphological parameters such as 

155 compactness and mound size. This approach allows us to co-opt algorithms traditionally reserved 

156 for hydrological modeling for the detection of archaeological deposits.

157 2.4 Template Matching 

158 OBIA methods that employ template matching (TM) use statistical probabilities 

159 generated from aggregated examples of features that are characterized by pattern, texture, and 

160 shape. These probabilities form templates that are systematically and statistically used as 

161 comparisons to sub-sections of image data. Matches with templates are determined by 

162 identifying patterns in data that fall within specified statistical limits established by the template. 

163 The archaeological utility of template matching is well-demonstrated (e.g., Kvamme, 

164 2013; Schneider et al., 2015; Trier et al., 2008, 2015; Trier and Zortea, 2012; Trier and Pilø, 

165 2012). One problem with template matching based approaches, however, is its tendency to 
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166 produce false positive and negative results.  Reducing false positives requires careful 

167 construction of templates that narrowly define anthropogenic features.  However, this step comes 

168 at the expense of an increased number of false negatives. The advantage of template matching, 

169 however, is that the statistical classifiers provide confidence intervals for detected objects, 

170 allowing one to quantitatively assess degrees of matching. 

171 3.1 MATERIALS AND METHODS

172 In our evaluation of OBIA approaches for detecting mound features in heavily forested 

173 regions, we analyzed the same set of LiDAR data for each of the three study areas. These data 

174 come from the National Oceanic and Atmospheric Administration (NOAA)1 and were created to 

175 plan for flood control and monitor coastal erosion. The raw data are available as processed 

176 Digital Elevation Models (DEMs) that have a spatial resolution of 1.2 meters, a resolution 

177 suitable for architecture-scaled feature analysis (see Beck et al., 2005).  Using these data, we 

178 conducted analyses using (1) multiresolution segmentation, (2) Inverse Depression Analysis 

179 (IDA), (3) Template Matching (TM), and (4) a combined segmentation and TM approach. All of 

180 our analyses were conducted using a combination of eCognition (Trimble, 2016), WhiteBox 

181 GAT (Lindsay, 2016) and ArcGIS (ESRI, 2017). 

182 3.1 Multiresolution Segmentation Analysis

183 Following Magnini et al. (2016), we utilized a multiresolution segmentation process and 

184 selected segments of the LiDAR data that met circularity, asymmetry and compactness criteria 

185 stipulated by our summary of known features for the study area (Table 1). Asymmetry is 

1 https://coast.noaa.gov/digitalcoast/data/coastallidar

https://coast.noaa.gov/digitalcoast/data/coastallidar
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186 particularly effective for isolating archaeological features, as it is generally low in anthropogenic 

187 structures and high in naturally occurring landforms (Kvamme, 2013:55).

188 Table 1: Parameters used in multiresolution segmentation of the Beaufort County LiDAR data.

Parameter Threshold

Area <=150 m2

Circularity >= 0.6
Asymmetry 0 – 0.3
Compactness >= 1.0

189 To minimize false positive identifications, we compared the location of potential features 

190 with United States Geological Survey (USGS) land-use maps2 and roadway shapefiles produced 

191 by the South Carolina Department of Transportation (DOT).3 We eliminated those locations that 

192 appeared on “developed” or “disturbed” areas and within 10-meters of a roadway.4 Next, we 

193 created a raster that represented the differences between local elevation and maximum 

194 neighborhood values calculated as focal statistics. Focal statistics help to highlight local 

195 elevation changes that would signify a mound feature. We then restricted our results to those 

196 features have a local positive elevation difference of half a meter or greater. Based on a review of 

197 known features in the area, topographic rises that are less than half-a-meter of relief are rarely 

198 associated with anthropogenic mounds or rings (Russo, 2006). Our process resulted in the 

199 identification of 2,490 potential features. Among these detections was a previously 

200 undocumented shell ring and earthen mound.

201 3.2 Inverse Stochastic Depression Analysis (IDA)

2 Downloaded from the South Carolina Department of Natural Resources website (http://www.dnr.sc.gov)
3 Downloaded from http://www.gis.sc.gov/ 
4 We chose the buffer sizes based on standard road widths in the U.S.: 4-meters for single lane roads, 8-meters for 
two-lane, and 16-meters for 4-lane highways. For the buffers, we used 2 additional meters to serve as a buffer from 
the edges of the roads.

http://www.dnr.sc.gov
http://www.gis.sc.gov/
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202 Here, we followed a strategy developed by Freeland et al. (2016) who demonstrated that 

203 depression analysis combined with morphometric criteria (size, shape, area, elevation and 

204 neighborhood) is effective in isolating mound structures. We created an inverse DEM using the 

205 equation 

206 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 = ((𝑟 ‒ 𝑍𝑚𝑎𝑥) × ( ‒ 1)) + 𝑍𝑚𝑖𝑛

207 where r = DEM raster, Zmax = maximum elevation, and Zmin = minimum elevation. The results of 

208 the SDA analyses depend on the number of iterations that are used to process the data.  In each 

209 iteration the assumption for topographic uncertainty is changed slightly to produce slightly 

210 different outcomes, and as the number of iterations increases, the algorithm produces more 

211 refined and consistent results.  Using the SDA tool in Whitebox GAT (Lindsay, 2016) we 

212 compared the results of our analyses using 100, 200, and 300 iterations.5  We filtered the result 

213 by then selecting only those features that were greater than 15m and less than 250m in diameter, 

214 the range known for rings and mounds in the region (Gibson, 1994; Russo, 2006; Walker, 2016). 

215 Finally, we excluded features that appeared on USGS land-use maps in areas that were 

216 designated as “disturbed”, “developed”, or “open water”, and those that were within 10-meters of 

217 a roadway and 20-meters of a major highway. This process produced 5,422 potential features.

218 3.3 Template Matching (TM) 

219 In our evaluation of template matching we followed steps in Figure 2.  We created 

220 templates using a selection of 29 mound and ring features using characteristics of elevation, 

221 slope, focal statistics, and openness. Slope has been shown to be one of the most effective 

5 The number of iterations used for analysis impacts the amount of time required and depends on the processing 
capabilities of the computers used for data processing. Using 100 iterations for the analysis of our study areas 
required 36 hours. 1000 iterations would have taken at least a month of processing. 
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222 methods for identifying mound features as it shows a strong contrast between flat and uneven 

223 surfaces, highlighting the outlines of mounds (e.g., Larson et al., 2017; Podobnikar, 2012; Prufer 

224 et al., 2015; Riley, 2009; Thompson and Prufer, 2015). We used focal statistics to highlight 

225 major changes in elevation that suggest the presence of topographic anomalies, similarly to the 

226 processes mentioned above. Openness is a parameter that measures “topographic dominance” of 

227 landforms (Yokoyama et al., 2002) and provides shade-free visualization for smaller topographic 

228 anomalies.6 Openness comes in two forms: positive and negative. Positive openness measures 

229 the degree of concavity and negative openness measures the degree of convexity of a feature on a 

230 landscape. 

231

Create DEM from 
LiDAR point Data

create raster 
sets based off 

DEM
• Topographic 

openness
• Slope
• Focal 
Statistics

Create 
templates 
based on 
DEM and 

rasters

create 
negative 
templates 
based on 
DEM and 

rasters

Run template 
matching 

algorithm in 
eCognition and 
cross reference 

results with land-
use maps

Limit 
remaining 

results using 
negative 
templates

Assess 
success of 
algorithm 

and fine tune

232 Figure 2: Steps involved in the use of template matching for the identification of mound features. 

233

234 To create the templates, we used a sample of six known mound features that are recorded 

235 in the South Carolina Archaeological Archives and 23 suspected features that were identified 

236 manually using existing LiDAR data. These examples served as the basis for setting the 

237 statistical limits for each of our templates.7 Our use of multiple classes of data (elevation, slope, 

238 openness, and focal statistics) to create templates enables us to compare results using different 

239 characteristics. Following this process, we created 15 templates.8 

6 We calculated topographic openness using SAGA (Conrad et al., 2015)
7 The templates are available from the Open Repository at Binghamton University 
(https://orb.binghamton.edu/anthro_data/3) 
8 We used the Template Editor tool in eCognition to create all of the templates
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240 We also created 20 negative templates to represent those features that are topographically 

241 distinct but are not pre-contact mounds. Recent land disturbance, for example, might produce 

242 topographic features that could be confused as a prehistoric mound.  To create these negative 

243 templates, we used 393 topographically distinct features that are not archaeological in their 

244 origin (e.g., linear contemporary features, building imprints, and river boundaries). 

245 Once created, we used eCognition to apply the templates to the LiDAR data.  This step 

246 produced over 10,000 potential identifications. Like the other two algorithms, we eliminated 

247 results that fell on land identified by USGS land-use maps as “developed” or “disturbed”, those 

248 that were located within waterbodies, and those that fell within 10-meters of roadways and 20 

249 meters of major highways. We also rejected all results that the algorithm calculated as at least 

250 75% likely to be a false positive based on their similarity to our negative templates. The final 

251 results included only those detections that were calculated by the algorithm to be at least 60% 

252 “most statistically likely.”  The final template matching process produced 10 potential features. 

253 3.4: Combined TM and Segmentation Method

254 In order to evaluate the degree to which the strengths of each OBIA method can be 

255 combined to produce superior results, we also developed a multidimensional algorithm that 

256 includes segmentation and template matching steps (see Davis et al., 2018). This algorithm 

257 begins with template matching to create correlation-coefficient maps of potential features. Then, 

258 we used multiresolution segmentation on these results.  We subsequently isolated those features 

259 that had a local elevation difference of between 0.5 and 5 meters from the surrounding area 

260 (Russo, 2006). We calculated neighborhood changes in elevation using the focal statistics tool 

261 (shape = circle, height and width = 5) in ArcMap 10.5 (ESRI 2017). We rejected all results that 
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262 occur on developed land, that are located in areas close to roadways, and that have slopes that are 

263 less than five or greater than 50 degrees.

264 Next, we superimposed the remaining results with the correlation rasters that we 

265 produced during the template matching process. As the templates are used to iteratively scan 

266 sections of the LiDAR data, each section examined is assigned a positive and negative 

267 correlation coefficient value that corresponds to the overall match of a location to the positive 

268 and negative templates. We used the negative correlation raster to eliminate results that were 

269 identified as at least 75% likely to be false positives. Lastly, we created a new raster by 

270 subtracting the negative correlation coefficient from the positive correlation coefficient. Areas of 

271 this raster containing negative values indicate strong likelihoods of false identifications, as they 

272 closely correlate with non-mound features in the negative template. As such, we rejected any 

273 results that overlap a portion of this raster containing negative values. This process left 10 

274 potential features.

275 3.5 Ground Survey

276 Following our OBIA analyses, we chose 22 locations to visit on the ground to evaluate 

277 the degree to which the algorithmic detection correctly identified anthropogenic features (Figure 

278 3). All of these features are located on public land and were accessible for pedestrian survey. 
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279
280 Figure 3: Features evaluated during ground surveys.  The inset provides detail of an area of 
281 Study Area 2 (marked by the black box) where a number of features were found in close 
282 proximity (Color online).
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283 4.1 RESULTS

284 The results of each OBIA analysis shows that there are distinct differences in the yield of 

285 potential features depending on the approach used (Tables 2 and 3). Areas 1 and 2 (see Figure 1) 

286 provide useful environments within which to test each OBIA method. Within Area 2, the 

287 combined method did not identify any features, indicating that it cannot identify midden 

288 structures effectively, as many archaeological middens are present on Pinckney Island (Charles, 

289 1984; Kanaski, 1997; Trinkley, 1981). Area 3 (Figure 1) encompasses publicly available land on 

290 Hilton Head Island, some of which is highly developed. The number of features identified is 

291 substantial given its small size (~3 km2) and indicates a high level of false positive 

292 identifications in developed locations. The template matching and combined approaches only 

293 identify a handful of potential sites, suggesting their capability of reducing false identifications.

294 Table 2: Total detections made by each OBIA technique. 

OBIA Method Total Detections 

Study Area 1

Total Detections 

Study Area 2

Total Detections 

Study Area 3

Segmentation 1,399 1,091 380

IDA (100 iterations) 3,332 1,677 413

IDA (200 iterations) 1,582 1,829 807

IDA (300 iterations) 1,093 2,485 817

Template Matching 6 3 3

Combined 7 0 3

295

296 The segmentation approach was particularly effective in identifying mounds, yet also 

297 produced many results that are likely false positives (Figure 4). Using shapefiles provided by the 
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298 South Carolina SHPO, we determined that 384 detections made by segmentation are located on 

299 84 previously surveyed archaeological sites on Pinckney Island (Supplemental Table 1). 

300 Significantly, the segmentation analysis identified a new mound feature that is previously 

301 unrecorded (this feature was also identified by TM and IDA but was missed by the combined 

302 method). 

303 Table 3: OBIA Method Results from Field Survey

304

OBIA 
Method

Sites 
Surveyed

Accurate 
identifications 
determined by 
field survey

False 
Positives 

determined 
by field 
survey

Rate of positive 
identification/false 
positives based on 

field survey

Total 
Detections 
in Study 

Areas

Potential 
new 

mound 
features

Segmentation 
Classification

12 6 6* 1:1 2,490 1,245

IDA (100 
iterations)

14 5 9** 5:9 5,422 3,012

TM 6 3 3 1:1 10 5
Combined 

(segmentation 
and TM)

4 4 0 1:0 10 10

*   Two sites were inconclusive
** One site was inconclusive

305 IDA proved successful in identifying pre-contact mounds, including shell rings (Figure 

306 5). Nonetheless, a common issue with this method is the plethora of false positive results that 

307 occur due to natural topographic changes. Some of the limitations of IDA in feature detection, 

308 however, are likely due to resolution limits of the LiDAR DEM that we used, and the number of 

309 iterations performed on the analysis. Using higher-resolution LiDAR as well as greater 

310 processing hardware may improve the relative effectiveness of IDA in detecting features. 

311 To evaluate the degree to which the amount of processing can improve our results, we 

312 conducted our IDA analyses with 200, and 300 iterations. In all instances, the increase in 

313 iterations correlates with an improvement in archaeological feature detection (Tables 4 and 5). In 
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314 all three study areas, false positive results identified using 100 iterations and surveyed were not 

315 reidentified using 300 iterations (Table 5). 

316 Looking at Area 2 (Pinckney Island), we compared identified results to known 

317 archaeological sites in this area in order to gauge the accuracy of IDA in identifying previously 

318 detected archaeological deposits (Table 4; also see Supplemental Table 1). We chose this area 

319 because of its history of extensive archaeological surveys. In addition to increased iterations, it is 

320 possible that with higher resolution DEMs better discrimination of topographic features can be 

321 obtained (Vaze et al., 2010). 

322 Table 4: Change in detection accuracy for known archaeological deposits in Area 2 using 
323 increasing numbers of iterations. As the number of iterations increases, so too does the number 
324 of identified archaeological deposits.

Number of 
Iterations

Number of 
Identified 
Archaeological 
Deposits

100 40

200 59

300 60

325 Table 5: Overall accuracy for IDA using increasing numbers of iterations. As the number of 
326 iterations increases, the number of false positive detections decreases, and the overall accuracy 
327 increases.

Number of 
Iterations

True Positive 
Identifications 

(Determined by 
ground-survey)

False Positive 
Identifications 

(Determined by 
ground-survey)

Total 
Detections

Overall 
Accuracy

100 5 9 5,422 35.71%

200 3 3 4,218 50.00%

300 5 2 4,395 71.43%

328
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329
330 Figure 4: Segmentation results. A: Study Area 1 results. The majority of the identifications are 
331 false positives caused by natural phenomena. B: Study Area 2 results. C: Study Area 3 results. 
332 The majority of identifications are explained as natural levee features that line the bayous. 
333 Several other identifications in this scene are housing footprints or other recent landscape 
334 disturbances. Highly developed areas tend to show numerous false positive results (Color 
335 online).
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336
337 Figure 5: Results of IDA analysis using 300 iterations. A: Study Area 1 results. In addition to 
338 several mounds, IDA also identified a new shell ring site in this area. B: Study Area 2 results. C: 
339 Study Area 3 results. Many results in all areas are the result of natural topographic changes 
340 and/or modern disturbance (Color online).

341 In contrast to segmentation and IDA, template matching only identified features that were 

342 anthropogenic in origin, though the method missed a shell-ring that was located by segmentation 

343 (Figures 6). Finally, our combined approach that includes template matching and segmentation 

344 improved on all of these results by retaining only the positively identified features (see Figure 7).

345
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346
347 Figure 6: Results of the template matching algorithm on the three study areas. A: Study Area 1 
348 results. The algorithm failed to identify the shell ring site (indicated by arrow). B: Study Area 2 
349 results. All identified locations are anthropogenic. Two of the three have archaeological contexts. 
350 C: Study Area 3 results. Two of the three features were surveyed and were both anthropogenic. 
351 Neither one was archaeological in context. White areas represent water and coastline (Color 
352 online).
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353
354 Figure 7: Results of the combined segmentation and template matching algorithm. A: Study Area 
355 1 results. B: Study Area 3 results. In comparison to the segmentation and IDA methods (see 
356 Figures 4 and 5) the combined method provides fewer false positives (Color online).

357 4.4 Method Results and Comparisons

358 Study Area 3 proved to be problematic for the detection of archaeological deposits due to 

359 the extensive recent land disturbance activity. In general, any use of automated techniques such 

360 as OBIA is going to be hampered in areas that have been subject to development. One can expect 

361 considerably more manual labor will be required to filter false positives from total results. The 

362 combined approach, however, was the most effective in these conditions and did not falsely 

363 identify the hundreds of features that were identified by the other methods (Figure 7). This result 

364 further emphasizes the benefits of using a combined approach for archaeological prospection. 

365 Numerically, segmentation and IDA were the most successful OBIA methods for 

366 identifying mounded features, as they detected the most archaeological sites compared to the 

367 other methods (Table 2). They yield, however, the highest number of false positives. Using a 

368 greater number of iterations appears to alleviate this issue and makes IDA far more successful 
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369 than a pure segmentation procedure. The use of template matching produced no false positives 

370 related to natural phenomena but failed to discriminate between prehistoric and historic features. 

371 Our new combined approach that includes template matching and segmentation provided the 

372 greatest consistency in correctly identifying archaeological features (also see Davis et al., 2018) 

373 (Table 6). 

374 Table 6: Archaeological utility of OBIA methods. Topographic discrimination refers to each 
375 method’s ability to distinguish between natural and anthropogenic features. Archaeological 
376 detection accuracy refers to the ratio of positive detections to false ones. Overall utility is the 
377 average of the topographic discrimination and archaeological detection accuracies.

METHOD Segmentation IDA (100 
iterations)

IDA (200 
iterations)

IDA (300 
iterations) TM Combined

Topographic 
Discrimination 
Accuracy 

50% 57.14% 66.67% 85.71% 100% 100%

Archaeological 
Detection 
Accuracy

50% 35.71% 50% 71.43% 50% 100%

Overall Utility 
(average of 
accuracies)

50% 46.43% 58.34% 78.57% 75% 100%

378 5.1 DISCUSSION AND CONCLUSION

379 While each OBIA method that we evaluated yields positive identifications, our results 

380 show that a combination of approaches produces the most reliable information for archaeological 

381 prospection. Of course, some of the differences we note in our analyses depend on the quality of 

382 the data we used: the effectiveness of methods depends to some degree on the resolution and 

383 quality of the data. The difference between segmentation and IDA in our study of Beaufort 

384 County, for example, was likely due to the limits of the resolution of our LiDAR data. Improved 

385 resolution of the LiDAR data will address the deficiency observed in this study. By tripling the 

386 number of iterations, IDA yielded more accurate results than segmentation, as opposed to 

387 slightly less accurate results using only 100 iterations. The processing requirements, however, 
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388 make IDA less useful for large-scale landscape studies, as the amount of computing power 

389 required makes the process extremely time consuming.

390 The results here are promising but it should be noted that a single universal algorithm is 

391 unlikely to be developed. In the case of OBIA, the analyst must always establish the definition 

392 for classes of objects to be identified in advance. These definitions must be based on specific 

393 hypotheses about the necessary and sufficient conditions needed for the algorithm to identify a 

394 feature of interest. The parameters for these conditions can be derived using regionally-specific 

395 parameters, but doing so means that the conditions will be contingency-bound generalizations 

396 and will be incapable of detecting previously unknown features with morphologies other than 

397 those described in reference samples. For this reason, analyses must be repeated by varying the 

398 parameters to test new hypotheses and as new knowledge of the local archaeological is 

399 developed. 

400 Ultimately, the identification of new aspects of the archaeological record in the American 

401 Southeast will permit for researchers to re-evaluate our current notions about pre-contact 

402 settlement patterns, as well as the significance of features like shell rings. The shell ring 

403 identified by this study (also see Davis et al., 2018) is significantly smaller than most known 

404 shell rings in this area. The methods and datasets used here permit for the detection of features as 

405 small as a few meters across and about half-a-meter tall. The average diameter of known ring 

406 plazas in South Carolina is 32 meters (Russo 2006:25). The ring discovered here has a plaza 

407 diameter of approximately 16 meters, half that of the size of known rings. Additionally, the 

408 maximum diameter of the ring is only 36 meters. Compared to the average in South Carolina of 

409 64 meters (Russo 2006:25), this ring is considerably smaller than those previously studied. As 

410 such, new discoveries may reveal new information about the range of feature structure and 
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411 composition, challenging previous notions of prehistoric activity (e.g., Russo, 2004; Saunders, 

412 2004; Trinkley, 1985). 

413 This substantial difference in size of this new ring feature compared to previously 

414 surveyed rings in this area also speaks to a bias in archaeological knowledge towards 

415 monumental structures compared to smaller ones. This requires high resolution datasets, as the 

416 higher the spatial resolution, the smaller the objects that are detectable. A future avenue of 

417 research must focus on the potential for remote sensing surveys in alleviating human error in 

418 traditional surveying, where visibility becomes a considerable issue in detection in heavily 

419 vegetated environments (Hirth 1978; Nance 1979; Schiffer et al. 1978). 

420 The results of our new approach show several new features that were undetected by 

421 previous manual surveys (see Davis et al., 2018). These features include previously unrecorded 

422 deposits such the new shell ring in Study Area 1 and a pre-contact mound in Study Area 2. As 

423 such, the use of automated methods is successful in picking out features that manual approaches 

424 overlook, and ensures full, systematic coverage of areas being surveyed. Nevertheless, it should 

425 be stressed that manual evaluation is also an essential step in analyzing remote sensing data, as it 

426 often provides the first step in building robust datasets that can be used as training data for more 

427 complex automated methods.

428 Urbanization and climate related sea level changes pose imminent threats to cultural 

429 resources in areas such as Beaufort County, but also across the American Southeast. The use of 

430 remote sensing technologies such as LiDAR and computational algorithms offer new means for 

431 addressing existing deficiencies in our knowledge of the archaeological record. While no single 

432 algorithm offers a universal solution, the use of LiDAR data and OBIA can yield accurate 

433 identifications of mound features that lay under tree canopies and across large areas. While 
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434 preliminary, this study demonstrates the potential for OBIA and remote sensing to greatly assist 

435 in archaeological landscape survey efforts. Given the urgency to document our extant 

436 archaeological record before it is lost, such an approach promises to greatly contribute to our 

437 knowledge of the archaeological record.

438
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Figure 2: Steps involved in the use of template matching for the identification of mound features. 













Table 1: Parameters used in multiresolution segmentation of the Beaufort County LiDAR data.

Parameter Threshold

Area <=150 m2

Circularity >= 0.6
Asymmetry 0 – 0.3
Compactness >= 1.0



Table 2: Total detections made by each OBIA technique. 

OBIA Method Total Detections 

Study Area 1

Total Detections 

Study Area 2

Total Detections 

Study Area 3

Segmentation 1,399 1,091 380

IDA (100 iterations) 3,332 1,677 413

IDA (200 iterations) 1,582 1,829 807

IDA (300 iterations) 1,093 2,485 817

Template Matching 6 3 3

Combined 7 0 3



Table 3: OBIA Method Results from Field Survey

OBIA 
Method

Sites 
Surveyed

Accurate 
identifications 
determined by 
field survey

False 
Positives 

determined 
by field 
survey

Rate of positive 
identification/false 
positives based on 

field survey

Total 
Detections 
in Study 

Areas

Potential 
new 

mound 
features

Segmentation 
Classification

12 6 6* 1:1 2,490 1,245

IDA (100 
iterations)

14 5 9** 5:9 5,422 3,012

TM 6 3 3 1:1 10 5
Combined 

(segmentation 
and TM)

4 4 0 1:0 10 10

*   Two sites were inconclusive
** One site was inconclusive



Table 4: Change in detection accuracy for known archaeological deposits in Area 2 using 
increasing numbers of iterations. As the number of iterations increases, so too does the number 
of identified archaeological deposits.

Number of 
Iterations

Number of 
Identified 
Archaeological 
Deposits

100 40

200 59

300 60



Table 5: Overall accuracy for IDA using increasing numbers of iterations. As the number of 
iterations increases, the number of false positive detections decreases, and the overall accuracy 
increases.

Number of 
Iterations

True Positive 
Identifications 

(Determined by 
ground-survey)

False Positive 
Identifications 

(Determined by 
ground-survey)

Total 
Detections

Overall 
Accuracy

100 5 9 5,422 35.71%

200 3 3 4,218 50.00%

300 5 2 4,395 71.43%



Table 6: Archaeological utility of OBIA methods. Topographic discrimination refers to each 
method’s ability to distinguish between natural and anthropogenic features. Archaeological 
detection accuracy refers to the ratio of positive detections to false ones. Overall utility is the 
average of the topographic discrimination and archaeological detection accuracies.

METHOD Segmentation IDA (100 
iterations)

IDA (200 
iterations)

IDA (300 
iterations) TM Combined

Topographic 
Discrimination 
Accuracy 

50% 57.14% 66.67% 85.71% 100% 100%

Archaeological 
Detection 
Accuracy

50% 35.71% 50% 71.43% 50% 100%

Overall Utility 
(average of 
accuracies)

50% 46.43% 58.34% 78.57% 75% 100%



Supplemental Data Davis, Lipo, and Sanger

1

Supplemental Table 1: List of Sites on Pinckney Island (Study Area 2) identified by IDA and 
Segmentation. Template matching and the combined method did not identify any pre-identified 
archaeological deposits. An I indicates that the method identified that site. If a method did not 
identify a site, the column is left blank.

SITEID IDA (100 Iterations) IDA (200 Iterations) IDA (300 Iterations) Segmentation
38BU0092 I I
38BU0653 I I I
38BU0092 I I
38BU0092 I I I
38BU0093 I I I I
38BU0094 I I I
38BU0095 I I I
38BU0066 I I I I
38BU0067 I I I
38BU0068 I I
38BU0069 I I
38BU0193 I I I I
38BU0193 I I I I
38BU0069 I I I I
38BU0069 I I I I
38BU0166 I
38BU0168 I I I I
38BU0169 I I I
38BU0170 I
38BU0172 I
38BU0173 I I I
38BU0174 I I I
38BU0175 I
38BU0176 I I I I
38BU0177 I I I
38BU0180 I I
38BU0181 I I I I
38BU0182 I I I
38BU0183 I I I I
38BU0185 I I I
38BU0186 I
38BU0187 I I I I
38BU0188 I I
38BU0191 I I I
38BU0192 I I
38BU0194 I
38BU0195 I I I I
38BU0198 I
38BU0199 I I I
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2

38BU0201 I I
38BU0202 I
38BU0203 I I
38BU0204 I I I
38BU0205 I I I I
38BU0206 I I I I
38BU0208 I I I I
38BU0209 I I I
38BU0210 I I I
38BU0211 I
38BU0212 I I I
38BU0213 I I I I
38BU0214 I
38BU0215 I I
38BU0216 I
38BU0217 I I
38BU0368 I
38BU0664 I I
38BU0665 I I I
38BU0668 I
38BU0669 I
38BU0670 I
38BU0672 I
38BU0673 I I
38BU0674 I
38BU0470 I
38BU0471 I I I
38BU0694 I I I
38BU0694 I I I
38BU0471 I I I
38BU0472 I I I I
38BU0473 I I I I
38BU0474 I I I I
38BU0650 I I I
38BU0651 I I I I
38BU0652 I I I I
38BU0654 I I I
38BU0656 I I I I
38BU0657 I
38BU0658 I I
38BU0661 I I
38BU0662 I I I I
38BU0675 I I I I
38BU0676 I I I
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3

38BU0677 I I
38BU0678 I
38BU0693 I I I
38BU0696 I I
38BU0699 I
38BU0700 I I
38BU0702 I I I I
38BU0703 I I I I
38BU0704 I
38BU0705 I I I I
38BU0706 I I
38BU0707 I I I I
38BU0710 I I
38BU1215 I
TOTAL 49 59 60 84


