METABOLOMICS IN CHEMICAL RISK ANALYSIS: A FOOD SAFETY PERSPECTIVE

3 **1.1.** \mathbf{r} **1.1.** \mathbf{r} **1.1.** \mathbf{r} $\overline{4}$ M. Hernández-Mesa*, B. Le Bizec, G. Dervilly*

 IADEDCA Opirio INDAE Nonton 443 $\frac{6}{6}$ LABERCA, Oniris, INRAE, Nantes, 44307, France

 $\frac{8}{9}$ * Corresponding authors:

 Maykel Hernández-Mesa (maykel.hernandez-mesa@oniris-nantes.fr; laberca@oniris-nantes.fr) 10 Maynor Florida de la Constitución de la Constitu $\frac{1}{11}$ Gaud Dervilly (gaud.dervilly@oniris-nantes.fr; laberca@oniris-nantes.fr)

ABSTRACT

 Food safety has become a major issue worldwide and, in particular, detecting the presence of toxins, ¹⁸ contaminants or residues of chemica 18 contaminants or residues of chemical substances along the food chain and *in fine* in foods constitutes a strong
19 20 concurrent demand in general all the consumers demand. In general, all these substances and the corresponding metabolites of interest are analyzed 23 using efficient targeted methodologies. However, in some cases these targeted approaches do not allow the detection of emerging compounds or practices, and therefore new approaches and strategies are required. Thus, the study of physiological perturbations induced by exposure to a given chemical substance has emerged as an **interesting alternative approach to an** $\frac{25}{30}$ interesting alternative approach to apply in chemical food safety.

 $31 \qquad \qquad \blacksquare$ $\frac{32}{32}$ This review focuses on describing significant applications of metabolomics in the field of risk analysis from a chemical food safety perspective. The different risk assessment steps, including hazard identification, dose- response assessment and exposure assessment, and risk management are addressed through various examples to illustrate that such an annmach is f to illustrate that such an approach is fit-for-purpose and meets the expectations and requirements of chemical risk 40 anglusia Itaan ha aangideed aa an $\frac{12}{41}$ analysis. It can be considered as an innovative tool for predicting the probable occurrence and nature of risks, while addressing the current challenges of chemical risk analysis (e.g. replacement, reduction and refinement (3R) of animal testing, effects of exposure to chemical mixtures at low doses, etc.), and with the aim of ⁴⁷ responding to global food safety issues and anticipating human health problems.

 Keywords: chemical hazards, risk assessment, risk management, biomarkers, mode of action, exposomics

 $\frac{2}{2}$ Eggs is an ef the main routes of a $\frac{2}{3}$ Food is one of the main routes of exposure to potentially hazardous chemicals that can enter at many points in the food chain [1]. Chemicals are present in food due to their use to increase efficiency and yield in food $6\overline{6}$ production (e.g. pesticides, veterinary drugs), their addition for technological purposes during food processing, 8 and 2010 **120 and 2010 120 and 2010 120 and 2010 120 and 2010 120 and 2010** ⁹ transport and storage, as well as to confer specific organoleptic properties to food commodities (i.e. food additives such as emulsifiers prese ¹¹
12 additives such as emulsifiers, preservatives, sweeteners, colorants, etc.), and their generation during food 13 and the state of the sta $\frac{12}{14}$ treatments such as heating or as a consequence of storage conditions (e.g. acrylamide, chloropropanols, nitrosamines, polycyclic aromatic hydrocarbons (PAHs), biogenic amines, natural toxins, etc.). A wide range of anthropogenic chemicals can also end up in food due to contamination from different sources, including materials used in food containers (e.g. phthala used in food containers (e.g. phthalates, bisphenols, etc.) and environmental contaminants (e.g. polychlorinated 22 binhamile (DCDe) non-and-naturalistics $\frac{22}{23}$ biphenyls (PCBs), per- and polyfluoroalkyl substances (PFAS), flame retardants, etc.). The presence of these chemicals in food represents a risk to human health and is a major concern for a significant part of the population 27 [2], who may look for 'safe food' involving zero risks. Unfortunately, the zero-risk framework is not feasible in most 29 cases [3], and government bodies are continuously adopting measures, including regulations, control plans and 31 creation of compatent agencies in the creation of competent agencies in the field, to protect consumers' health from the risks associated with chemical, biological and physical hazards [4,5].

In this context, it is necessary to distinguish between 'hazards' and 'risks' because both terms are often used interchangeably, but they refer to different concepts. According to Codex Alimentarius Commission (CAC), a eximple to the state of the state of 40 hazard is 'a biological, chemical or ph $\frac{12}{43}$ health effect', while a risk represents the probability of suffering an adverse effect on health and the severity of that effect as a consequence of being exposed to a hazard [6]. Therefore, pesticide and veterinary drug residues, food additives and contaminants occurring along the food supply chain can be considered chemical hazards and the risk they nose to public health of $\frac{49}{50}$ the risk they pose to public health depends on the chemical substance, the duration, frequency and level of experience $[9, 2]$ in the framework of r $52₅₂$ exposure [2,3]. In the framework of risk assessment, a hazard may also be related to the property of the agent instead of the agent itself since it could represent multiple hazards (e.g. carcinogen, endocrine disruptor, etc.) [7], but the former CAC definition for hazard is applied in this manuscript.

 scientific evidence and/or information about chemical, biological or physical hazards present in food with the aim of selecting the best option to manage that risk based on the various alternatives identified [8]. From a food safety and 5 a parenactive it supports decision making $\frac{8}{7}$ perspective, it supports decision-making and must ensure the perfect balance between minimizing potential risks $\frac{3}{9}$ to human health and the environment and maximizing the benefits to society (e.g. nutritional benefit, physical availability of food, economic and physical access to food, utilization of food, and stability of the food supply) [3]. Risk analysis is constituted by three main components: risk assessment, risk management and risk communication (Figure 1) Although $\frac{15}{16}$ communication (Figure 1). Although they can often be viewed as separate processes, they complement each 17 athor and are integrated by right in $\frac{1}{18}$ other and are integrated by risk managers to successfully accomplish risk analysis [6,9]. Risk assessment 19 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ represents the scientific-based element of risk analysis and provides knowledge about the potential adverse effect of human exposure to food-borne hazards. It consists of the following four steps: (1) hazard identification 24 (i.e. identification of agents which may cause adverse health effects and be present in food); (2) hazard 25 and 25 and 20 an 26 abaractorization (i.e. qualitative and) characterization (i.e. qualitative and/or quantitative evaluation of the adverse health effects associated with hazards and involving a dose-response assessment); (3) exposure assessment (i.e. qualitative and/or quantitative evaluation of the likely intake of hazard agents via food and other relevant sources of exposure); (4) risk characterization (i.e. integration of previous steps of risk assessment to estimate qualitatively and/or **aughtitatively including attendant** une go and quantitatively, including attendant uncertainties, the probability of occurrence and severity of known or potential and severity of known or potential adverse health effects of a hazard agent in a (sub)population under defined exposure conditions) [6,7]. Risk assessment feeds into the risk management process to develop policies for the protection of consumer health and the promotion of fair trade practices. Risk management not only takes into account the scientific information provided by risk assessors (i.e. risk a $44 \over 45$ provided by risk assessors (i.e. risk characterization), but economic, social, cultural and ethical factors are also 46 unighed to esteat engrapriate prove $\frac{40}{47}$ weighed to select appropriate prevention and control options [10]. Finally, risk communication constitutes an interactive exchange of information and opinions about hazards, risks, risk-related factors and risk perceptions, among risk assessors, risk managers, consumers, industry, the academic community and other interested parties, and includes discussion about risk assessment findings and the basis of risk management decisions [6]. Risk analysis is a process to systematically and transparently collect, analyze and evaluate scientific and non-

55 In rocent voors 'omics toobniqu 55 In recent years, 'omics techniques (i.e. genomics, transcriptomics, proteomics, and metabolomics) have $\frac{1}{58}$ emerged as plausible approaches for conducting risk analysis and addressing its current challenges, specifically 60 those related to risk assessment [11,12]. In general, transcriptomics has been the 'omics technology most

 metabolomics and proteomics for the toxicological and epidemiological evaluation of hazardous chemicals. ⁴ Although metabolomics has been widely applied in various scientific fields in the last two decades, it is still considered an emerging approach in t $\frac{8}{7}$ considered an emerging approach in the area of risk analysis. This review presents an overview of the current 8 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{$ $\frac{9}{9}$ needs and challenges of risk analysis for food safety and how metabolomics can be a powerful tool to address them. This is not a comprehensive overview of all metabolomics applications in the field, but relevant applications have been selected to illustrate how metabolomics can be applied in the different steps of the risk analysis workflow specifically in risk assessment 15
16 workflow, specifically in risk assessment but also including the perspective of risk management. The current state of the ort of evolution plotforms in m $\frac{1}{18}$ of the art of analytical platforms in metabolomics is also covered, since the development and implementation of omics approaches in different fields of application, including risk analysis, is closely related to advances in analytical techniques and tools. frequently used in risk assessment studies [13], but there is a growing interest in other tools such as

25 2- CURRENT CHALLENGES IN CHEMICAL RISK ANALYSIS FOR FOOD SAFETY **Exercía de Source de Alexandre** de Maria III e Estado e a maio de Alexandre de Alexandre de Alexandre de Alex
26

 Global demand for food and international food trade are expected to double in the coming decades, leading to 30 an increase in foodborne diseases w $\frac{32}{33}$ and industries of affected countries [14]. It is of great interest to consumers, food producers and suppliers, and governments to ensure food security and safety. This is not always an easy task because the food sector is constantly evolving. Food production and supply chain must feed a growing population but ensuring the 39 sustainability of the environment, new food technologies and products appear in the market (e.g. insects 41 concumption) concumer domands $41 \over 42$ consumption), consumer demands change over time (e.g. related to population aging, interest in bio-based 43 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ products, etc.), new scientific evidence warns about emerging hazards and risks (e.g. ciguatoxins, chlorinated paraffins, mineral oils, etc.); therefore, food safety standards, including control measures, need to be continuously developed and updated. Consequently, risk analysis is a continuous and dynamic process that must respond to new challenges in food safety new challenges in food safety.

 $\frac{52}{53}$ Risk analysis is a complex and laborious task due to the large number of chemicals that can be present in food. The European Union (EU) has regulated up to 8,000 chemical substances in food, but the actual number of chemical hazards that can compromise food safety is unknown, as more than 100,000 chemicals have been reported in man-made products [15]. Furthermore, of the approximately 30,000 chemicals used commercially in **Contract Contract Co**

 Information System (IRIS) database of the US Environmental Protection Agency (EPA), or have been evaluated ⁴ by the Office of Pesticides Programs (OPP) [16]. Risk analysis faces the following priorities, challenges and $5 \qquad \qquad \bullet$ constraints within the current food safe: $\frac{6}{7}$ constraints within the current food safety framework. the United States (US), less than 5% of substances have a risk assessment published in the Integrated Risk

2.1 Unravelling the mode of action and the adverse outcome pathway of chemicals

 There is current shift in the way chemical risk analysis is carried out, from the investigation of apical endpoints 14 (i.e. empirically verifiable outcomes of exposure such as carcinogenicity, mutagenicity, hepatotoxicity, endocrine disruption developmental toxicity ato $\frac{16}{17}$ disruption, developmental toxicity, etc.) towards understanding the mechanistic action of chemicals. The 'mode of action (MaA) and the feducine super **d** during (MOA) and the duverse outcom- that represent pragmatic simplifications of complex biological pathways to carry out risk assessment [17]. Both MoA and AOP refer to the mechanistic processes that occur at different levels of biological organization as a 25 consequence of exposure to chemical hazards; however, there are subtle differences between these concepts. **Conceptioner of Experiment Community** The MeA of epergesials is the bigher $28₂₈$ The MoA of chemicals is the biologically plausible sequence of key events in an organism that follows the interaction of the compound with biological targets and leads to an observed effect. It does not imply complete understanding of mechanism of action at the molecular level, but it is commonly supported by robust experimental observations and mechanistic data [23]. Key events are empirically observable steps, or their 36 biological markers that constitute $\frac{38}{37}$ biological markers, that constitute the necessary elements of the MoA. They must be measurable and 39 reproducible and are connected to each other through key event relationships. Unlike MoA, which takes into account the toxicokinetics of chemicals (i.e. kinetic processes of absorption, distribution, metabolism and 43 excretion of a chemical hazard in an organism), AOP does not consider the metabolism and only focuses on the toxicodynamics μ the mechanisms $\frac{45}{46}$ toxicodynamics (i.e. the mechanisms by which a chemical hazard concentration at the action site causes adverse **a** a contract to the contract of the contr 48 effects on target tissue(s), organ(s), or the organism) [18]. The AOP is the biological cascade of key events resulting from the exposure of an individual or population. It is triggered by a molecular initiating event (MIE), in which the chemical hazard interacts with the biological target(s) to cause the perturbation, and produces measurable adverse outcomes 112.1 measurable adverse outcomes [12,17]. Although conceptually the MoA includes the AOP, the elucidation of both 55 $\frac{57}{57}$ mechanisms/pathways provides relevant and additional information for the risk assessment of chemicals. MoA analysis provides insight into the dose- and time-dependency of the key events that relates the initial interaction

 events of an adverse outcome regardless of the chemical stressor [20]. Knowledge of the MoA and AOP of toxicologically important chemicals is expected to contribute to establishing exposure thresholds for adverse $5 \quad 5 \quad 5 \quad$ 6 offects and to identifying vulnerable norm $\frac{8}{7}$ effects and to identifying vulnerable population groups. with a chemical to a specific toxic effect [18,19], while the AOP is aimed at identifying the MIE and the early key

2.2 Adverse effects caused by real exposure scenarios

 In traditional toxicology studies, hazard characterization is generally based on the no observed adverse effect level (NOAEL) approach (or more recently also on the benchmark dose (BMD) approach), which represents the 15 (a) $\sqrt{11}$ (b) highest does tested in does response $\frac{16}{17}$ highest dose tested in dose-response experiments without significantly causing any effect. The NOAEL approach, 18
18 **Martin Horace de Articulus and the Samuel B** $\frac{1}{19}$ which depends critically on the sensitivity of the toxicity test, assumes that an exposure to greater doses of chemicals is associated with an increase in the body's response and that there is no adverse effect below a 22 certain level of exposition (NOEL). This monotonic dose-response assumption has recently been questioned for endocrine discupting compounds ℓ endocrine disrupting compounds (EDCs) which may show non-monotonic dose-response curves and, consequently, cause adverse effects to health at very low doses [21]. Furthermore, traditional chemical risk assessment applies the chemical-by-chemical approach (i.e. toxicity studies for each chemical separately) and involves animal toxicological studies where a relatively high dosage is needed to observe toxicological effects. These conditions do not represent the chemical risk of the actual exposure scenario. In real-life scenarios, the 36 nonvioling in outling to long them 30 population is subjected to long-term exposures of low-dose chemical mixtures with different mechanisms of action, which may show non-monotonic dose responses and be liable to bioaccumulate [22].

 Exposure to chemical mixtures has become a major concern because humans are continuously exposed to multiple hazards from different sources [12,23]. The effect of chemical mixtures, the so- may occur although the same chamic $\frac{45}{46}$ may occur although the same chemical substances do not show any effect when individually present at the same $\frac{1}{48}$ concentration level [22,24]. A 'cocktail' effect can also be more complex than a simple additive effect, which is a widely applied approach in risk assessment, but which may underestimate or overestimate the risk posed by the mixture because of interactive effects (i.e. potentiation, synergism and antagonism) can also take place [25,26]. Chemical legislation is primarily hase 54 Chemical legislation is primarily based on assessments conducted for individual chemical substances, so it may
55 56 as the protective energies in the event $\frac{57}{57}$ not be protective enough in the event of exposure to multiple chemicals with the same toxic effect. Co-exposures

 show cumulative and synergistic effects [27]. to chemicals regulated by different pieces of legislation are totally neglected, even though some compounds

$_{5}$ 2.3 Replacement, reduction and refinement (3R) of animal testing

 $\frac{7}{1000}$ Here dependent integration using the N $\frac{1}{8}$ Hazard characterization using the NOAEL approach is generally performed on animal models. The results are $_{10}$ ultimately transferred to humans applying a safety factor to cover the variability in extrapolation between species and the entire population including sensitive groups [6]. However, animal experimentation raises ethical and 14 economic concerns [28], whereas it is not guaranteed that animal models are always valid for predicting the 15 and the contract of the con tovicity of chamical hazards in huma ¹⁶ toxicity of chemical hazards in humans, since different toxicokinetics and toxicodynamics may occur in different 18 against 190.201 Europe in until a finite $\frac{19}{19}$ species [29,30]. Further investigation in human and animal toxicokinetics, and also in toxicodynamics, is recommended to reveal differences in dose-response between individuals and species. Toxicokinetics and toxicodynamics data also gives a new perspective to toxicology studies because, instead of relying on 25 manifestation of toxic effects or apical endpoints, it proves sufficient exposure and provides information on how 26 mai modella en el texto en este en espied 27 μ μ σ μ σ μ σ σ σ μ σ μ σ μ $28 \over 28$ the effect is induced [i.e. MoA/AOP at different levels of biological organisation (organism, organ, cellular and molecular level)]. These earlier and more fundamental indications of human health problems allow for a more accurate estimate of risk [31,32].

\ldots \ldots \ldots 2.4 Need for holistic exposure assessment

37 Enidemialogical studies have trad $\frac{38}{38}$ Epidemiological studies have traditionally focused on the precise measurement of single or few environmental exposures with adverse health effects. However, the targeted analysis of few exposures as typically carried out in human biomonitoring (HBM) plans is a simplification of real exposure scenarios. The effects on human health of co-exposure to different chemical hazards can go unnoticed, especially if they occur separately over time but 46 undergo biogecumulation Therefore $\frac{48}{17}$ undergo bioaccumulation. Therefore, a better understanding of relevant exposure scenarios is essential, including $\frac{1}{49}$ the nature of the active chemicals and their number [33]. In addition, traditional biomonitoring do not take continuous measures, thereby limiting detection of short-lived chemicals as well as suspected chemicals of concern are less likely to be detected [34]. An improvement of exposure assessment approaches is needed to prioritize chamicals for hazard assessed by 55 prioritize chemicals for hazard assessment.

2.5 Identification of emerging chemical risks

 hazard to which a significant exposure may occur, or from an unexpected new or increased significant exposure and/or susceptibility to a known hazard' [35]. Emerging risks may be associated with traditional concerns (e.g. $5 - 5$ nesticides) but related to new discover $\frac{6}{7}$ pesticides) but related to new discoveries (e.g. pesticide transformation products) [36,37], emerging concerns such as EDCs, microplastics, etc. [31,38], new food products and technologies (e.g. nanomaterials, including food contact materials) [39], new food consumption habits (e.g. organic, vegan, alternative proteins such as insects, etc.), or other factors such as climate change (e.g. increase of mycotoxin contamination [40]), globalized food trade or even derived from the $\frac{15}{16}$ food trade, or even derived from the global movement of marine transport and intensive tourism to (sub)tropical 17 area (a a annocrana afairmataire $\frac{1}{18}$ areas (e.g. appearance of ciguatoxins in Canary Islands [41]). European Food Safety Authority (EFSA) defines an emerging risk as 'a risk resulting from a newly identified

2.6 Harmonization in risk analysis $\frac{20}{21}$ 2.6 Harmonization in risk analysis

 The harmonization of food safety and quality standards, which has a high impact on risk management, is one 25 of the main challenges for food control authorities [6]. In the current context of globalized trading environment, **Charles Communication** 27 Local food october problems can joe local food safety problems can jeopardize public health at international level, as occurred with the bovine spongiform encephalopathy (BSE) outbreak (UK, 1998) and the melamine incident (China, 2008) [42]. The adoption of internationally agreed standards may also favor food exports and provide a solution to trade barriers related intervaliant of the FII han on c related, inter alia, to the EU ban on growth-promoting hormones in meat production while their use is authorized 35 36 (in LIC or Console on to different my $\frac{37}{37}$ in US or Canada, or to different maximum residues limits (MLRs) of pesticides in food established by each 38 and <u>the contract of the co</u> country [43,44].

2.2 Complete multiple associates de $\frac{42}{42}$ 2.7 Complying with consumer's demands

 On hasis of the above risk analys 44
45 **On basis of the above, risk analysis faces a challenging panorama to properly carry out risk assessment and** 46 monograph of shaminal happy is $\frac{40}{47}$ management of chemical hazards in food, which is even more complex if it is taken under consideration consumer demands. Consumers are more concerned than ever about food safety, with a part of the population 51 developing a fear to chemicals, namely 'chemophobia'; although this feeling can also be the result of the biased $^{53}_{-2}$ perception that 'natural is better' and 'chemicals are harmful' [2,45]. The gap between the general public 55 perception and expert opinion on obj 55 perception and expert opinion on chemical hazards and risks may be due to a compendium of factors, such as 57 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ consumer subjectivity, incompressible or confusing scientific terminology for non-experts, or even contradictory

 2 analysis, trough risk communication, to assure consumers' confidence in the safety of food supply [6]. messages from risk assessors and risk managers [46]. Beyond health promotion, it is also a challenge of risk

$\frac{5}{3}$ 3- 'OMICS TECHNOLOGIES FOR BIOMARKERS DISCOVERY IN RISK ANALYSIS

8 Although recent, 'omics technologies have already demonstrated a valuable contribution at all levels of risk 10 assessment; however they are more established in the hazard identification and characterization steps [47,48]. 12 Unlike traditional methods based on a $\frac{12}{13}$ Unlike traditional methods based on dose-response approaches in which perturbations of a particular biological or $\frac{1}{15}$ clinical parameter are measured (e.g. hormones changes), 'omics studies generally involve non-targeted analysis and are not hypothesis-driven; therefore, they provide a holistic overview of the effects caused by chemical 19 exposures. In general, 'omics approaches give insight into MoA-related biochemical alterations and AOP of chamical hazards at the level of dec $22 \nvert$ chemical hazards at the level of deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) (transcriptomics), proteins 23 (exploration) and the motobolome (proteomics) and the metabolome (metabolomics). These perturbations are related to biomarkers that are objective indicators of the organism state and can be measured accurately and reproducibly. They can be classified as exposure biomarkers (i.e. exogenous substances, their metabolites or interaction measures which reflect an exposure), effect biomarkers (i.e. endogenous substances whose changes in the concentration levels **Cheese** and experiments of the stationarities $\frac{32}{33}$ are linked to an early health effect) and susceptibility biomarkers (i.e. inherent or acquired abilities of an organism to respond to a specific exposure) [49,50]. Although exposure biomarkers can be detected, the main objective of 37 "
omics studies in risk analysis is mainly focused on the identification of effect biomarkers that may later be 39 associated with a chemical exposure to understand its possible adverse impact on human health. Furthermore, higher related to does recognized $41 \over 42$ biomarkers related to dose-response modeling can be identified on both humans and animals, showing $\frac{1}{44}$ interspecies differences and their relevance in humans. In this sense, in vitro models can also be applied in omics studies to investigate the AOP of chemical hazards, moving towards predictive modeling and reducing animal experimentation [51], which is fully in line with the resolution of some of the current challenges of risk analysis listed above. 51 analysis holds above.

 $\frac{55}{53}$ The identification of biomarkers of effect in the metabolome is highly relevant because it reflects all the information of expression and modulation processes occurring upstream (i.e. in the proteome, transcriptome and 57 genome), thus providing a highly integrated profile of the biological status (Figure 2) [52]. The metabolome is the ⁵⁹ biological layer closest to the phenotype and the exposure environment where adverse perturbations are directly **Exercised Report of the Contract Only 1980**

 the MoA of chemicals [53,54]. The metabolome covers all the molecular changes, formed by a large network of ⁴ metabolites and metabolic reactions, where outputs from one biochemical reaction are inputs to other reactions $5 - 5$ $\frac{8}{7}$ [55]. Metabolome perturbations are the last changes that occur in an organism before classical toxicological 8 and 10 and $\frac{9}{9}$ effects manifest. related to functional observations of toxicity or the adaptation of an organism, while allowing the identification of

 Metabolomics is the profiling and fingerprinting of small molecules or metabolites involved in the metabolome, with low or medium molecular weight (30-1500 Da approximately), of endogenous origin present in biological fluids cells tissues or organisms an fluids, cells, tissues or organisms, and which can also include the detection of exogenous compounds [53,56]. It 17 menudes the meet complete informed $\frac{1}{18}$ provides the most complete information on the responses in the organism due to chemical exposures because metabolites cover a significant part of the internal chemical milieu of the organisms, and the variation of their concentration reflects dynamic and rapid changes in the phenotype of the system in study. The investigation of 24 metabolites as biomarkers represents a novel approach to support the biological plausibility of chemicals in risk 25 and the contract of the specific state of $\frac{1}{2}$ 26 accorder to equipo in contract t assessment because, in contrast to genes and genetic risk scores used to predict what might happen, 28 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ metabolites describe what is happening in the biological system [51,53,57]. Ultimately, up- or down-regulated concentration levels of certain metabolites can inform on biological pathways disruptions, providing a link between chemical exposures with adverse health effects and disease development [58,59].

It is still unclear whather the high-33
36 **It is still unclear whether the biomarkers identified in 'omics studies provide more useful information on toxicity** $\frac{38}{38}$ than traditional toxicological endpoints, taking into account that the sensitivity of methodologies employed in **omics studies may lead to the identification of biomarkers without any biological or toxicological relevance** [48,51]. Although biomarkers detected in toxicological or epidemiological studies may be associated with adverse effects arising from chemical expose ⁴⁴ effects arising from chemical exposure, they may simply represent a physiological adaptation of the organism
45 without one import of the booth love without any impact at the health level. In this context, the application of 'omics technologies in risk analysis is in 49 its early years and 'omics workflows can still result cumbersome and complicated, requiring advanced molecular and analytical techniques, highly specialized staff, and sophisticated bioinformatics tools to analyze large datasets. Omics studies must also be well-designed and restricted to well-known reference substances to be 55 able to correlate the large datacete able to correlate the large datasets with standardized endpoints (e.g. clinical chemistry, histophathological endpoints).

4- ANALYTICAL APPROACHES IN METABOLOMICS FOR THE DISCOVERY OF BIOMARKERS

 $\frac{2}{3}$ Advances in metabolomics have been closely associated with improvements in analytical techniques and the development of bioinformatics tools, including databases, for data processing and metabolite annotation or $6\overline{6}$ identification, and which currently remains the main bottleneck of metabolomics [52,60,61,62]. From an analytical 8 and 2010 ⁹ perspective, metabolomics studies have traditionally been classified mainly into targeted and non-targeted mathode: although sami-tamated mat ¹¹
12 **methods**; although semi-targeted metabolomics, also referred as suspect screening, has emerged in recent years $\frac{10}{14}$ as a third metabolomics approach (Figure 3).

 Targeted metabolomics involves the analysis of a small specific group of compounds that are associated with hypothesis-driven studies. The entire analytical workflow including sample preparation is optimized to enhance **the detection of specific metabolites** the detection of specific metabolites, providing high analytical specificity and quantitative reproducibility. Targeted 21 22 months do ago limited to the exclusive $\frac{22}{23}$ methods are limited to the analysis of a few dozens of compounds, thereby reducing the information obtained on the metabolome. In contrast, non-targeted metabolomics pursues the broad characterization of the metabolome to reveal unexpected changes in metabolites concentration due, for example, to exposure to chemical hazards, 29 and to associate them with biochemical perturbations in metabolic pathways. As a result, analytical conditions in non-teracted metabolomies are very $32³¹$ non-targeted metabolomics are very generic to extract a wide range of compounds of different chemical classes **Contract Contract Contract** $\frac{34}{34}$ from biological samples and detect them without any bias against certain classes of metabolites (i.e. metabolic fingerprinting), thus leading to the determination of hundreds to thousands of compounds [56]. Non-targeted 38 approaches are applied for broad coverage of the metabolome, but data processing can be very tedious and 39 and the contract of the con $time_{\text{concl}}$ $due\ to\ the\ activation$ $\frac{40}{41}$ time-consuming due to the extensive datasets generated. Furthermore, the identification of relevant biomarkers is $\frac{12}{43}$ not always accomplished. The combination of advanced bioinformatics tools for feature (i.e. each analytical signal) detection, peak alignment, etc., and chemometrics (mainly multivariate analysis) has favored the implementation of non-targeted metabolomics [60]. Nevertheless, considerable progress still needs to be made in the development and improvement of $\frac{49}{50}$ the development and improvement of software and databases that allow the identification of a greater number of motobolites with great earteinty $F(41)$ $52₅₂$ metabolites with great certainty [61]. Finally, semi-targeted metabolomics is considered an alternative strategy that falls between targeted and nor that falls between targeted and non-targeted approaches. This hypothesis-driven approach aims to quantify
55
56 hundreds of metabolites whose identity is known or suspected ('known-unknowns') before data acquisition and is

 metabolic profiling) [62]. intended for the analysis of metabolites belonging to the same chemical family or metabolic pathway (i.e.

⁴ Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the leading analytical $5 \hspace{2.5cm} \cdot \hspace{2.5cm} \$ 6 platforms in matabolomics Matabolom $\frac{8}{7}$ platforms in metabolomics. Metabolomics studies based on NMR spectroscopy usually involve one-dimensional $\frac{3}{9}$ (1D) ¹H (proton) NMR, although other NMR spectra such ¹³C, ¹⁵N and ³¹P as well as two-dimensional (2D) 11 approaches [e.g. 1H-1H COSY (correlated spectroscopy), 1H-1H TOCSY (total correlation spectroscopy), and 1H- 13C HSQC (heteronuclear single-quantum correlation)] can also be used [63]. NMR offers several advantages hecause it is a non-destructive tech because it is a non-destructive technique, allowing the analysis of living samples. It is not restricted to the 16 17 anglyzis of bioflyide, and solid an agree $\frac{1}{18}$ analysis of biofluids, and solid or semi-solid samples (e.g. intact organs) can be studied by NMR. It also provides a high level of experimental reproducibility and allows the quantification of metabolite levels [64]. Nevertheless, the low sensitivity attributed to NMR spectroscopy compared to MS, which limits its application to the $^{2.4}$ determination of major metabolites, has made MS the gold-standard technology of metabolomics studies. 25 and the contract of the con

26 MS improvements in terms of set $20²⁰$ MS improvements in terms of sensitivity, acquisition speed and, specially, resolution and accuracy, have 28 (a) $\frac{1}{2}$ (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ contributed to the rapid development and implementation of metabolomics [65,66]. High resolution mass spectrometers such as time-of-flight (ToF) and Orbitrap mass analyzers with electrospray ionization (ESI) are the most widely used MS technologies in metabolomics. Fourier transform mass spectrometers provide the highest 35 resolution nower and mass accuracy resolution power and mass accuracy, but their implementation in routine laboratories has been limited by the high $\frac{38}{38}$ investment cost required. On the other hand, ionization sources such atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) have been used as alternative to ESI, but to a lesser extent [67,68]. Lately, there is a growing interest in direct MS metabolomics analysis, and especially in matrix- assisted laser desorption/ionization (44 assisted laser desorption/ionization (MALDI)-MS imaging approaches, but despite the high sample throughput of 45 direct MC its englishibit is because $\frac{40}{47}$ direct MS, its applicability is hampered by ion suppression. Consequently, low signal sensitivity is observed and metabolites are only detected if they show high ionization and/or are at high concentration levels. Moreover, the differentiation of isomers and isobars cannot be achieved in direct MS analysis, which is one of its main drawbacks [69,70]. Therefore, MS platforms are generally coupled with chromatographic or other related 55 toobniques to extend the coverage of techniques to extend the coverage of the metabolome. Reversed-phase liquid chromatography (RPLC) coupled **100** 110 111 111 $\frac{1}{58}$ to MS is the technique of choice for metabolomics studies, although the application of complementary approaches (e.g. hydrophilic interaction liquid chromatography (HILIC)-MS for the analysis of highly polar

 (GC), supercritical fluid chromatography (SFC) and capillary electrophoresis (CE) coupled to MS are also mature ⁴ techniques in metabolomics and can be used as complementary approaches to liquid chromatography (LC)-MS $5 \qquad \qquad$ $\frac{6}{7}$ [71,72]. $7 \qquad \qquad \mathbf{1}^{\prime} \cdots \mathbf{1}^{\prime}$ metabolites) is recommended to obtain more complete information on the metabolome. Gas chromatography

 $8 \qquad \qquad \blacksquare$ $\frac{9}{9}$ From a technical point of view, recent advances in MS-based metabolomics includes: (1) hyphenation of mass analyzers; (2) 2D chromatography separations; (3) ion mobility spectrometry (IMS)-MS hyphenation; (4) ambient mass spectrometry (AMS) and MS imaging. Hybrid MS instruments (e.g. quadrupole (Q)-ToF, Q-Orbitrap, linear ion tran (1 TO)-Orbitran etc.) have ion trap (LTQ)-Orbitrap, etc.) have increased the possibilities for fragmentation studies (from MS² to MSⁿ 17 averation and determinition (i.e. $\frac{1}{18}$ experiments) and data acquisition (i.e. data dependent acquisition (DDA) and data independent acquisition (DIA) 19 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ modes), thus providing more information on metabolite structure to enhance feature annotation and reduce the identification of false negatives [66,73]. On the other hand, biological samples are very complex and co-elution of 24 metabolites can make their identification difficult or almost impossible, especially in the case of isobaric and 25 and the contract of the con *igomorio compounde* The assignation $\frac{20}{27}$ isomeric compounds. The assignation of m/z signals to specific metabolites can be laborious and incorrect due to 28 a.e. 12 a.e 29 their co-elution and the complexity of mass spectra, which is even more complex in the case of fragmentation experiments. 2D-LC and 2D-GC approaches improve peak resolution, allowing the detection of a greater number of features, enhancing the detection sensitivity of minor metabolites and, consequently, increasing the number of 35 characterized metabolites [74 75] IM s₃₆ characterized metabolites [74,75]. IMS also introduces an extra separation dimension into LC-MS and GC-MS $\frac{38}{38}$ workflows that especially favors the separation of isobars and isomers. Certain IMS technologies also provide the collision cross section which is new information on ion structure and, in addition to retention indexes (e.g. retention time, migration time, etc.) and mass spectra, contributes to feature annotation and the identification of metabolites [76.77] In addition the c $44 \over 45$ metabolites [76,77]. In addition, the development of new AMS or direct mass spectrometry approaches, such as 46 direct applying in real time mess on $\frac{40}{47}$ direct analysis in real time mass spectrometry (DART-MS) or rapid evaporative ionization mass spectrometry 48 ($\frac{1}{2}$ (REIMS), among others [78], as well as recent advances in MS imaging [79] are creating a great expectation within the metabolomics community to carry out high throughput metabolomics studies involving reduced analysis 53 time. First AMS metabolomics applications for food safety have already been reported [80]. Nevertheless, 55 improvemente in measurement repr improvements in measurement reproducibility, in combination with software developments to facilitate signal 57 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ $\frac{58}{58}$ processing, are expected to further implement these approaches as a general tool in metabolomics. Finally, MS imaging and in particular the widely applied MALDI-MS, has traditionally been used for the analysis of high

 this technique to the analysis of low molecular weight compounds [81], providing new alternatives for carrying out 4 metabolomics studies and, most importantly, obtaining information on the distribution of relevant metabolic 6 hiomarkers in the sample $\frac{6}{7}$ biomarkers in the sample. molecular weight compounds such as proteins. However, new matrices have recently been proposed to extend

 $\frac{9}{9}$ It cannot be overlooked that all developments in analytical approaches applied in metabolomics must be associated with advances in bioinformatics and chemometrics for the processing, interpretation and storage of the large datasets generated in metabolomics studies. As discussed in more detail in Section 6, this is one of the main challenges of risk management 15 main challenges of risk management in the context of risk analysis. Within the framework of metabolomics data
16 continued by different platforms measured $\frac{1}{18}$ acquired by different platforms mentioned above, it is not only necessary to develop and apply powerful multivariate tools to analyze and obtain relevant information from large metabolomics datasets. It is also required to adequately merge the information from different sources to avoid redundant information that can lead to an 24 incorrect interpretation of the data due to overrepresentation, and at the same time that complementary 25 and the complete contract of the contract o 26 information can be obtained to impro $\frac{20}{27}$ information can be obtained to improve data interpretation and facilitate the biological explanation arisen by the 28 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ metabolomics study [82].

5- METABOLOMICS IN CHEMICAL RISK ASSESSMENT

35 Traditional in vivo methods applied in toxicological risk assessment raise ethical and economic concerns. For this reason, new approach methodologies (NAMs) such as in vitro testing using human or animal cells, tissues or ³⁹ organs and *in silico* studies are currently promoted to comply with the 3R principles [28]. Metabolomics and other 'omics approaches applied to in $\nu\nu\varphi$ $41 \over 42$ 'omics approaches applied to *in vivo* and *in vitro* models, as well as *in silico* tools (e.g. (quantitative) structure– 43 (11 11 12 001 P) activity relationships (QSARs), structural alerts, read-across, etc.), have recently been developed to investigate the toxicokinetics and toxicodynamics of chemicals and, consequently, to understand the biological mechanisms 48 of their toxicity [51]. These new strategies provide a deeper understanding of the adverse effects caused by chamical hazards in raal-life scanario 50
51 chemical hazards in real-life scenarios and beyond the toxic effects observed in animals exposed to inappropriate $\frac{52}{53}$ high doses within the current risk assessment framework, and at the same time that the use of animals in toxicological research is reduced [10,19,31]. Quantitative predictions of in vivo kinetics using non-animal data is viewed as a great opportunity to reduce uncertainty in human risk assessments and a real alternative to animal testing [30]. **........**

 aforementioned challenges of risk assessment (e.g. providing knowledge on the adverse effects of exposure to ⁴ chemical mixtures at low doses) [83,84]. Understanding the MoA of chemicals, typically applying in vitro $5 \hspace{2.5cm} \sim$ 6 annroaches contribute to the classifi $\frac{8}{7}$ approaches, contribute to the classification of chemical mixtures for better risk assessment to predict their 8 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2$ $\frac{9}{9}$ adverse effects [83]. In vitro metabolomics is also useful to identify the MIE related to the APO of chemicals, 11 which can be applied as prioritization tool to select chemicals that require in vivo testing to validate their toxic effects [18,20]. In vitro studies to elucidate the MoA/APO of chemicals not only reduce animal testing, but also overcome the drawbacks related to the 15
16 **overcome the drawbacks related to the transfer of results between species. Animal-based data may fail to predict** 17 toviaity for complex burger englacin $\frac{1}{18}$ toxicity for complex human endpoints, providing a poor predictability rate (60-70%) [85]. At least as a first approach, risk assessment can be carried on human cells or tissues. Omics tools are also called to unravel the MoA/APO of chemicals as a new strategy to address the

 Despite being a new methodology in risk analysis, metabolomics has already been shown to provide relevant $^{2.4}$ information in chemical risk assessment, especially in hazard identification and hazard characterization [13]. 26 Mercayor motobolomics plays an in Moreover, metabolomics plays an important role in the new trend in exposure assessment, which is directed towards a more holistic concept of exposure [34]. This section does not cover risk characterization, as its mission is to integrate information from hazard characterization and exposure assessment into appropriate advice for use in decision-making or risk management [86], and metabolomics is not yet directly involved in it.

5.1 Hazard identification

39 Hazard identification is the first step to be taken in the risk analysis process when raising a potential food safety concern. It is intended to provide evidence on chemical hazards capable of causing adverse health effects and that may be present in a particular food or group of foods [6]. Hazard identification typically applies the weight-of-evidence approach in which weight-of-evidence approach, in which 'all the evidence considered relevant for risk assessment are evaluated 46 $\frac{1}{48}$ and weighted', and involves data from different lines of evidence, such as epidemiological studies, animal-based toxicology, in vitro tests and information generated by in silico methodologies [87]. In vivo, in vitro and in silico observations support the identification of adverse health outcomes, as well as their nature, since knowledge of both aspects is required to initiate risk assessment. A chemical can only be considered a hazard when adverse 56 offects resulting from its expective org $\frac{55}{57}$ effects resulting from its exposure are identified, so hazard identification studies generally focus on unraveling the nature of any adverse effect and consider biomarkers of effect as the endpoints to be used for this purpose [88].

 detection of chemical hazards per se (i.e. exposure biomarkers) when the workflow is applied in an exposomics framework, but above all, it allows to highlight the perturbations or effects that chemical hazards produce in the $5 - 5$ organism (i.e. effect biomarkers). Furthermore 6 $\frac{8}{7}$ organism (i.e. effect biomarkers). Furthermore, the combination of metabolomics with *in vitro* and *in silico* $\frac{9}{9}$ approaches is beginning to attract the attention of researchers for chemical risk assessment in food with the aim 11 of achieving the objectives established by the 3R principles [51]. Metabolomics is playing an important role in the 13 shift from animal data to in vitro data-based models and more accurate in silico approaches [13]. In this context, metabolomics provides relevant information for hazard identification because it can allow the

 Given the strict definition of haz Given the strict definition of hazard identification, the identification of chemicals with potential hazardous 17 reporting in resulting food anglysis. $\frac{1}{18}$ properties in routine food analysis cannot be included as a part of hazard identification step. However, the **application to food analysis of analytical workflows and data processing tools traditionally applied in metabolomics** can lead to the identification of exposure biomarkers of unknown substances, allowing the early detection of $^{2.4}$ emerging risks that may require risk analysis [89]. For example, a non-targeted LC-MS approach has revealed 25 and 26 an 26 the presence of digory phibolete (DE the presence of dioctyl phthalate (DEHP), which is a widely used plasticizer, in treated/recirculated drinking water samples at concentration levels five times greater than in raw water samples [90]. This fact indicated a possible addition of this chemical to the drinking water during its treatment process. Therefore, metabolomics-based workflows and specifically non-targeted methods can be applied to detect unexpected food contaminants, 35 including new chamical formulations 33
36 **including new chemical formulations, by-products or transformation products which may be more toxic than the** $\frac{38}{38}$ parent species [91,92]. One of the advantages of analyzing food and other exposure sources such environmental samples (e.g. water) using suspect screening and/or non-targeted metabolomics approaches is that they allow retrospective analysis of the data. It brings the possibility of exploiting historical data to identify chemicals of emerging concern (CEC) which noter $\frac{44}{45}$ emerging concern (CEC) which potentially represent a hazard to human health, but are not typically included in 46 monitoring programs (e.g. industrial $\frac{40}{47}$ monitoring programs (e.g. industrial chemicals such as bisphenol S (BPS) or surfactants such as polyethylene glycol) [93].

 Some illustrative examples of the application of metabolomics in different lines of evidence for hazard identification are described below. In general, the studies listed refer directly to an environmental exposure since 55 motobolomies for risk analysis in foos metabolomics for risk analysis in food safety has been applied to a lesser extent. However, the chosen examples $\frac{1}{58}$ are equally valid in the field of food safety, as they assess the effects of chemical hazards that can also be found in food.

5.1.1 Human metabolomics for hazard identification

2 Although toxicological data become $\frac{2}{3}$ Although toxicological data based on animal experiments is normally associated with the main line of evidence for hazard identification, in several cases epidemiological data serve as the first observable evidence of $6\overline{6}$ the effects caused by exposure to certain chemical hazards. HBM (i.e. measurement of chemical concentrations 8 and 2010 **120 and 2010 120 and 2010 120 and 2010 120 and 2010 120 and 2010** ⁹ in human biological samples such as serum or urine) provides useful information to identify chemical hazards or their metabolites which can also nos $\frac{11}{12}$ their metabolites, which can also pose risk concerns. Xenobiotics can undergo bioactivation processes in human 13
13 **13 - Anton Compositor American America** Street $\frac{12}{14}$ metabolism, leading to metabolites that can be an equal or even a greater health risk than the original parent compounds [94]. The identification of exposure biomarkers in human biological samples is typically associated with exposure assessment rather than hazard identification, but biomonitoring data represents an option to detect 20 effect biomarkers carry out hazard in effect biomarkers, carry out hazard identification and, ultimately, be applicable to dose-response assessment in **becard eleganterization** IOE1 Ever hazard characterization [95]. Exposure biomarkers and effect biomarkers are not generally analyzed simultaneously since the concentration of exogenous chemicals in biological samples is at lower concentration 27 levels than endogenous compounds (~10⁻⁷-10⁰ μM vs. ~10⁻⁵-10³ μM) [96], and analytical instrumentation used in 29 metabolomics such as MS does not have a dynamic range capable of covering such a large range of 31 concentrations concentrations.

 $33 \rightarrow 7$ $\frac{34}{34}$ Targeted methods are generally applied to the detection of exposure biomarkers to achieve accurate quantification of chemicals, while both targeted and non-targeted approaches can be used to identify effect biomarkers. The identification of effect biomarkers in targeted methods is hypothesis-driven, so the selection of matabolites to investigate is related $40⁴⁰$ metabolites to investigate is related to the pathways that can be potentially affected by a specific chemical $\frac{12}{43}$ exposure. As many chemical hazards show endocrine-disrupting properties, targeted metabolomics of the steroid **biosynthesis pathway is a possibil** consequently, on human health. As a result, sample preparation and analytical method can be optimized to obtain a more complete picture of change $\frac{49}{50}$ a more complete picture of changes in the metabolic profile of this class of compounds. For example, in a 51 requieus study loopperet of all open previous study, Jeanneret et al. applied a non-targeted metabolomics approach using an ultra-high pressure liquid chromatography (UHPLC)-Q-ToF-MS method to identify urinary biomarkers in workers undergoing severe occupational exposure to EDCs, specifically dioxins [97]. Based on prior knowledge, data dimension consisting of $\frac{58}{2}$ 3,682 unidentified features was reduced to 284 variables by applying m/z filters related to endogenous steroid

 exposure. In a subsequent study, these biomarkers were investigated applying a targeted approach (i.e. selective solid phase extraction (SPE) as sample treatment and selective extraction and integration of targeted m/z signals $5 \qquad \qquad \qquad \qquad \qquad$ 6 from HHPI C-O-ToF-MS analysis) to c $\frac{8}{7}$ from UHPLC-Q-ToF-MS analysis) to characterize a chronic environmental exposure to dioxins [98]. Exposure to $\frac{9}{9}$ dioxins was confirmed to cause dysregulation of urinary steroids and bile acids in humans. sulfates and glucuronides. Finally, 24 steroid-related metabolites were identified as biomarkers of acute dioxin

 Targeted methods are powerful tools to investigate certain metabolic pathways in detail but the application of non-targeted metabolomics is generally preferred to identify effect biomarkers. As a non-driven approach, it is intended to cover the entire metabology ¹⁵ intended to cover the entire metabolome without prior hypothesis, providing more comprehensive information on
16 the MeA and concernent oducing a $\frac{1}{18}$ the MoA and consequent adverse effects of chemicals. Although still limited, several epidemiological studies, 19 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ mainly focused on occupational and environmental exposures, have reported the discovery of effect biomarkers that are relevant in hazard identification through the application of non-targeted metabolomics [99]. Duan et al. 24 have found elevated levels of hypoxanthine in young patients with nephrolithiasis as a consequence of exposure 25 and 20 an 26 to molemine [100] Molemine is consi to melamine [100]. Melamine is considered a food contaminant that has also been used for milk adulteration and 28 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ is associated with renal disease. Urine samples from healthy children (n = 74) and from children diagnosed with nephrolithiasis and a history of melamine exposure (n = 40; melamine-induced nephrolithiasis was not directly 33 associated with the consumption of formula milk) were analyzed by UHPLC-Q-ToF-MS, and a partial least- 35 causes discriminant analysis (DIS) so squares discriminant analysis (PLS-DA) was applied for group separation. Up to eleven compounds were say $\frac{38}{38}$ identified or putatively annotated as effect biomarkers that differentiated control and melamine-exposed groups (e.g. hypoxanthine, uric acid, proline, etc.). To validate the results, urine samples from young patients with nephrolithiasis and a negative history of melamine exposure (n = 33) were also analyzed. Four of the eleven hiomarkers were common in children $\frac{44}{15}$ biomarkers were common in children with nephrolithiasis and seven of them were finally identified as specific 46 higher termoloming induced rep $\frac{40}{47}$ biomarkers for melamine-induced renal disease (e.g. hypoxanthine). This intermediate metabolite was identified as being responsible for causing disorders of purine metabolism and, in combination with the action of uric acid, for the formation of stones in the renal tract.

 Another illustrative example of a non-targeted metabolomics approach using biomonitoring data has covered 55 the investigation of effect biomerkare the investigation of effect biomarkers associated with exposure to various persistent organic pollutants (POPs), in $\frac{1}{58}$ which the consumption of animal fat is attributed as the main route of exposure [101]. Various PCB congeners (i.e. organic chlorine compounds widely used in electrical equipment in the past and which may currently be

 2 HCH) (i.e. organochloride pesticides), and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), which is the main ⁴ exposure biomarker of the pesticide dichlorodiphenyltrichloroethane (DDT), were quantified in serum samples $5 \qquad \qquad$ 6 anniving a tampted GC-MS annmach $\frac{8}{7}$ applying a targeted GC-MS approach, and different levels of these exposure biomarkers were found in each 8 in the second service of the service of $\frac{3}{9}$ individual. The individuals who participated in the study were classified into two groups according to their low or high exposure to each of the selected POPs, since almost the entire population is exposed to these chemicals. Subsequently, and for each POP, the serum samples were analyzed by UHPLC-Q-ToF-MS following a non- tameted annmach and both group $\frac{15}{16}$ targeted approach, and both groups were differentiated by means of an orthogonal partial last-squares discriminant englysis (ODLCDA) (Γ is $\frac{1}{18}$ discriminant analysis (OPLS-DA) (Figure 4). In total, 40 compounds were found to be potential effect biomarkers of POPs exposure, but only 10 metabolites were putatively annotated (or presumptively identified). This fact outlines the main drawback of non-targeted metabolomics, which is metabolite annotation or identification. Glycerophospholipids, specifically glycerophosphocholines and glycerophosphoethanolamines, were finally 26 identified as biomarkers of offect of a identified as biomarkers of effect of exposure to p,p'-DDE, HCB and PBCs, revealing that these POPs may have 28 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ a similar MoA. These biomarkers indicated a perturbation of the lipid metabolism and regulation. present in food as environmental contaminants), hexachlorobenzene (HCB) and β -hexachlorocyclohexane (β -

$31 - 542$ Animal in vivo matabolomical $\frac{31}{32}$ 5.1.2 Animal *in vivo* metabolomics

 Despite epidemiological studies provide evidence for hazard identification, the associated information remains 36 limited due to inadequate oberacte $\frac{33}{37}$ limited due to inadequate characterization of chemical exposure (e.g. the number of analyzed chemical substances may be restricted by the cost, etc.) or the difficulty in controlling confounding factors. In fact, humans are exposed to multiple chemicals presenting similar MoA, so if chemical confounding is not adequately addressed, such confounding can hinder the identification of the effect of a specific chemical [102]. In contrast, experience to a simple chamical or ch $^{45}_{46}$ exposure to a single chemical or chemical mixture can be controlled in animal-based toxicology; therefore, it $\frac{1}{48}$ remains as the predominant line of evidence for hazard identification. Although still rare, several in vivo metabolomics studies have been conducted to characterize the MoA and plausible adverse effects of chemicals, especially in the field of environmental toxicology [103,104,105,106]. From the point of view of human risk assessment, the main limitation of most of these studies is the high exposure concentrations considered in them, **accessions**, the mean annual company 56 which are generally not poethy as $\frac{55}{57}$ which are generally not nearby actual exposures [13]. The potential of metabolomics to perform the risk

 hazard characterization) in more detail. assessment of actual exposure scenarios, including low dose exposures, is discussed in the next section (i.e.

⁴ Recently, Faeste et al. have studied effects of chronic dietary exposure to mycotoxin deoxynivalenol (DON) at 6 the NOAEL level (i.e. 100 up DON/kg I $\frac{8}{7}$ the NOAEL level (i.e. 100 µg DON/kg body weight (bw)/day), and which serves as an example of the potential of 8 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{$ metabolomics for hazard identification at low exposure levels [107]. C57BL/6J mice (males and females) were chosen as animal model and exposure was carried out for two weeks. Serum and brain samples were analyzed by UHPLC-Q-Orbitrap-MS for the detection of exposure biomarkers (only DON was detected in serum samples) and effect hiomarkers. The senaration and effect biomarkers. The separation of both control and exposed groups was observed by PLS-DA analysis, 16 17 but the relevant matchelites were not $\frac{1}{18}$ but the relevant metabolites were not annotated. Although further investigation is still required to explain the MoA of DON by metabolomics, it is clear that low exposure doses to this food contaminant may cause a perturbation of the metabolic pathways involved in neuronal activity. In this study, it was also indicated that DON doses close to 24 the NOAEL level may be responsible for psychological disorders, as concluded from the monitoring brain 26 activation by a Fee protoin expression $\frac{20}{27}$ activation by c-Fos protein expression and behavioral experiments.

 Bearing in mind that current in vivo studies involving high exposure levels may provide limited information for hazard identification, the use of metabolomics to identify effect biomarkers and deciphering the MoA of chemicals has increased considerably in recent years. As in traditional toxicology, rodents have generally been selected as animal model to access the adverse. animal model to assess the adverse effects of exposure to a wide range of chemicals, including pesticides [108], $\frac{38}{38}$ inorganic contaminants such as arsenic [109], or food contact materials such as BPS [110]. As an example, perturbations of amino acids (i.e. tyrosine, phenylalanine, leucine, isoleucine, tryptophan, and the derivative N- acetyl glutamate) and phospholipids (i.e. lysophosphatidyl choline (16:0) (LysoPC (16:0)) and LysoPC (18:0)) levels have been observed in different $44 \overline{4}$ levels have been observed in different groups of Sprague–Dawley rats exposed to 0.1 µg toxic equivalence 45 augustion $(T\Gamma O)/\mu$ dist of pure 2276 $\frac{40}{47}$ quotient (TEQ)/kg diet of pure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), Aroclor 1254 (i.e. a mixture of PCBs) and soot dioxins from a hospital incinerator, respectively [111]. Although various biomarkers such as leucine, isoleucine, tyrosine and tryptophan were related to all types of dioxin exposure, the phenylalanine biomarker was characteristic of exposure to Aroclor 1254 and to soot dioxins. It did not represent a biomarker of effect to 55 avenue to pure TCDD and thus we exposure to pure TCDD, and thus was shown to be relevant in actual exposure scenarios.

 $\frac{1}{58}$ In addition to rodents, other animals such as dog and pigs are accepted for risk assessment in the context of human toxicology. Targeted metabolomics has been applied to study the MoA of hydroxylated PCBs (OH-PCBs),

 2 (Canis lupus familiaris) [112]. Low doses of OH-PCBs suppress 3,5,5'-triiodothyronine (T3)-induced ⁴ transcriptional activation of thyroid hormone (TH) receptors and can cause disruption of neurodevelopment. $5 \qquad \qquad$ Within this framowork brain samples from $\frac{8}{7}$ Within this framework, brain samples from beagle dogs treated with a mixture of twelve PCB congeners (i.e. one-8 - Fritty College Prints $\frac{3}{9}$ day administration of the mixture CB18, 28, 70, 77, 99, 101, 118, 138, 153, 180, 187, and 202 at 0.5 mg/kg) were analyzed by CE-ToF-MS. A list of approximately 900 ionic compounds from the major metabolic pathways (i.e. glycolysis, gluconeogenesis, pentose-phosphate pathway, citric acid and urea cycles, purine and pyrimidine metabolism tricarboxylic acid cycle: metabolism, tricarboxylic acid cycle, and amino-acid and nucleotide metabolism) was selected as metabolites to 17 be to readed in total 100 motobolities $\frac{1}{18}$ be targeted. In total, 198 metabolites were detected in brain samples. OPLS-DA analysis unveiled differences for 33 metabolites between control and PCBs-exposed groups, which were identified as effect biomarkers and 22 related to the urea cycle and adenosine triphosphate (ATP) biosynthesis (Figure 5). A decrease in ATP levels in $^{24}_{2}$ dogs exposed to PCBs was associated with the down-regulation of the urea cycle, which can cause 25 and $\frac{1}{2}$ and $\frac{1$ 26 hyperammonomia and consequently $\frac{20}{27}$ hyperammonemia and, consequently, neurologic disorders. Furthermore, 4-OH-CB202 and 4-OH-CB107 were 28 (1.0010 iii) found by GC-MS analysis as the main exposure biomarkers in brain. which are PCB phase I metabolites and exert toxic effects, and their adverse outcomes in the brain of dogs

 Non-targeted metabolomics using UHPLC-ToF-MS and subsequent OPLS-DA analysis has also provided insight into the toxic mechanisms of 5-nitroimidazoles (i.e. metronidazole, dimetridazole, and ronidazole) in pigs ³⁵ (crossbreed large white/landrace) [11] (crossbreed large white/landrace) [113]. These antibiotics, especially metronidazole, are used in human medicine $\frac{38}{38}$ but are currently banned by the EU in food producing-animals, either as feed additives or veterinary drugs 40 because these substances pose a risk to consumers' health. A total of 27 up-regulated ions and 15 down- 42 regulated ions were found to be significantly different between control and exposed groups, and 7 of them were finally annotated (i.e. 5-oxonroline rib $\frac{44}{15}$ finally annotated (i.e. 5-oxoproline, riboflavin, guanosine and four bile acids). These biomarkers demonstrated the honototovicity of ϵ pitroimide-electricity $\frac{40}{47}$ hepatotoxicity of 5-nitroimidazoles that was related to perturbations of the bile acid metabolism. It is worth mentioning the discovery of riboflavin as biomarker of exposure to 5-nitroimidazoles because the riboflavin biosynthesis is only possible by plants and some bacteria. However, in this and in previous studies, this effect biomarker has been associated with protein degradation promoted by hepatotoxic chemicals and due to carbolic 55 ctotoc **States**. states.

57 – F. L. L. L. C. L. C. L. L. C. L. L. C. L. L. C. L. L. L. C $\frac{58}{58}$ Furthermore, the zebrafish (Danio rerio) has recently emerged as the alternative in vivo model, albeit not new and still an animal, to be implemented in this field of research. It is now accepted that this vertebrate non-human

 metabolism with that of mammals. In addition, the use of the zebrafish model is more appropriate according to 3R principles, as well as involves lower cost and is easier handling than other animal models [114]. Elie et al. has avaluated the zebrafish as in vivo $\frac{8}{7}$ evaluated the zebrafish as in vivo model in combination with non-targeted metabolomics to study the $\frac{9}{9}$ developmental toxicity of benz[a]anthracene (BAA) and benz[a]anthracene-7,12-dione (BAQ), which are a PAH 11 and an oxygenated-PAH derivative (Oxy-PAH), respectively [115]. Exposure concentration was set at 4 µM in both experiments, and zebrafish larvae were subsequently subjected to HPLC-Q-ToF-MS analysis. Finally, the dataset was examined by both princip 15 dataset was examined by both principal component analysis with discriminant analysis (PCA-DA) and PLS-DA. In
16 total 62 motobolitan wave identified $\frac{1}{18}$ total, 63 metabolites were identified as relevant to BAA or BAQ exposures, or both of them, showing 19 (a) **19** (b) perturbations of various metabolic pathways (i.e. glutathione metabolism; glycine, serine and threonine metabolism; cysteine and methionine metabolism; purine metabolism; phenylalanine metabolism; phenylalanine, $^{24}_{2}$ tyrosine and tryptophan metabolism; and aminoacyl-tRNA biosynthesis). Purine metabolism was the pathway 26 most affected by experience to PAA most affected by exposures to BAA and BAQ. It was associated with the fact that PHAs induce mitochondrial $\frac{1}{28}$ $\frac{1}{2$ oxidative damage and reduce ATP levels, so in response, purine catabolism increases to finally restore nucleotide levels, including ATP. model is useful for understanding developmental toxicity pathways in humans due to the similarity of its

$33 - 2481 + 111$ $\frac{3}{3}$ 5.1.3 *In vitro* metabolomics

36 Animal model have traditionally 358
37 **Animal models have traditionally been used in toxicological studies because they are expected to show a** similar response to chemical exposure as humans. However, there are several examples in which the toxic effects of chemicals observed in laboratory animals and humans are qualitatively and/or quantitatively different ⁴³ [10]. In vitro studies overcome this drawback of species extrapolation, since toxicity assessment can be carried out directly on human cell cultures $^{45}_{46}$ out directly on human cell cultures, and pathways affected *in vitro* by exposure to chemicals are also normally $\frac{1}{48}$ affected in vivo [13]. In this regard, physiologically-based pharmacokinetic (PBPK) models correctly address the main challenge of in vitro to in vivo extrapolation to realistically reflect human physiology and metabolism [51]. PBPK models are mathematical descriptions that cover the organs and tissues of body and their connections by the cardiovascular system, and are applied to explain the toxicokinetics of chemicals [116]. More complex **and the conditions of the conditions** of the conditions 56 heliopologically begad models also alle $\frac{55}{57}$ physiologically-based models also allow linking toxicokinetics and toxicodynamics [51].

 2 type to perform in vitro assays using human-derived cells. The liver is actively involved in the metabolism of xenobiotics and a large percentage of them have shown hepatotoxic properties. Consequently, human liver cells \sim \sim \sim \sim \sim 6 have traditionally hean selected to ass $\frac{8}{7}$ have traditionally been selected to assess toxicity using *in vitro* models [117].HepG2 cell line, which consists of human liver carcinoma cells, and HepaRG cell line, which is an original human hepatoma cell line, have been the 11 most widely used in vitro models in the hazard identification and characterization of various chemicals, such as organophosphate and halogenated flame retardants [118,119,120]. HepG2 cell is not recommended for the detection of henatotoxicity due to the 15 detection of hepatotoxicity due to the low endogenous expression of cytochromes, but is the model of choice for
16 at the mitophone drial to rigin to to $\frac{1}{18}$ studying mitochondrial toxicity due to their high content of organelles and mitochondrial DNA (mtDNA). HepaRG cells show a metabolic capacity similar to normal hepatic metabolic function, making it the recommended model in studies of xenobiotic metabolism, hepatotoxicology, and hepatocyte differentiation [117]. The human body is made up of a wide range of different cell types, so it is crucial to select the appropriate cell

 24 Since in vitro experiments are more affordable in terms of cost and easy manipulation than in vivo testing, in *vitro* studios generally investigate a vitro studies generally investigate several exposure concentrations; therefore, most articles involving in vitro metabolomics for risk assessment found in the literature are classified primarily in the context of hazard characterization rather than hazard identification. The metabolomics study on exposure to nine organophosphate flame retardants in Hep G2 cells represents an example of hazard identification using in vitro models [119]. Different call cultures were exposed to Different cell cultures were exposed to one of the organophosphate flame retardants at a concentration of 10⁻⁸ M
36 $\frac{38}{38}$ and the aqueous intracellular metabolites were analyzed by ¹H NMR. Cells were classified by PLS-DA into three groups distinct from the control group. Cluster 1 encompassed cells exposed to tris(methylphenyl)phosphate (TMPP), tris(2,3-dibromopropyl) phosphate (TDBPP) and tris(phenyl) phosphate (TPHP). Cluster 2 consisted of cells exposed to tris(2-ethylbexyl) cells exposed to tris(2-ethylhexyl) phosphate (TEHP), tris(2-butoxyethyl) phosphate (TBOEP), tris(2-
45 chloraison (b) phoenhote $(TCIDD)$ chloroisopropyl) phosphate (TCIPP) and tris(chloroethyl)phosphate (TCEP). Finally, cluster 3 was constituted by cells exposed to tri-n-butyl phosphate (TNBP) and tris(1,3 dichloro 2 propyl) phosphate (TDCIPP). Using the **The Hathanay Analysis module**" included in the web-tool MetaboAnalyst [121], all organophosphate flame retardants were shown to alter glutathione biosynthesis and histidine degradation pathways, while compounds classified in 54 more enemy to allen graduations electors angelfie DLC DA angung also dismus specific PLS-DA groups also disrupted y-aminobutyrate (GABA) shunt and ornithine biosynthesis pathways. Oxidative stress was found as the common effect of exposure to organophosphate flame retardants.

 adverse effects rather than hepatotoxicity. EDCs like bisphenol A (BPA) and its analogs (e.g. bisphenol F (BPF), ⁴ BPS, etc.) have been shown to disrupt normal mammary development and even cause cancer. Within this framework metabolomics has been a $\frac{8}{7}$ framework, metabolomics has been applied to study the toxic mechanisms of BPS in human breast epithelial 8 MOF 40A U LI SALAH SEB $\frac{9}{9}$ MCF-10A cells, which are immortalized and not tumorigenic cells and are widely used as in vitro breast model [122]. Cells were exposed to 1 µM of BPS and subsequently studied using an integrated non-targeted metabolomics and proteomics approach. Metabolites were analyzed by LC-Q-Orbitrap-MS, showing that 35 of them were down/un-requisited due to ¹⁵ them were down/up-regulated due to BPS exposure. In combination with the differential expressed proteins
16 (DEDs) found these biomericans of $\frac{1}{18}$ (DEPs) found, these biomarkers of effect revealed significant disturbances of tricarboxylic acid (TCA) cycle, purine metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, pyruvate metabolism and alanine, aspartate and glutamate metabolism, and which were ultimately related to sustaining cell proliferation and cellular $^{2.4}$ signal transduction. Multi-omics approaches such as this example show how a more complete and clear view on 26 the MeA of chamicals can be obtain the MoA of chemicals can be obtained when combining metabolome and proteome investigation, since both involve closely related biological processes. In addition to liver cells, other cell lines can be selected to assess toxicity mechanisms that lead to other

\overline{a} \overline{a} \overline{a} \overline{b} \overline{a} \overline{b} \overline{a} \overline{b} \overline{a} \overline{b} \overline{c} \overline{a} \overline{b} \overline{c} \overline{a} \overline{b} \overline{c} \overline{a} \overline{b} \overline{c} \overline{c} \overline{c} \overline{c} \overline{c} $\frac{31}{32}$ 5.1.4 In silico approaches applying metabolomics

 $\frac{34}{10}$ In silico methods have been developed to estimate the toxicity of chemicals in the absence of experimental 36 data and as an attampt to refine and $\frac{38}{37}$ data and as an attempt to refine and reduce animal testing, while contributing to the rationalization of *in vivo* and 38 in vitro studies in the context of weight-of-evidence assessment generally applied in hazard identification [51]. Within in silico methods, the application of QSAR approaches is widespread in the field of toxicology. QSAR 43 methodology consists of mathematical models that link the biological/toxicological activity of chemicals with their physicochamical property-based des 45 physicochemical property-based descriptors, electronic and topological descriptors, and/or chemical structure-
46 $\frac{1}{48}$ based descriptors. Models are created with a training set of chemicals of known toxicity and are used to predict the toxicity of test compounds with biological and/or chemical properties similar to those of training compounds (e.g. using matching learning approaches). As a result, chemicals can be grouped into toxicity categories based on their structural similarities. QSAR models are very useful for quickly grouping toxicants based on their 56 hypinophomical proportion and their physicochemical properties and their correlation within large datasets, but they neglect specificity and complexity of molecular interactions, which introduces significant uncertainty into the effective prediction of toxicity [123].

 chemical grouping can be achieved by incorporating biological information into QSAR models, extending the ⁴ application of QSAR models to hazards that belong to different chemical families and leading to quantitative $5 \qquad \qquad$ 6 higherical activity relationships (ORAR) $\frac{8}{7}$ biological activity relationships (QBAR) models as described by Ravenzwaay et al. [124]. Biological information $\frac{3}{9}$ can come from metabolomics studies that effectively contribute to grouping chemicals with similar toxicity endpoints according to specific patterns of metabolites up- or down-regulated as result of their MoA. In this sense, the industry has led during the last decade the initiative to demonstrate the added value of metabolomics in toxicity assessment narticularly wh $\frac{15}{16}$ in toxicity assessment, particularly when in silico approaches are used, and with special relevance in the shift of 17 shopping examing concept (from one b $\frac{1}{18}$ chemical groping concept (from one based on the similarity of chemical structures to one more efficient based on the similarity of metabolic fingerprints) [125]. Metabolomics-based QBAR models have not only demonstrated that chemically similar substances, as expected, are also toxicologically similar (e.g. 2-methyl-4-chlorophenoxyacetic 24 acid (MCPA), which is a phenoxy herbicide, matches structurally and toxicologically with other phenoxy-26 borbioides lie dieblereren (24 DD) herbicides [i.e. dichlorprop (2,4-DP), 2,4-dichlorophenoxyacetic acid (2,4-D) and mecoprop (MCPP)]), but have 28 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ also revealed toxicological dissimilarities of compounds with slight structural differences [124]. Chemical similarity does not necessarily imply a toxicological similarity. Thus, better prediction ability and

 Since the predictive ability of QSAR models is limited when applied to chemicals belonging to different classes, their combination with other in silico methods (e.g. read-across extrapolations) and other lines of evidence $(a \circ n \text{ with } n \text{ with } a$ s 35 evidence (e.g. *in vivo, in vitro* data) is recommended to provide more reliable results for hazard identification evidence of the vitro data) is recommended to provide more reliable results for hazard identification **14001** Observation and subset $\frac{38}{38}$ [126]. Chemical grouping and subsequent read-across from data-rich chemicals that belong to the same group is considered as the most efficient in silico approach to reduce animal testing in risk assessment [124,127]. Read- across extrapolations use relevant data from source substances to predict the toxicity of target compounds that have a structural or toxicological rel have a structural or toxicological relationship according to a similar plausible MoA [128]. Like QSAR models, 46 road occase oan benefit from toking b $\frac{40}{47}$ read-across can benefit from taking biological data into account rather than relying solely on structural similarities to functionally support a read-across case. In general, read-across approaches are not accepted as weight-of- evidence by, for example, the European Chemicals Agency (ECHA) due to their inherent uncertainty; however, metabolomics data provide sufficient confidence regarding mechanistic similarity to support toxicity assessment 55 confuing road across approaches a applying read-across approaches and to fulfil data gaps on non-experimentally evaluated toxicity endpoints $\frac{58}{58}$ [127,129]. As a first proof of concept, Ravenzwaay et al. applied a read-across approach using metabolomics data to assess the toxicity of MCPP and selecting 2,4-DP as the best source substance (based on metabolic

 day exposure experiment in Wistar rats, and read across predictions were comparable to a 90-day rat toxicity study of MCPP, with the liver and kidney being the target organs for toxicity. Therefore, this latter experimentation $5 \qquad \qquad$ can be avoided and replaced by predi $\frac{8}{7}$ can be avoided and replaced by predictions based on read-across in combination with metabolomics data from $\frac{9}{9}$ 28-day studies and information from a 90-day toxicity study of 2,4-DP. profiling similarities and compared to MCPA) [127]. Metabolomics was performed on blood samples from a 28-

5.2 Hazard characterization $\frac{11}{12}$ 5.2 Hazard characterization

14 Hazard characterization is conducted within the chemical risk assessment process to establish a relationship hatwaan chamical avnosura dosa lay 16
17 between chemical exposure dose levels and observed adverse effects (i.e. dose-response relationship). Dose-18 measures relationships contribute to $\frac{19}{19}$ response relationships contribute to the estimation by risk assessors of toxicological reference values [e.g. TDI (tolerable daily intake) and acceptable daily intake (ADI)], which is the main outcome of the risk characterization $2³$ step and subsequently support risk managers' decision-making to set maximum exposure levels for each 24 and 25 and 26 and 26 and 26 and 26 and 26 and 27 an chamical bazard (e.g. MI De of posti $25₂₆$ chemical hazard (e.g. MLRs of pesticides in food). In this context, metabolomics applied in *in vivo* and *in vitro* 27 (a.m. 1980) studies has demonstrated to be a powerful approach to differentiate groups exposed to different concentrations of chemicals, such as PCBs [130,131], flame retardants [120,132,133], BPA [134], PFAs [135], organotin compounds [134], PAHs [136], or pesticides [137,138,139]. In vitro metabolomics approaches are of special interest herause they allow testing a interest because they allow testing a greater number of dose levels and a larger set of chemicals at lower cost 36 and suscribed the them in this studie $\frac{37}{37}$ and execution time than *in vivo* studies, and in compliance with the 3R principles [140]. Information resulting from *in vivo* metabolomics has generally been limited by the low number of data points due to ethical concerns and the high cost of animal experimentation, leading to poor quantitative data on dose-response relationships [85]. Two or ⁴³ three dose levels (low, medium and high exposure levels) have often been considered to assess dose-response 45 relationships in in vive studies 1422 relationships in *in vivo* studies [132,135,137]. This reduced number of assayed exposure levels may not be 48 sufficient to accurately estimate the risk of chemical hazards, especially at low exposure levels as in the case of 50 hormesis or non-monotonic dose response such as EDCs [19,21]. Another limitation of the *in vivo* metabolomics studies reported so far is that, in general, they have not investigated doses close to actual exposure levels, nor have they provided information on the 54 have they provided information on the dose of exposure at which the first adverse effects are induced [13], and
55 what is crucial to understand the developmental toxicity pathway of chemicals. As in traditional toxicological studies, high dosage has been applied to observe toxicity effects. This fact must be taken into account and

⁴ The sensitivity of metabolomics to identify changes caused by chemical exposure in an organism and its 6 ability to demonstrate the absence of a $\frac{8}{7}$ ability to demonstrate the absence of an effect are the main strengths of metabolomics to apply this technology in $\frac{9}{9}$ the prediction of effects and the establishment of a no observed effect level or NOEL [127]. Although the increased sensitivity of metabolomics compared to classical NOAEL approaches has been recently questioned [141], it is necessary to differentiate between the identification of sensitive biomarkers of effect and early hiomarkers of effect. Sensitive hioms 15
16 **biomarkers of effect. Sensitive biomarkers refer to visible effects that only occur at higher doses, whereas early** 17 biomonicano are related to the first of $\frac{1}{18}$ biomarkers are related to the first changes in the organism before visible toxicity [13]. Metabolomics has the 19 (a.e.) and (b.) (b potential to detect early biomarkers of effect, thus identifying the MIE caused by specific chemical hazards in the organism and accelerating the construction of AOPs [125]. This strength makes metabolomics the ideal $\frac{24}{10}$ technology to investigate the toxicity of chemicals at low doses that correspond to real exposure scenarios. 25 and 200 million 200 million

5.2.1 Metabolomics to address low-dose effects

30 'Low-dose' effects refer to the rep used in traditional toxicological studies for risk assessment [142], and which are normally below the currently accepted NOAEL. In this regard, risk assessment should generally address exposure to these low-dose levels 36 honouro they represent the real experience 38
37 because they represent the real exposure scenarios that humans experience. Although still limited, metabolomics 39 studies are interested in unveiling the low-dose effects of chemicals, with a special focus on EDCs and substances with possible endocrine disruption properties, such as BPA or short-chain chlorinated paraffin (SCCP) 43 plasticizers, respectively [143,144]. The low-dose effects related to BPA exposure have been investigated by metabolomics using $1H$ NMR as an $^{45}_{46}$ metabolomics using ¹H NMR as analytical tool [143], and it represents one of the few *in vivo* metabolomics $\frac{1}{48}$ approaches that has truly addressed the challenge of low-dose effects in the context of human hazard 50 characterization. Despite the TDI for BPA is currently set at 4 µg/kg bw/day within the EU according to the EFSA, 52 this threshold was set at 50 µg/kg bw/day at the time of the study [142]. Cabato et al. exposed fetuses and $^{54}_{-2}$ neonates of CD-1 mice to low doses of BPA (0.025, 0.25, or 25 µg BPA/kg bw/day) by administering BPA to their 56 mothers from day of gootning a to a $\frac{57}{57}$ mothers from day of gestation 8 to day of lactation 16 [143]. PLS-DA showed greater differences between the 59 group affected by perinatal exposure to the 25 µg dose of BPA and the other offspring groups when postnatal day

 1 2 exposed to a 0.025 µg dose of BPA. Glucose, pyruvate, some amino acids, and neurotransmitters (i.e. GABA and 3 4 glutamate), lipids (i.e. phosphatidylcholine and glycerophosphocholine), among others, were found as effect 5 6 hiomarkers suggesting a disruption $\frac{8}{7}$ biomarkers, suggesting a disruption of energy metabolism and brain function, and outlining adverse health 8 (PPALLICT) $\frac{9}{9}$ outcomes at BPA levels at which exposure was tolerable. The metabolic effects of BPA at low and very low doses 10 11 (i.e. 10⁻⁶, 10⁻⁹ and 10⁻¹² M) has also been demonstrated in *in vitro* tests using the HepG2 cell line [145]. 12 13 Metabolomics studies were carried out by means of ¹H NMR analysis, and ¹H-¹H COSY and ¹H-¹³C HSQC 14 15 analysis determined the structure of 15 analysis determined the structure of metabolites of interest. Metabolic sub-networks were generated from the
16 17 motobolic financephoto to olucidate the $\frac{1}{18}$ metabolic fingerprints to elucidate the MoA of BPA at low doses. The obtained results confirmed that exposure to 19 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ 20 low doses of BPA induce perturbations in the energy metabolism, as observed in previous in vivo metabolomics 21 22 study [143], and more specifically in the first steps of the Krebs cycle. The detected biomarkers of effect (i.e. 23 24 amino acids) also appointed to the possible obesogenic properties of BPA. 25 21 serum samples were analyzed. However, greater differences in brain samples were observed for the group (i.e. 10^s, 10⁹ and 10⁻¹² M) has also been demonstrated in *in vitro* tests using the HepG2 cell line [145].
Metabolomics studies were carried out by means of 'H NMR analysis, and 'H-VH COSY and 'H-¹³C HSQC
analysi

26 Although other in vive metabolen $20²⁰$ Although other *in vivo* metabolomics studies have not adequately addressed low-dose effects as has been 28 (CONTRACTOR) 29 done for BPA, they have tended to consider environmental exposure levels as at least the lowest data point in 30 31 dose-response assessment. For example, hazard characterization of SCCPs has been carried out in Sprague-32 Dawley rats exposed at different dose levels (i.e. 0, 0.01, 1 and 100 mg/kg bw/day) for 28 days [144], in which 34 34 35 0.01 malka hwlday represented daily 36 Commyng binday represented daily 37 $\frac{38}{38}$ lowest-observed adverse effect level (LOAEL) reported in rats experiments. Metabolomics analysis by LC-MS of 39 40 liver samples, and further analysis of the data by PLS-DA, showed a separation of the control and the three-41 42 exposed groups (Figure 6). Furthermore, the metabolic effect level index (MELI) exhibited a significant dose-43 44 dependent increase for SCCPs ex $44 \over 45$ dependent increase for SCCPs exposure (Figure 6B). Integrated metabolomics and transcriptomics data 46 augusted two moior MoAs for CCC $\frac{4}{47}$ suggested two major MoAs for SCCPs, namely inhibition of energy metabolism and activation of peroxisome 48 and the contract of the con 49 proliferator-activated receptor a (PPARa), which has functions on lipid metabolism and peroxisome proliferation. 50 51 This study not only showed the plausible hepatotoxicity of SCCPs, but also demonstrated that environmental 52 53 doses (or low doses) of SCCPs may cause relevant adverse health effects. PPARa activation was clearly 54 55 absorped for the bigh does tooted b 56 observed for the high dose tested, but an acceleration of fatty acid metabolism attributed to the SCCP-induced 57 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ $\frac{1}{58}$ activation of a small amount of PPAR α was also identified for exposure to environmentally relevant doses. Metabolomics studies were carried out by means of 'H NMR analysis, and 'H-I-H COSY and 'H-I-SC HSQC
analysis determined the structure of metabolites of interest. Metabolic sub-networks were generated from the
metabolic fin

5.2.2 Decoding the effects of chemical mixtures

2 les other forward to address optus $\frac{2}{3}$ In a step forward to address actual exposure scenarios, metabolomics studies are also beginning to provide risk analysis information on exposure to chemical mixtures and their possible additive, potentiating, synergistic or $6\overline{6}$ even antagonistic effects. Although they have primarily addressed this challenge from a hazard identification 8 and 2010 perspective (e.g. for mixtures of pesticides [146,147] or mycotoxins [148]), some of these studies have also covered the hazard characterization ¹¹/₁₂ covered the hazard characterization of chemical mixtures, using either in vivo or in vitro models 1404504544501 $T_{\text{corrected}}$ is eiter- $\frac{12}{14}$ [149,150,151,152]. Targeted in vitro metabolomics has been applied to carry out the hazard characterization of POPs mixtures, including chlorinated (i.e. PBCs, and organochlorine pesticides), brominated (i.e. hexabromocyclododecane and polybrominated diphenyl ethers), and fluorinated substances (i.e. perfluoroalkyl acids) [150] Since POPs have endo 20 acids) [150]. Since POPs have endocrine disrupting properties and the adrenal cortex is one of the major target 21 organs affected by their action, the H295R adrenocortical cell line was selected to investigate the effects of different combination of POPs mixtures (e.g. fluorinated; fluorinated and chlorinated; fluorinated, chlorinated, and brominated compounds; etc.) on steroidogenesis. H295R cells stimulated with forskolin to promote 29 steroidogenesis and unstimulated cells were exposed for 48 hours to four different concentrations of POPs mixture corresponding to 1 10 1 $\frac{31}{32}$ mixtures, corresponding to 1, 10, 100 and 1000 times the estimated concentrations in human blood. The combination of brominated and fluorinated mixtures showed the most severe perturbations in the steroidome, while a non-additive effect was observed for the combination of chlorinated and fluorinated mixtures at the ³⁸ highest dose level compared to the single effects of each mixture. This result represents just one of many that challenges the dose addition approx $40⁴⁰$ challenges the dose addition approach widely applied to predict the toxic effects of chemical mixtures with a $\frac{12}{43}$ similar MoA, and which considers the sum of the toxicities of the individual components equal to the toxicity of the chemical mixture [26]. Furthermore, it also reflects the need for further research on the characterization of the interaction of chemicals at doses related to environmental and dietary exposures, but in the low-dose region of the dose-response curve with data po $\frac{49}{50}$ the dose-response curve with data points at or below the NOAEL for individual components of the mixture rather 51 then unreglistic expensive deeps [49] $52¹$ than unrealistic exposure doses [12].

5.2.3 Metabolomics for actual exposure scenarios: effects of low-dose chemical mixtures

 The assumption that chemical hazards do not pose a risk at levels below the NOAEL should be reviewed as ⁵⁹ evidence shows that joint exposure at these low-dose levels can cause adverse effects [33]. NOAELs are 60 Charles chemic and joint expective

 chemical mixtures whose individual components are at exposure levels below these thresholds [26]. Actually, the ⁴ joint action of chemicals at levels below their NOAEL can lead to additive or interactive effects and endanger $5 \qquad \qquad$ 6 human haalth [153] Tharafora improv $\frac{8}{7}$ human health [153]. Therefore, improving risk assessment seems crucial to cover actual exposure scenarios in 8 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{$ $\frac{3}{9}$ which hazard characterization must address long-term low-dose exposure to chemical mixtures. However, simulating actual exposure scenarios raises several questions, such as how chemical mixtures should be 13 selected for risk assessment or what dose levels should be examined to appropriately represent environmental and dietary exposures and obtain use 15
16 **and dietary exposures and obtain useful information for risk assessment. Although this discussion is beyond this** 17 review it is interesting to mention the $\frac{1}{18}$ review, it is interesting to mention that, in the framework of risk assessment for food safety, TDI or ADI values can be applied as reference to choose data points for dose-response curves of chemical mixtures, as recently proposed by Tsatsakis et al. [154]. While the middle dose may be established at the ADI of each chemical in the $\frac{24}{100}$ mixture, the lower doses should investigate the effects of ex-25 and 2012 and 2013 $\frac{26}{27}$ 0.25×ADI). 0.25 0.7 generally established by risk assessment of individual chemicals, and it is assumed that there is no risk for

 Environmental and dietary exposure levels or NOAELs are usually included as the lowest data point of dose- response curves when carrying out human health hazard characterization of chemical mixtures by metabolomics approaches [150,152,153]; therefore, it cannot be considered that the effects of low doses of chemical mixtures have been studied by metabolomics have been studied by metabolomics in detail. More importantly, when investigating possible 'cocktail' effects by
36 $\frac{38}{38}$ metabolomics, it should be relevant to include groups exposed to individual chemicals in order to correctly conclude that the metabolome disruption is a consequence of additive or interactive effects of the mixture rather than an observation resulting from increased sensitivity of the metabolomics approach compared to the toxicity test used for the establishment of t test used for the establishment of the individual NOAELs. This consideration is not common in toxicological 46 motobolomics studies that address as $\frac{40}{47}$ metabolomics studies that address exposure to chemical mixtures.

 Simply as an illustrative example, metabolomics has been applied in the hazard characterization of a mixture of pesticides (i.e. dichlorvos, acephate, dimethoate, and phorate) and the NOAEL corresponding to each substance (2.4, 0.5, 0.04, and 0.05 mg/kg bw/day, respectively) was established as the lowest data point [153]. Other data points included 3 and 0 to Other data points included 3 and 9-times the NOAEL of each pesticide as middle and high doses. Wister rats were exposed to the chemical mixture and PCA of urine fingerprints already showed differences between the control and exposed groups after 12 weeks from the beginning of the exposure. The high-dose group was clearly

 observed for low- and middle-dose groups. In this context, perturbations of various metabolites were detected in ⁴ the low-exposure group after 24 weeks of treatment compared to the control group ($p < 0.01$, analysis of covariance) including biomarkers of ϵ $\frac{8}{7}$ covariance), including biomarkers of exposure (e.g. dimethylphosphate) and effect (e.g. uric acid, citric acid, $8 \rightarrow 1 + 1 + 1 + 1$ $\frac{3}{9}$ cholic acid, etc.). These results associated exposure to low doses of this pesticide mixture with several possible health outcomes such as oxidative stress, impaired lipid metabolism, and interference with the TCA cycle. Evidence like this highlights the need to conduct an adequate risk assessment of chemical mixtures at levels helow individual NOAFI s to hetter u 15 below individual NOAELs to better understand potential 'cocktail' effects, as well as the requirement of legal
16 17 mondotes to come out further recepted $\frac{1}{18}$ mandates to carry out further research and move forward on this topic [155]. differentiated from the other groups after 24 weeks of exposure, and only a partial overlap in the PCA was

53 Fynosure assessment $\frac{20}{21}$ 5.3 Exposure assessment

 Exposure assessment is a crucial step in risk assessment because there is no risk without exposure. 25 Therefore, its main objective is to define the agents, sources, and routes of exposure and involves estimating or **Contract Contract Co** 27 measuring the levels frequency and $28 \over 28$ measuring the levels, frequency and duration of the exposure. Exposure assessment can be performed using direct (i.e. point-of-contact and biological biomonitoring) or indirect (i.e. exposure scenarios estimation) approaches [156], and the determination of specific and sensitive biomarkers of exposure is a method to carry out chemical exposure assessment [102]. Data treatment and analytical tools similar to those used in metabolomics 36 are applied to identify expect to high $\frac{336}{37}$ are applied to identify exposure biomarkers, either in exposure sources such as food (i.e. generation of point-of-38 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ contact data) [157], or directly in human samples where exposures from all routes are integrated (i.e. HBM data) [158]. Due to the multiple sources and scenarios of exposure, biomonitoring data is the best choice for a proper exposure assessment [159]. HBM, in combination with biomarkers discovered by metabolomics, also contributes to human hoalth rick accordent $\frac{45}{46}$ to human health risk assessment by providing information on uptake, bioavailability and bioactivation of $\frac{1}{48}$ chemicals in humans. In a risk assessment framework, chemical hazards are generally analyzed in first contact tissues (e.g. lung lining fluid), but there is a current trend to investigate the metabolites of these substances in biological fluids (e.g. urine, blood, etc.) and their interaction with tissues [37]. However, the pharmacokinetics of absorption, metabolism, and excretion, as well as the time between exposure and sample collection, must be **and the substitution** of the state o 56 known when considering biomerkers $\frac{55}{57}$ known when considering biomarkers of exposure in these biological fluids to accurately measure exposure [156].

 metabolomics studies, the same or similar data processing and analytical tools are used in both cases. In this ⁴ regard, the current state of the art of HBM for exposure assessment is briefly discussed in this section. It serves $5 \frac{1}{2}$ examinization to the new trend in ϵ $\frac{8}{7}$ as an introduction to the new trend in exposure assessment (i.e. exposomics) that does not only intend to identify $\frac{9}{9}$ chemical exposures, but also to use the resulting epidemiological data to link chemical exposures with adverse health outcomes. This fact implies that the same epidemiological study can respond to both exposure assessment and hazard identification steps (even to hazard characterization step) by means of a different interrogation of the data Exposor $\frac{15}{16}$ interrogation of the data. Exposomics studies require information obtained from, among others, 'omics 17 convenience including metabolomies $\frac{1}{18}$ approaches including metabolomics in order, through the identification of biomarkers of effect, to be able to link 19 (a) <u>19 (a) 19 (</u> chemical exposures to the development of disease. At the same time, it provides a new approach to carry out exposure assessment through the identification of metabolic fingerprints that can be related to exposure to $\frac{24}{10}$ specific chemical hazards, and in which metabolomics plays a relevant role. Although the exclusive determination of exposure biomarkers in HBM studies goes beyond the purposes of

5.3.1 Human biomonitoring

 HBM methods are generally intended for the determination of compounds of the same chemical family and typically apply targeted approaches involving LC-QqQ-MS analysis. Targeted biomonitoring provides quantitative information on the internal dose of chemicals and their prevalence in the population [160], ensuring that 36 nopulation is not expected to concentr population is not exposed to concentration levels of chemicals at which bioactivity has been observed in *in vitro* or in vivo studies. The main limitation of traditionally targeted biomonitoring programs for exposure assessment is the small number of known substances that are monitored [160], which currently comprises around 250 chemicals [158] and do not cover actual exposure scenarios. As an attempt to improve the current risk accorder and $\frac{45}{2}$ 45 assessment scenario, more comprehensive exposure assessments are pursued by implementing suspect $\frac{1}{48}$ screening and non-targeted HBM approaches [161]. These strategies, which are based partially (e.g. sample treatment, analysis, data mining, etc.) or completely on workflows similar to those of metabolomics, provide a more complete fingerprint of chemical exposure to discover new exposure biomarkers.

 Suspect screening and non-targeted do not only contribute to the evolution of HBM from targeted analysis of a **CREPTOR CONTROL** SERVICE SERVICE ST 56 fou obominale towards more holiation $57₅₇$ few chemicals towards more holistic approaches in the context of exposure assessment, but overall they are also impacting exposure and epidemiological studies. In this vein, the study of the exposome using non-targeted

 exposure to multiple chemicals over the entire human lifetime [34,161]. Nevertheless, the ability of these methods 4 to support exposure and health studies beyond the identification of CECs remains to be demonstrated due, for $5 \hspace{2.5cm} \ldots \hspace{2.5cm}$ 6 example to the bight false perstives ray $\frac{6}{7}$ example, to the high false negatives rate [162]. 'omics is generating high enthusiasm and expectation among researchers to understand the adverse effects of

$5.3.2$ Exposomics

 There is a clear shift in the way toxicological studies are conducted to address the current challenges of risk 14 assessment (i.e. from identifying apical endpoints of toxicity to understanding the mechanisms of toxicity), and that it is also impacting enidemiplogic $\frac{16}{17}$ that it is also impacting epidemiological research. Exposure studies are evolving from empirical observations to a 18 and a subset of the state of the stat $\frac{19}{19}$ molecular epidemiology paradigm that incorporates exposure and pathogenesis [85]. This trend is part of the global change that risk assessment is undergoing as a whole. It involves a shift from hazard-driven to exposure- driven approaches based on the integration of relevant exposure data (i.e. external dose) into an internal dose ²⁵ (i.e. toxicokinetics) to further relate it with a MoA or AOP (toxicodynamics) [51].

 The term 'experience' existently $\frac{28}{28}$ The term 'exposome', originally coined by C. Wild [163], emerged to support the shift in the current risk assessment model to a more holistic and integrated approach that investigates all sources of environmental exposure (e.g. chemical agents, biological agents, radiation, psychosocial components) [58,59]. Specifically, the ³⁴ chemical exposome comprises any exogenous exposure and endogenous chemical exposures caused in 36 reception to external etraceore I164 response to external stressors [164]. The study of the exposome is a step beyond traditional HBM-based $\frac{37}{100}$ exposure assessment because it aims to capture all exposures that occur from conception onwards and, at the same time, linking these non-genetic factors with adverse health outcomes (i.e. exposomics). Exposomics, 43 through among others, the application of 'omics approaches such as metabolomics, is called upon to unravel disease mechanisms by discovering disease mechanisms by discovering effect biomarkers that explain the connections between environmental 46 $\frac{1}{48}$ exposure and health outcomes [165,166]. As a consequence, the population groups most sensitive to such exposure can also be identified and critical exposure concentrations can be established to support risk management and the enforcement of health prevention actions.

 Measuring all exposures in a long-term approach is a Herculean task, so early exposome research focuses **Contract Community Contract Community** Community Community Community Community Community Community Community 56 (or is recommended to do so) primi $\frac{55}{57}$ (or is recommended to do so) primarily on critical periods of life when chemical exposure may have a high 59 incidence (e.g. in utero exposome) and/or on priority chemicals [167,168]. In this sense, the characterization of

 2 measure exposure during the entire individual's lifespan, since some risk factors related to specific exposures can ⁴ already be defined by detecting specific biomarkers of effect [59]. In fact, the effect biomarkers represent one of the two nillare of the exposome studies $\frac{8}{7}$ the two pillars of the exposome studies as they allow refinement of exposure assessment due to their ability to $\frac{9}{9}$ provide information on MoA and dose-response relationships [58]. the exposome in terms of cumulative measure of environment and biological responses should not necessarily

 Within this framework, non-targeted metabolomics is called to play an active and important role in exposome research [169], because it provides extensive information on the metabolome to feed environment-wide association studies' (FWASs) Rased 15 association studies' (EWASs). Based on the application of different statistical methodologies, EWASs allow the 17 cotographics of chamical experiment $\frac{1}{18}$ categorization of chemical exposures and establish relationships between them and a health outcome [59,170]. 1H NMR metabolomics analysis of urine samples from pregnant women and subsequent EWAS have shown, for example, specific associations between exposure to heavy metals (i.e. thallium, cesium, copper and lead) and 24 steroid hormones in the third trimester of pregnancy or strong associations between phthalates exposure and 26 knoble qualo motobolitor in the first trivial kreb's cycle metabolites in the first trimester [171]. Furthermore, mercury was associated with decreased levels of estrogen metabolites, whereas no association was found for chlorinated pesticides or BPA. The observed 31 associations reflected differences in the in utero environment that may affect fetal development and child health.

 The implementation of the exposome approach faces great challenges, such as difficulties in identifying eignificant accoriations from high-di s₃₅ significant associations from high-dimensional exposomics data that must also integrate information from all $\frac{38}{38}$ biological layers to account for their interactions [172], or correlations among all exposures that may hinder the identification of the directionality of the potential causal relationship between exposures and outcomes [167,173]. The first findings applying the exposomics approach to link exposure with health effects have been reported recently [174] and while promising i $44 \over 45$ recently [174] and, while promising, it is still too early to determine whether the exposome concept manages to 46 turn into a real englishing with impact $\frac{40}{47}$ turn into a real application with impact on risk assessment [175].

533 Metabolic fingerprints for exp $\frac{49}{50}$ 5.3.3 Metabolic fingerprints for exposure assessment

 It is expected that a more comprehensive understanding of the relationship between exposure to certain chemical hazards and the changes they produce in the metabolism may lead to the identification of specific 56 motobolio finagrazinto which move bo metabolic fingerprints, which may be directly related to specific chemical exposures. As a consequence, a new approach could be implemented to carry out exposure assessment, as information could be obtained from the

 biomarkers. In this sense, epidemiological data from metabolomics studies of cohorts could be evaluated not only 4 for hazard identification (or hazard characterization if dose-response relationships are established), but also for avnosure assessment if specific efferent of ϵ $\frac{8}{7}$ exposure assessment if specific effect biomarkers have been accepted as intrinsically related to a specific $\frac{9}{9}$ chemical hazard (or mixture of chemical hazards). measurement of exposure biomarkers (as usually done) or from metabolic fingerprints that reflect effect

 This approach is in line with new advances in the science of exposomics for exposure assessment, and it is too early to predict its efficacy to meet the objectives of exposure assessment. It will not be enough to identify effect biomarkers for a wide range of ¹⁵ effect biomarkers for a wide range of chemical exposures (and mixture of chemical exposures), which already
16 requires a breakthrough in the identification $\frac{1}{18}$ requires a breakthrough in the identification of metabolites. It will also require the identification of different but still specific metabolic fingerprints for exposures to the same hazard (or mixture of hazards) at different concentration levels and taking into account the exposure period. In this last sense, longitudinal studies must be carried out to $^{2.4}$ evaluate the evolution of the metabolic fingerprint according to short- and long-term chemical exposures. Overall, 26 this now approach to expect as associated this new approach to exposure assessment is a resource intensive process, not only from a technical point of view, but also for the storage of metabolic fingerprints associated with a large number of exposures.

 Current metabolomics studies using epidemiological data such as those described in Section 5.1.1 already provide insight into the metabolic fingerprints associated with certain chemical hazards, although their specificity has vet to be demonstrated Several has yet to be demonstrated. Several examples can be found in the literature on effect biomarkers discovered by
36 $\frac{38}{38}$ human metabolomics that may be related to metabolic fingerprints characteristic of specific chemical hazards such as lead [176] or TCDD [97], or more generally, with exposure to complex pesticide mixtures [177]. 42 Associations between lipid-related metabolites and exposure to organochlorine pesticides (i.e. HCB and p,p'- DDF) have been highlighted in a hu $^{44}_{45}$ DDE) have been highlighted in a human cohort of 965 samples [178]. However, specific effect biomarkers in 45 **Sortim Ware related to each posticide** $\frac{40}{47}$ serum were related to each pesticide, suggesting that exposure to each of these compounds leads to different 49 metabolic profiles in humans. Specifically, p,p'-DDE was associated with decreased levels of lysophosphatidylcholine congeners (18:1, 18:2/0:0, 0:0/18:2, 18:3), which have been linked to coronary heart 53 disease and diabetes, with increased levels of monoacylglycerol, with fatty acids and related compounds (i.e. 55 algomida lingtonia aldahyda and ar oleamide, linolenic aldehyde, and arachidonic acid ethyl ester), and with flavone. The latter metabolite and its 57 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1$ $\frac{1}{58}$ association with p,p'-DDE was attributed to some common dietary source or the perturbation of flavonoid 60 metabolism by p,p'-DDE exposure. On the other hand, HCB exposure was negatively associated with

 lysophosphatidylethanolamine (18:1p/0:0), docosahexaenoic acid, and a cinnamic acid related metabolite. lysophosphatidylethanolamine (18:1) and lysophosphatidylethanolamine (18:2), and positively associated with

⁴ Finally, toxicological data can also be used to elucidate and establish specific metabolic fingerprints related to $5 \quad 5 \quad 5 \quad$ exposure to chemical hazards as obset $\frac{8}{7}$ exposure to chemical hazards as observed for different pesticides [147] or the mycotoxin DON [179], although it $\frac{9}{9}$ is mandatory to demonstrate their analogy in humans to be applied for exposure assessment purposes.

6- METABOLOMICS IN CHEMICAL RISK MANAGEMENT

 Perhaps complying with regulatory toxicology requirements represents one of the biggest challenges facing metabolomics in risk analysis. If metabolomics is used only to generate a weight-of-evidence on the MoA/AOP of chemicals, working in a Good Laboratory Practice (GLP) environment may be secondary. On the contrary, the implementation of GLP conditions $\frac{21}{22}$ implementation of GLP conditions is mandatory to enhance regulatory use of 'omics data [180]. The harmonization of risk analysis tools is an important concern of risk managers because they must provide solid 26 scientific evidence of risks for decision-making. However, it is considered that 'omics technologies do not yet meet the standardization and validation criteria required for regulatory toxicology [181]. The lack of best practice guidelines, including performance standards, minimal reporting standards and quality control practices, is viewed **Synce meeting** performance can $\frac{32}{33}$ as the Achilles' heel of metabolomics for its implementation in regulatory toxicology, limiting its application in risk . 7.12 100 -100 -100 analysis [51,125,162]. The metabolomics community is making a great effort to overcome this drawback and, as a result, the Metabolomics Standard Initiative (MSI) proposes reporting standards guidelines for all the stages of metabolomics (i.e. experimental design, biological context, chemical analysis and data processing) since 2007 14221 Eurthermore advances in the $\frac{41}{42}$ [182]. Furthermore, advances in the harmonization of quality control standards in metabolomics [i.e. quality $\frac{44}{4}$ assurance (QA) and quality control (QC)] are expected to be achieved in the coming years [183]. In this context, the MEtabolomics standaRds Initiative in Toxicology (MERIT) has recently been launched to implement 48 metabolomics approaches in regulatory toxicology by overcoming the abovementioned limitations [125]. It is a European project supported by the E 50
51 **European project supported by the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)** $\frac{52}{53}$ that pursues two main objectives. First, it aims to develop best practice guidelines to harmonize laboratory protocols for the acquisition, processing and analysis of toxicological data within a regulatory framework. Second, its goal is also to develop minimal reporting standards, including QA and QC in metabolomics workflows, to be

 toxicology/). followed by regulatory agencies (http://www.ecetoc.org/topics/standardisation-metabolomics-assays-regulatory-

⁴ The difficulties encountered in assigning an identity to biomarkers found in metabolomics studies also $5 - 5$ 6 represent a disadvantage for the imp $\frac{8}{7}$ represent a disadvantage for the implementation of metabolomics in regulatory toxicology, since most of the 8 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{$ $\frac{3}{9}$ detected MS features remain unidentified. Furthermore, although it would also be desirable to achieve an identification level of 1 according to the MSI for the annotation or identification of metabolites (i.e. unambiguous identification of the metabolite by two or more orthogonal techniques and additional validation in the laboratory with an authentic chemical standard) $\frac{15}{16}$ with an authentic chemical standard), risk managers and regulation agencies should be aware that commercially 17 available standards sever less than $\frac{1}{18}$ available standards cover less than the 20% of the metabolome [54]. Thus, an annotation level of 2 based on 20 information from widely accepted and accessible databases, also generated in silico, provides high confidence for metabolite annotation without implying complacency. Nowadays there are a large number of mass spectral $^{2.4}_{2.2}$ databases for the identification of metabolites in non-targeted metabolomics applying LC-MS and GC-MS 25 and the contract of the con 26 approaches [60,184] and they are so approaches [00, 104], and they are co approaches [60,184], and they are continuously growing in terms of metabolite entries. Recently, the International
28
29 Agency for Research on Cancer (IARC) has created the 'Exposome-Explorer database' that contains info on exposure biomarkers associated with environmental risk factors for diseases [175]. Several of these databases and software include information on fragmentation mass spectra (i.e. MS/MS spectra), which provides high enecificity for metabolite anno 33 high specificity for metabolite annotation. Great efforts are also being made to make peak annotation an
36 $\frac{38}{38}$ accessible process enriched by a systematic transfer of knowledge between laboratories. Consequently, initiatives such as the Global Natural Products Social Molecular Networking (GNPS) platform have emerged to support the storage, analysis and knowledge dissemination of MS/MS spectra [185]. GNPS also supports molecular networking to correlate see 44 molecular networking to correlate sets of MS/MS spectra of related molecules that, while not consistent with
45 46 known compounds in MC/MC libraries $\frac{40}{47}$ known compounds in MS/MS libraries, can be putatively identified.

 Other important aspects currently hampering the implementation of metabolomics in regulatory toxicology include a relative lack of training opportunities, as well as limited accessibility to the analytical and computational tools required for data generation, curation and processing [125]. With regard to the latter, bioinformatics tools 55 Such as Colowy or MotoboAnglyct such as Galaxy or MetaboAnalyst, among others, are in continuous development to provide automated and 57 (a) \mathbf{r} (b) \mathbf{r} (c) \mathbf{r} standardized operational pipelines for data pre-processing (e.g. data alignment, filtering, normalization), statistical approaches (i.e. univariate and multivariate analysis), metabolite annotation and metabolic network [60,121,186].

 regulatory toxicology framework, and how desirable it is to make data publicly accessible to ensure the ⁴ transparency of chemical safety regulations [125]. Regulatory toxicology can benefit from the current trend in data $5 \hspace{2.5cm} 5 \hspace{2.5cm} 5$ 6 management aimed at making metak $\frac{8}{7}$ management aimed at making metabolomics data Findable, Accessible, Interoperable and Reusable (FAIR) $\frac{3}{9}$ [187]. Several metabolomics repositories are currently available to support the FAIR data objective, such as 11 MetaboLights (European initiativ MetabolomeXchange (developed by an international consortium to aggregate metabolomics data from different repositories) Standardization will und repositories). Standardization will undoubtedly be the key for establishing a data sharing framework where data
 16 can be quessed illustrational and represented to \sim $\frac{1}{18}$ can be successfully re-used and reproduced [188]. On the other hand, there is also a recent debate on how data storage and sharing should be managed within a initiative). Metabolomics Workbench (North American initiative) and

 Finally, from a regulatory point of view, it is required to set essential decision criteria such as a metabolomics NOAEL that reflects a metabolic perturbation correlated with an observable adverse effect rather than an 24 adaptation of the organism to the exposure. These findings linking toxicological effects with changes in the 25 and 26 an 26 motobolomo will also nood validatio $\frac{20}{27}$ metabolome will also need validation to be accepted for regulatory purposes [189]. The validation of 'omics 28 (a) **1980** (b) **61** (b) 1981 29 studies will give confidence to risk managers in the reliability, robustness, repeatability and reproducibility of the data generated in the risk assessment process. Although still scarce, some metabolomics studies have begun to tackle validation aspects, including robustness over time [190] and inter-laboratory comparisons [191]. Despite the lack of specific quidelines for the 33 the lack of specific guidelines for the validation of non-targeted metabolomics methods, the recognition of this
36 $\frac{38}{38}$ type of approach has been reflected by the ISO 17025 accreditation recently awarded to a non-targeted 40 metabolomics method applied in the screening of illegal administration or exposure to β-agonists in cattle and implemented in the French monitoring and control plans for food safety [192], fulfilling regulatory requirements in terms of expected performances ⁴⁴ terms of expected performances.

7 CONCLUSIONS 7- CONCLUSIONS

50 As a new NAM in chamical risk 50 Kas a new NAM in chemical risk analysis, metabolomics has already demonstrated to be a fit-for-purpose
51 $\frac{52}{53}$ approach to meet the steps of hazard identification, hazard characterization and exposure assessment steps by identifying biomarkers of exposure and effect. These biomarkers reveal the earliest mechanisms caused by chemicals and provide insight into their toxicokinetics and toxicodynamics, thus contributing to deciphering the 59
MoA and AOP of such hazards. This represents a shift from current toxicology and epidemiology paradigms

 effects are observed. However, evolution is still required to prove that the discovery of such biomarkers provides ⁴ a benefit to the assessment frameworks currently used in the context of regulatory toxicology [47]. It remains a $5₂$ 6 challenge to unequivacally accoriate to $\frac{8}{7}$ challenge to unequivocally associate the biomarkers found by metabolomics with real adverse health outcomes $\frac{3}{9}$ rather than showing an adaption of the organism to chemical exposure; therefore, it would be desirable to establish a NOAEL for metabolomics. Furthermore, and from a risk management perspective, metabolomics 13 studies have yet to comply with a standardized framework and undergo validation to be accepted for regulatory toxicology. conceregy. towards a molecular framework in which the consequences of exposure can be predicted even before adverse

17 Motobalamica studies reported as $\frac{1}{18}$ Metabolomics studies reported so far, however, have some limitations for risk assessment due to high dosage 20 generally applied in in vivo experiments, and the low number of data points when assessing dose-response relationships. Nevertheless, this methodology has the potential to successfully overcome the current challenges 24 of risk analysis, with special focus on food safety. Metabolomics in combination with *in vitro* and *in silico* models 25 and 2012 and 2013 and 2014 26 requided relevant ovidence for about provides relevant evidence for chemical risk analysis, reducing animal testing in accordance with the 3R **principles as well as the uncertainty related to animal experiments traditionally carried out in toxicology for human** risk assessment. On the other hand, the high sensitivity of metabolomics can reveal the effects of chemicals at low concentration levels, which will have an important impact on understanding the risks associated with experience to low doese of compound s₃₅ exposure to low doses of compounds showing, for example, non-monotonic dose-response curves. In a step
36 $\frac{38}{38}$ forward in addressing actual exposure scenarios, linking metabolic fingerprints to the MoA of chemicals will favor their grouping to better study additive or interactive effects related to exposures to low-dose chemical mixtures.

 Within the framework of actual exposure scenarios and as a part of the new exposome paradigm, both suspect and non-tameted screening suspect and non-targeted screening provide a holistic exposure assessment for a more compressive
45 46 understanding of bumon expective $\frac{40}{47}$ understanding of human exposure to chemicals throughout the human lifespan and, as a consequence, to establish a link between such exposure and adverse health outcomes. The inclusion of the biological response in exposure assessment leads to the integration of the AOP into the exposome paradigm. The exposome-AOP tandem can be applied to group chemicals with convergent AOPs, while AOP networking contributes to 55 according complex mixtures of the o assessing complex mixtures of the exposome [164]. Furthermore, the role of metabolomics can go beyond the 58 measurement of exposure biomarkers to assess internal exposure and effect biomarkers to identify the early events of chemical AOPs. The application of metabolomics to investigate the source of exposure, in this case

 chemical mixtures with concentrations at the internal target site and subsequent AOP, gaining a more complete ⁴ understanding of the exposome to support risk assessment [193]. Analysis of both the dietary source and nopulation groups applying non-targe $\frac{8}{7}$ population groups applying non-targeted metabolomics, and further validation using targeted metabolomics 8 and the second service of the series o $\frac{3}{9}$ methods, also implies a new approach to detect new chemical hazards in food, thus identifying new risks that 11 must be addressed. food, allows the establishment of aggregate exposure pathways (AEP) to link external exposure to complex

 From a technical point of view, LC-MS and, to a lesser extent, 1H NMR have been shown to be the main analytical techniques used in metable analytical techniques used in metabolomics for risk analysis. Although both, and especially LC-MS, provide 17 extensive coverage of the matchelone $\frac{1}{18}$ extensive coverage of the metabolome, the application of other methodologies such as GC-MS, CE-MS, SFC-MS or other novel methodologies (e.g. IMS-MS, LC×LC-MS, etc.) can improve knowledge about metabolic perturbations caused by chemical hazards. DDA and especially DIA experiments give more information on 24 relevant metabolites for their unequivocal identification. However, extended information on the metabolome 26 comes at a data cost loading to diffic $20²⁰$ comes at a data cost, leading to difficulties in the manipulation, interpretation and storage of metabolomics data. **Print** Print Pr 29 Bioinformatics tools, databases for metabolite annotation and biological interpretation, and repositories for data storage are under continuous development, favoring the execution of metabolomics studies and their implementation in the field of risk analysis.

 Einally although chamical exposure 53
36 **Finally, although chemical exposure inevitably leads to metabolic pathway perturbations that support the use** $\frac{38}{38}$ of metabolomics for risk assessment, more complete information on the MoA/AOP of chemicals and the consequences of their exposure on human health is obtained by combining metabolomics data with data from 42 other 'omics studies (i.e. epigenomics, transcriptomics or proteomics). A single 'omics dataset is generally not enough to identify the MIF of certain $44 \over 45$ enough to identify the MIE of certain hazards or adequately reflect the link between the MIE and the pathway 46 norturbation Cyclome biology promo $\frac{40}{47}$ perturbation. Systems biology promotes the integration of information from different biological layers to fill the 49 gaps in toxicity mechanisms. Nevertheless, it involves the integration c methodologies, which is viewed as an emerging challenge for their integrated implementation in toxicology. In this vein, systems toxicology intends to benefit from computational advances in the field of systems biology field to 55 huild comprobonsive digital mochanic $55₅₆$ build comprehensive digital mechanisms that integrate different 'omics datasets, different pieces of evidence (in vivo, in vitro and/or in silico studies), and even different toxicological pathways to more accurately predict the toxicity of hazards and better understand the relationship between chemical exposure and adverse health

 methodologies (in vivo, in vitro, in silico) constitutes a new integrated approach to testing and assessment (IATA) ⁴ in risk analysis to reduce the existing gap between the number of chemical substances currently in use and the mumber of chemicals already subjected $\frac{8}{7}$ number of chemicals already subjected to risk analysis. outcomes [194]. Definitely, the combination of 'omics technologies (toxicogenomics) and different toxicological

ACKNOWLEDGMENTS $\frac{12}{13}$ ACKNOWLEDGMENTS

¹⁵ We thank G. Cano-Sancho for his critical review of this manuscript. Funding: This project has received funding from the European Union's Herizon 2 $\frac{1}{18}$ from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie 19 (1147APPO) N grant agreement HAZARDOmics No 795946.

REFERENCES

 [1] C.A. Ng, N. von Goetz, The global food system as a transport pathway for hazardous chemicals: The missing link between emissions and exposure, Environ. Health Perspect. 125 (2017) 1-7.

34 [2] T. Jansen, L. Claassen, I. van Kamp, appraisal of uncertain risks of food additives and contaminants, Food Chem. Toxicol. 136 (2020) 110959.

 [3] S.M. Barlow, A.R. Boobis, J. Bridges, A. Cockburn, W. Dekant, P. Hepburn, G.F. Houben, J. König, M.J. Nauta, J. Schuermans, D. Bánáti, The role of hazard- and risk-based approaches in ensuring food safety, Trends Food Sci. Tech. 46 (2015) 176-188.

 [4] B.M.J. van der Meulen et al., Development of food legislation around the world, in: C. Boisrobert, A. 40
Stiepanovic, S. Oh, H. Lelieveld (Eds.), Ensuring Global Food Safety, Exploring Global Harmonization, Academic 41

Press, London, 2010, pp. 5-69. riess, London, 2010, pp. 3-05.

 [5] M. Silano, V. Silano, Food and feed chemical contaminants in the European Union: Regulatory, scientific, and technical issues concerning chemical contaminants occurrence, risk assessment, and risk management in the European Union, Crit. Rev. Food Sci. Nutr. 57 (2017) 2162-2217.

 [6] World Health Organization (WHO) and Food and Agriculture Organization of the United Nations (FAO). Codex Alimentarius Commission - Procedural Manual. Joint FAO/WHO Food Standard Program, Twenty-seventh edition (Rome, 2019).

 [7] Food and Agriculture Organization of the United Nations (FAO) and World Health Organization (WHO), Principles and methods for the risk assessment of chemicals in food, World Health Organization (WHO) (ed.), Geneva, 2009.

 [8] World Health Organization (WHO), Enhancing Participation in Codex Activities: An FAO/WHO Training Package, Provisional ed. World Health Organization, Geneva, 2005.

 [9] Food and Agriculture Organization of the United Nations (FAO), Food Safety Risk Analysis - A Guide for 55 [3] TOOU and Agriculture Organization So Mational Food Safety Authorities, Food and Agriculture Organization of the United Nations (FAO) and World
Allegation of the County of the Case of the Case of the Sanctice United Nations (FAO) and World Health Organization (WHO) (eds.), Rome, 2006.

 [10] D. Krewski, D. Acosta, Jr., M. Andersen, H. Anderson, J.C. Baillar, III, K. Boekelheide, R. Brent, G. Charnley, V.G. Cheung, S. Green, Jr., K.T. Kelsey, N.I. Kerkvliet, A.A. Li, L. McCray, O. Meyer, R.D. Patterson, W. Pennie,

 R.A. Scala, G.M. Solomon, M. Stephens, J. Yager, L. Zeise, Staff of Committee on Toxicity Testing and 2 Assessment of Environmental Agents, Toxicity testing in the 21st century: A vision and a strategy, J. Toxicol. Environ. Health B Crit. Rev. 13 (2010) 51-138.

⁴ [11] E.K. Brockmeier, G. Hodges, T.H. Hutchinson, E. Butler, M. Hecker, K.E. Tollefsen, N. Garcia-Reyero, P. Kille, D. Becker, K. Chipman, J. Colbourne, T.W. Collette, A. Cossins, M. Cronin, P. Graystock, S. Gutsell, D. Knapen, I. Katsiadaki, A. Lange, S. Marshall, S.F. Owen, E.J. Perkins, S. Plaistow, A. Schroeder, D. Taylor, M. Viant, G. $\frac{7}{6}$ Ankley, F. Falciani, The role of omics in the application of adverse outcome pathways for chemical risk $\frac{8}{3}$ assessment, Toxicol. Sci. 158 (2017) 252-262.

 $\frac{9}{1111}$ $\frac{1}{111}$ $\frac{1}{111}$ $\frac{1}{111}$ $\frac{1}{111}$ $\frac{1}{111}$ $\frac{1}{111}$ $\frac{10}{10}$ [12] A.F. Hernandez, A. Buha, C. Constantin, D.R. Wallace, D. Sarigiannis, M. Neagu, B. Antonijevic, A.W. Hayes, $\frac{1}{11}$ M.F. Wilks, A. Tsatsakis, Critical assessment and integration of separate lines of evidences for risk assessment of chemical mixtures, Arch. Toxicol. 93 (2019) 2741-2757.

 [13] A. Pielaat, G.C. Barker, P. Hendriksen, A. Peijnenburg, B.H. ter Kuile, A foresight study on emerging technologies: State of the art of omics technologies and potential applications in food and feed safety (REPORT 1: Review on the state of the art of omics technologies in risk assessment related to food and feed safety), EFSA Supporting Publications, 10 (2013) EN-145.

 [14] T. King, M. Cole, J.M. Farber, G. Eisenbrand, D. Zabaras, E.M. Fox, J.P. Hill, Food safety for food security: 18 Relationship between global megatrends and developments in food safety, Trends Food Sci. Technol. 68 (2017) 160-175.

²⁰ [15] European Court of Auditors, Chemical hazards in our food: EU food safety policy protects us but face challenges, European Court of Auditors (ed.), Luxembourg, 2019.

 [16] R.S. Thomas, H.J. Clewell III, B.C. Allen, L. Yang, E. Healy, M.E. Andersen, Integrating pathway-based 23 representative data into quantitative transcriptomics data into quantitative chemical risk assessment: A five chemical case study, Mutat. Res. 746 (2012) 133-143. (2012) 135-143.

 [17] A. Bal-Price, P.J. Lein, K.P. Keil, S. Sethi, T. Shafer, M. Barenys, E. Fritsche, M. Sachana, M.E.B. Meek, Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity, Neurotoxicology 59 (2017) 240-255.

 [18] M. Leist, A. Ghallab, R. Graepel, R. Marchan, R. Hassan, S.H. Bennekou, A. Limonciel, M. Vinken, S. Schildknecht, T. Waldmann, E. Danen, B. van Ravenzwaay, H. Kamp, I. Gardner, P. Godoy, F.Y. Bois, A. Braeuning, R. Reif, F. Oesch, D. Drasdo, S. Höhme, M. Schwarz, T. Hartung, T. Braunbeck, J. Beltman, H. Vrieling, F. Sanz, A. Forsby, D. Gadaleta, C. Fisher, J. Kelm, D. Fluri, G. Ecker, B. Zdrazil, A. Terron, P. Jennings, B. van der Burg, S. Dooley, A.H. Meijer, E. Willighagen, M. Martens, C. Evelo, E. Mombelli, O. Taboureau, A. Mantovani, B. Hardy, B. Koch, S. Escher, C. van Thriel, C. Cadenas, D. Kroese, B. van de Water, J.G. Hengstler, Adverse outcome pathways: opportunities, limitations and open questions, Arch. Toxicol. 91 (2017) 3477-3505.

 [19] T.W. Simon, S.S. Jr Simons, R.J. Preston, A.R. Boobis, S.M. Cohen, N.G. Doerrer, P.A. Fenner-Crisp, T.S. 37 [15] T.W. Simon, 5.5. 31 Simons, R.S. $\frac{38}{38}$ McMullin, C.A. McQueen, J.C. Rowlands; RISK21 Dose-Response Subteam, The use of mode of action information in risk assessment: Quantitative key events/dose-response framework for modeling the dose-

and the second contract of the second contract of the second contract of the second contract of the second co response for key events, Crit. Rev. Toxicol. 44 (2014) 17-43.

- [20] D. Rouquié, M. Heneweer, H. Botham, H. Keteslegers, L. Markell, T. Pfister, W. Steilling, V. Strauss, 42 C.Hennes, Contribution of new technologies to characterization and prediction of adverse effects, Crit. Rev. Toxicol. 45 (2015) 172-183.
- [21] C. Beausoleil, J.-N. Ormsby, A. Gies, U. Hass, J.J. Heindel, M.L. Holmer, P.J. Nielsen, S. Munn, G. Schoenfelder, Low dose effects and non-monotonic dose responses for endocrine active chemicals: Science to practice workshop: Workshop summary, Chemosphere 93 (2013) 847-856.

 47 [22] V. Mustieles, J.P. Arrebola, How polluted is your fat? What the study of adipose tissue can contribute to environmental epidemiology, J. Epidemiol. Community Health (2020) DOI: 10.1136/jech-2019-213181.

 [23] EFSA Scientific Committee, S.J. More, V. Bampidis, D. Benford, S. H. Bennekou, C. Bragard, T.I. Halldorsson, A.F. Hernández-Jerez, K. Koutsoumanis, H. Naegeli, J.R. Schlatter, V. Silano, S.S. Nielsen, D. Schrenk, D. Turck, 51 A.I. Hemanuez-Jerez, K. Koutsouma M. Younes, E. Benfenati, L. Castle, N. Cedergreen, A. Hardy, R. Laskowski, J.C. Leblanc, A. Kortenkamp, A. Ragas, L. Posthuma, C. Svendsen, R. Solecki, E. Testai, B. Dujardin, G. EN Kass, P. Manini, M.Z. Jeddi, J.-L. CM Dorne, C. Hogstrand, Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals, EFSA Journal, 17 (2019) 5634.

 [24] P.D. Darbre, M.F. Fernandez, Environmental oestrogens and breast cancer: long-term low-dose effects of 57 mixtures of various chemicals combinations, *J. Epidemiol. Community Health 67* (2013) 203-205.

58 [25] D.A. Sarigiannis, U. Hansen, Considering the cumulative risk of mixtures of chemicals – A challenge for policy makers, Environ. Health 11 (2012) S18.

- [26] K.A. Heys, R.F. Shore, M.G. Pereira, K.C. Jones, F.L. Martin, Risk assessment of environmental mixture effects, RSC Adv. 6 (2016) 47844-47857.
- [27] R.M. Evans, O.V. Martin, M.Faust, A. Kortenkamp, Should the scope of human mixture risk assessment 4 span legislative/regulatory silos for chemicals? Sci. Total Environ. 543 (2016) 757-764.
- [28] S. Scholz, E. Sela, L. Blaha, T. Braunbeck, M. Galay-Burgos, M. García-Franco, J. Guinea, N. Klüver, K. Schirmer, K. Tanneberger, M. Tobor-Figure 1. Eggen, M. Embry, D. Ekman, A. Gourmelon, M. Halder, B. Hardy, T. Hartung, B. Hubesch, D. Jungmann, M.A. Lampi, L. Lee, M. Léonard, E. Küster, A. Lillicrap, T. Luckenbach, A.J. Murk, J.M. Navas, W. Peijnenburg, G. 9 Lampi, L. Lee, M. Leonard, L. Kaster, $\frac{10}{10}$ Repetto, E. Salinas, G. Schüürmann, H. Spielmann, K.E. Tollefsen, S. Walter-Rohde, G. Whale, J.R. Wheeler, 11 M.J.Winter, A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment, Reg. Toxicol. Pharmacol. 67 (2013) 506-530.
- [29] A.F. Hernández, A.M. Tsatsakis, Human exposure to chemical mixtures: Challenges for the integration of toxicology with epidemiology data in risk assessment, Food Chem. Toxicol. 103 (2017) 188-193.
- [30] A. Punt, A.A.C.M. Peijnenburg, R.L.A.P. Hoogenboom, H. Bouwmeester, Non-animal approaches for toxicokinetics in risk evaluations of food chemicals, ALTEX 34 (2017) 501-514.
- [31] V.F. Fuhrman, A. Tal, S. Arnon, Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond, J. Hazard. Mater. 286 (2015) 589-611.
- ¹⁹ [32] S. Creton, R. Billington, W. Davis, M.P. Dent, G.M. Hawksworth, S. Parry, K.Z. Travis, Application of toxicokinetics to improve chemical risk assessment: Implications for the use of animals, Regul. Toxicol. Pharm. 55 (2009) 291-299.
- [33] A. Kortenkamp, M. Faust, M. Scholze, T. Backhaus, Low-level exposure to multiple chemicals: Reason for $\frac{23}{24}$ human health concerns? Environ. Health Perspect. 115 (2007) 106-114. 24 municipal concerns: *Environ.ne*
- [34] K.K. Dennis, E. Marder, D.M. Balshaw, Y. Cui, M.A. Lynes, G.J. Patti, S.M. Rappaport, D.T. Shaughnessy, M. 26 Vrijheid, D.B. Barr, Biomonitoring in the era of the exposome, Environ. Health Perspect. 125 (2017) 502-510.
- [35] European Food Safety Authority (EFSA), T. Donohoe, K. Garnett, A.O. Lansink, A. Afonso, H. Noteborn, 28 Emerging risks identification on food and feed - EFSA, EFSA Journal 16 (2018) 5359.
- [36] C. Ji, Q. Song, Y. Chen, Z. Zhou, P. Wang, J. Lui, Z. Sun, M. Zhao, The potential endocrine disruption of pesticide transformation products (TPs): The blind spot of pesticide risk assessment, Environ. Int. 137 (2020) 105490.
- [37] P.T.J. Scheepers, J. Cocker, Human biomonitoring with or without limits? Progress in the analysis of biomarkers of xenobiotics and some opportunities for improved interpretation, TrAC Trend Anal. Chem. 113 $\frac{34}{25}$ (2019) 116-123.
- [38] L.G.A. Barboza, A.D. Vethaak, B.R.B.O. Lavorante, A.-K. Lundebye, L. Guihermino, Marine microplastic 36 (Johnson Barboza, 1982, Vettiaan, debris: An emerging issue for food security, food safety and human health, Mar. Pollut. Bull. 133 (2018) 336-
37 348.
- [39] EFSA Scientific Committee, A. Hardy, D. Benford, T. Halldorsson, M.J. Jeger, H.K. Knutsen, S. More, H. Naegeli, H. Noteborn, C. Ockleford, A. Ricci, G. Rychen, J.R. Schlatter, V. Silano, R. Solecki, D. Turck, M. Younes, Q. Chaudhry, F. Cubadda, D. Gott, A. Oomen, S. Weigel, M. Karamitrou, R. Schoonjans, A. Mortensen, Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health, EFSA Journal 16 (2018) 5327.
- [40] A. Moretti, M. Pascale, A.F. Logrieco, Mycotoxin risks under a climate change scenario, Trends Food Sci. Tech. 84 (2019) 38-40.
- [41] M.C. Costa, T. Goumperis, W. Andersson, J. Badiola, W. Ooms, S. Pongolini, C. Saegerman, M. Jurkovic, P. Tuominen, E. Tsigarida, J. Steinwider, C. Hölzl, N. Mikushinska, A. Gross-Boškovic, P. Kanari, M. Christodoulidou, L. Babicka, H. Korsgaar, S. Pesonen, A.M. Fillet, F. Foures, M. Lohman, P. Luber, M. Szabó, J. Cseh, H.P.J.M. Noteborn, K. Færden, Å. Fulke, T. Trnovec, N.G. Ilbäck, T. Andersson, T. Donohoe, C. Merten, T. Robinson, Risk for the collection, in the case of the CFSA emerging risks exchange network (EREN),
 $\frac{1}{5}$ identification in food safety: Strategy and outcomes of the EFSA emerging risks exchange network (EREN), 51 **1940** 1944 Feed Centre¹⁷² 1947¹ $\frac{32}{52}$ 2010–2014, Food Control 73 (2017) 255–264.
- [42] G.G. Moy, Y. Motarjemi, Public health measures: International standards and harmonization of food safety legislation, in: Encyclopedia of Food Safety, Elservier, Amsterdam, 2014, (volume 4) pp. 39-45.
- [43] N.D. Fortin, Food Regulation Law, Science, Policy, and Practice, second ed., Wiley, New Jersey, 2017.

 [44] M. Yeung, W.A. Kerr, B. Coomber, M. Lantz, A. McConnell, Why maximum residue limits for pesticides are an important international issue, in: Declining International Cooperation on Pesticide Regulation, Palgrave Macmillan, Cham, 2017, pp. 1-9.

1 [45] M. Siegrist, A. Bearth, Chemophobia in Europe and reasons for biased risk perceptions, Nat. Chem. 11 (2019) 1071-1072. [46] W. Verbeke, L.J. Frewer, J. Scholderer, H.F. De Brabander, Why consumers behave as they do with respect to food safety and risk information, Anal. Chem. 586 (2007) 2-7. [47] B. Campos, J.K. Colbourne, How omics technologies can enhance chemical safety regulation: perspectives $\frac{6}{2}$ from academia government, and industry, *Environ. Toxicol. Chem.* 37 (2018) 1252-1259. [48] EFSA Scientific Committee, J. Aguilera, M. Aguilera-Gomez, F. Barrucci, P.S. Cocconcelli, H. Davies, N. 8
Benslow, J.L. Dorne, L. Grohmann, L. Herman, C. Hogstrand, G.E.N. Kass, P. Kille, G. Kleter, F. Nogué, N.J. Plant, 9 Dension, S.C. Done, E. Grommann, E. I 10 M. Ramon, R. Schoonjans, E. Waigmann, M.C. Wright, EFSA Scientific Colloquium 24 - 'omics in risk ass state of the art and next steps, *EFSA Supporting publication* (2018) EN-1512. [49] World Health Organization & International Programme on Chemical Safety, Biomarkers in risk assessment: validity and validation, World Health Organization (ed.), Geneva, 2001. 14 [50] C. Ladeira, S. Viegas, Human biomonitoring - An overview on biomarkers and their application in occupational and environmental health, Biomonitoring 3 (2016) 15-24. [51] EFSA Scientific Committee, Modern methodologies and tools for human hazard assessment of chemicals, EFSA Journal, 12 (2014) 3638. 18 [52] C.B. Newgard, Metabolomics and metabolic diseases: Where do we stand?, Cell Metab. 25 (2017) 43-56. ¹⁹ [53] D. Wishart, Emerging applications of metabolomics in drug discovery and precision medicine, Nat. Rev. Drug Discov. 15 (2016) 473-484. [54] J.M. Malinowska, M.R. Viant, Confidence in metabolite identification dictates the applicability of 22
metabolomics to regulatory toxicology, Curr. Opin. Toxicol. 16 (2019) 32-38. 23 FEEL M Kanabise Toward understand $\frac{23}{24}$ [55] M. Kanehisa, Toward understanding the origin and evolution of cellular organisms, Protein Sci. 28 (2019) $1947 - 1931$. [56] O. Yanes, R. Salek, I. Marín de Mas, C. Cascante, Overview of metabolomics, in: R. Wehrens, R. Salek (Eds.), 27 Metabolomics – Practical guide to design and analysis, CRC Press, Boca Raton (FL), 2020, pp. 1-13. 28 [57] T.J. Athersuch, H.C. Keun, Metabolomic profiling in human exposoma studies, Mutagenesis 30 (2015) 755-**762. 762.** [58] F.C.M. Sillé, S. Karakitsios, A. Kleensang, K. Koehler, A. Maertens, G.W. Miller, C. Prasse, L. Quiros-Alcala, G. 31 Ramachandran, S.M. Rappaport, A.M. Rule, D. Sarigiannis, L. Smirnova, T. Hartung, The exposome - a new approach for risk assessment, ALTEX 37 (2020) 3-23. [59] D.I. Walker, D. Valvi, N. Rothman, Q. Lan, G.W. Miller, D.P. Jones, The metabolome: A key measure for exposome research in epidemiology, Curr. Epidemiol. Rep. 6 (2019) 93-103. [60] R. Spicer, R.M. Salek, P. Moreno, D. Cañueto, C. Steinbeck, Navigating freely-available software tools for metabolomics analysis, Metabolomics 13 (2017) 106. 37 FICTOLOGICAL Execute F.C. Applicance $\frac{38}{38}$ [61] A.G. de la Fuente, E.G. Armitage, A. Otero, C. Barbas, J. Godzien, Differentiating signals to make biological sense A guide through databases for MS-based non-targerted metabolomics, Electrophoresis, 38 (2017) 2242- 40 2256. [62] W.J. Nash, W.B. Dunn, From mass to metabolite in human untargeted metabolomics : Recent advances in 42 annotation of metabolites applying liquid chromatography-mass spectrometry data, TrAC Trend Anal. Chem. 120 (2019) 115324. [63] J.L. Markley, R. Brüschweiler, A.S. Edison, H.R. Eghbalnia, R. Powers, D. Raftery, D.S. Wishart, The future of NMR-based metabolomics, Curr. Opin. Biotechnol. 43 (2017) 34-40. [64] A.-H. Emwas, R. Roy, R.T. McKay, L. Tenori, E. Saccenti, G.A.N. Gowda, D. Raftery, F. Alahmari, L. Jaremko, M. Jaremko, D.S. Wishart, NMR spectroscopy for metabolomics research, Metabolites 9 (2019) 123. 48 [65] E. Rathabao-Paris, S. Alves, C. Junot, J.-C. Tabet, High resolution mass spectrometry for structural 19
identification of metabolites in metabolomics, Metabolomics 12 (2016) 10. [66] J.F. García-Reyes, D. Moreno-González, R. Nortes-Méndez, B. Gilbert-López, A. Molina Díaz, HRMS: 51 [00] J.T. Garcia-Reyes, D. Moreno- Hardware and Software, in: R. Romero-González, A. Garrido-Frenich (Eds.), Applications in High Resolution Mass Spectrometry - Food Safety and Pesticide Residue Analysis, Elsevier, Amsterdam, 2017, p. 15-57. [67] A. Zhang, H. Sun, P. Wang, Y. Han, X. Wang, Modern analytical techniques in metabolomics analysis, Analyst, 137 (2012) 293-300. [68] J.-L. Ren, A.-H. Zhang, L. Kong, X.-J. Wang, Advances in mass spectrometry-based metabolomics for investigation of metabolites, RSC Adv. 8 (2018) 22335-22350. [69] C. Ibáñez, V. García-Cañas, A. Valdés, C. Simó, Novel MS-based approaches and applications in food metabolomics, TrAC Trend Anal. Chem. 52 (2013) 100-111. 1947-1951. 762. 2256.

 [70] H. Gallart-Ayala, S. Chéreau, G. Dervilly-Pinel, B. Le Bizec, Potential of mass spectrometry metabolomics for chemical food safety, Bioanalysis 7 (2015) 133-146. [71] J. Haggarty, K.E.V. Burgess, Recent advances in liquid and gas chromatography methodology for extending ⁴ coverage of the metabolome, Curr. Opin. Biotechnol. 43 (2017) 77-85. [72] A. García, J. Godzien, Á. López-Gonzálvez, C. Barbas, Capillary electrophoresis mass spectrometry as a tool for untargeted metabolomics, Bioanalysis 9 (2017) 99-130. $\frac{7}{6}$ [73] T. Cajka, O. Fiehn, Toward merging untargeted and targeted methods in mass spectrometry-based $\frac{8}{3}$ metabolomics and lipidomis, Anal. Chem. 88 (2016) 524-545. 9 Fall FAIL Keepler CL Indian TI 10 [74] E.A.H. Keppler, C.L. Jenkins, T.J. Davis, H.D. Bean, Advances in the application of comprehensive two-
disconsisted as showed application and belowise TAC Tread Angl. Chan 400 (2010) 275,296 dimensional gas chromatography in metabolomics, TrAC Trend Anal. Chem. 109 (2018) 275-286. 12 [75] W. Lv, X. Shi, S. Wang, G. Xu, Multidimensional liquid chromatography-mass spectrometry for metabolomic 13 and lipidomic analyses, TrAC Trend Anal. Chem. 120 (2019) 115302. [76] T. Mairinger, T.J. Causon, S. Hann, The potential of ion mobility-mass spectrometry for non-targeted metabolomics, Curr. Opin. Biotechnol. 42 (2018) 9-15. [77] M. Hernández-Mesa, D. Ropartz, A.M. García-Campaña, H. Rogniaux, G. Dervilly-Pinel, B. Le Bizec, Ion 17 mobility spectrometry in food analysis: Principles, current applications and future trends, Molecules 24 (2019) **2706**. ¹⁹ [78] C.L. Feider, A. Krieger, R.J. DeHoog, L.S. Eberlin, Ambient ionization mass spectrometry: Recent developments and applications, Anal. Chem. 91 (2019) 4266-4290. [79] D. Miura, Y. Fujimura, H. Wariishi, In situ metabolomic mass spectrometry imaging: Recent advances and 22
difficulties, J. Proteomics 75 (2012) 5052-5060. 23 Cool V. Cuitton C. Domilly Dinel D. I 22 [80] Y. Guitton, G. Dervilly-Pinel, R. Jandova, S. Stead, Z. Takats, B. Le Bizec, Rapid evaporative ionization mass
24 **Experimental construction** and characteristics for high thermals the processing of growth expendenc 25 spectrometry and chemometrics for high-throughput screening of growth promoters in meat producing
25 animals, Food Addit. Contam. Part A 35 (2018) 1948-1958. [81] C.D. Calvano, A. Monopoli, T.R.I. Cataldi, F. Palmisano, MALDI matrices for low molecular weight compounds: an endless story? Anal. Bioanal. Chem. 410 (2018) 4015-4038. 29 [82] J. Boccard, S. Rudaz, Harnessing the complexity of metabolomic data with chemometrics, J. Chemometrics 28 (2014) 1-9. [83] S. Bopp, E. Berggren, A. Kienzler, S. van der Linden, A. Worth, Scientific methodologies for the combined effects of chemicals – a survey and literature review, EUR 27471 EN (2015) doi:10.2788/093511. [84] S.K. Bopp, R. Barouki, W. Brack, S.D. Costa, J.-L.C.M. Dorne, P.E. Drakvik, M. Faust, T.K. Karjalainen, S. Kephalopoulos, J. van Klaveren, M. Kolossa-Gehring, A. Kortenkamp, E. Lebret, T. Lettieri, S. Nørager, J. Rüegg, J.V. Tarazona, X. Trier, B. van de Water, J. van Gils, Å. Bergman, Current EU research activities on combined 36
exposure to multiple chemicals, Environ. Int. 120 (2018) 544-562. 37 CAPOSUL CO Muttiple criticials, Error [85] A. Lanzoni, A.F. Castoldi, G. EN Kass, A. Terron, G. De Seze, A. Bal-Price, F. Y Bois, D.B. Delclos, D.R. Doerge, E. Fritsche, T. Halldorsson, M. Kolossa-Gehring, S.H. Bennekou, F. Koning, A. Lampen, M. Leist, E. Mantus, C. Rousselle, M. Siegrist, P. Steinberg, A. Tritscher, B. Van de Water, P. Vineis, N. Walker, H. Wallace, M. Whelan, M. Younes, Advancing human health risk assessment, EFSA Journal 17(S1) (2019) e170712. [86] A.G. Renwick, S.M. Barlow, I. Hertz-Picciotto, A.R. Boobis, E. Dybing, L. Edler, G. Eisenbrand, J.B. Greig, J. Kleiner, J. Lambe, D.J.G. Müller, M.R. Smith, A. Tritscher, S. Tuijtelaars, P.A. van den Brandt, R. Walker, R. Kroes, Risk characterisation of chemicals in food and diet, Food Chem. Toxicol. 41 (2003) 1211-1271. [87] EFSA Scientific Committee, A. Hardy, D. Benford, T. Halldorsson, M.J. Jeger, H.K. Knutsen, S. More, H. Naegeli, H. Noteborn, C. Ockleford, A. Ricci, G. Rychen, J. R Schlatter, V. Silano, R. Solecki, D. Turck, E. Benfenati, Q.M. Chaudhry, P. Craig, G. Frampton, M. Greiner, A. Hart, C. Hogstrand, C. Lambre, R. Luttik, D. Makowski, A. Siani, H. Wahlstroem, J. Aguilera, J.-L. Dorne, A.F. Dumont, M. Hempen, S.V. Martínez, L. Martino, C. Smeraldi, A. Terron, N. Georgiadis, M. Younes, Guidance on the use of the weight of evidence approach in scientific 50
assessments, *EFSA Journal* 15 (2017) 4971. assessments, *El SA Journal* 13 (2017) [88] S.M. Barlow, J.B. Greig, J.W. Bridges, A. Carere, A.J.M. Carpy, C.L. Galli, J. Kleiner, I. Knudsen, H.B.W.M. Koëter, L.S. Levy, C. Madsen, S. Mayer, J.-F. Narbonne, F. Pfannkuch, M.G. Prodanchuk, M.R. Smith, P. Steinberg, Hazard identification by methods of animal-based toxicology, Food Chem. Toxicol. 40 (2002) 145- **191.** [89] R. Cariou, E. Omer, A. Léon, G. Dervilly-Pinel, B. Le Bizec, Screening halogenated environmental contaminants in biota based on isotopic pattern and mass defect provided by high resolution mass spectrometry profiling, Anal. Chem. Acta 936 (2016) 130-138. 2706. 191.

 [90] S.L. Kaserzon, A.L. Heffernan, K. Thompson, J.F. Mueller, M.J. Gomez Ramos, Rapid screening and identification of chemical hazards in surface and drinking water using high resolution mass spectrometry and a case-control filter, Chemosphere 182 (2017) 656-664.

 [91] M. Kunzelmann, M. Winter, M. Åberg, K.-E. Hellenäs, J. Rosén, J. Non-targeted analysis of unexpected food contaminants using LC-HRMS, Anal. Bioanal. Chem. 410 (2018) 5593-5602.

 $\frac{6}{2}$ [92] A. Agüera, M.J. Martínez Bueno, A.R. Fernández-Alba, New trends in the analytical determination of $\frac{7}{6}$ emerging contaminants and their transformation products in environmental waters, Environ. Sci. Pollut. Res. 20 8 (2013) 3496-3515.

 $\frac{1}{9}$ (2013) 3430 3313. 10 [93] N.A. Alygizakis, S. Samanipour, J. Hollender, M. Ibáñez, S. Kaserzon, V. Kokkali, J.A. van Leerdam, J.F.
Martin M. Bijaansk M.J. Bijd E.J. Gebeurenski, J. Glabadaik, M.S. Themseili, K.V. Themse. Embaine the $\frac{1}{11}$ Mueller, M. Pijnappels, M.J. Reid, E.L. Schymanski, J. Slobodnik, M.S. Thomaidis, K.V. Thomas, Exploring the 12 potential of a global emerging contaminant early warning network through the use of retrospective suspect 13 screening with high-resolution mass spectrometry, Environ. Sci. Technol. 52 (2018) 5135-5144.

 [94] B. Testa, A. Pedretti, G. Vistoli, Reactions and enzymes in the metabolism of drugs and other xenobiotics, Drug Discov. Today 17 (2012) 549-560.

[95] L.L. Aylward, Integration of biomonitoring data into risk assessment, Curr. Opin. Toxicol. 9 (2018) 14-20.

 [96] S.M. Rappaport, D.K. Barupal, D. Wishart, P. Vineis, A. Scalbert, The blood exposome and its role in discovering causes of disease, Environ. Health Perspect. 122 (2014) 769-774.

19 [97] F. Jeanneret, J. Boccard, F. Badoud, O. Sorg, D. Tonoli, D. Pelclova, S. Vlckova, D.N. Rutledge, C.F. Samer, D. Hochstrasser, J.-H. Saurat, S. Rudaz, Human urinary biomarkers of dioxin exposure: Analysis by metabolomics and biologically driven data dimensionality reduction, Toxicol. Lett. 230 (2014) 234-243.

22
22 [98] F. Jeanneret, D. Tonoli, D. Hochstrasser, J.-H. Saurat, O. Sorg, J. Boccard, S. Rudaz, Evaluation and 23 [Soft: scannered; D. Tonon; D. T. identification of dioxin exposure biomarkers in human urine by high resolution metabolomics, multivariate
 24

sealing and in the surface Terried Lett 240/2016) 22.21 analysis and in vitro synthesis, Toxicol. Lett. 240 (2016) 22-31.

- 26 [99] N. Bonvallot, A. David, F. Chalmel, C. Chevrier, S. Cordier, J.-P. Cravedi, D. Zalko, Metabolomics as a 27 powerful tool to decipher the biological effects of environmental contaminants in humans, Curr. Opin. Toxicol. 8 (2018) 48-56.
- [100] H. Duan, N. Guan, Y. Wu, J. Zhang, J. Ding, B. Shao, Identification of biomarkers for melamine-induced nephrolithiasis in young children based on ultra high performance liquid chromatography coupled to time-of-flight mass spectrometry (U-HPLC-Q-TOF/MS), J Chromatogr. B, 879 (2011) 3544-3550.
- [101] D. Carrizo, O.P. Chevallier, J.V. Woodside, S.F. Brennan, M.M. Cantwell, G. Cuskelly, C.T. Elliot, Untargeted metabolomics analysis of human serum samples associated with exposure levels of persistent organic pollutants indicate important perturbations in Sphingolipids and Glycerophosholipids levels, Chemosphere, 168 35 (2017) 731-738.
- [102] J.M. Braun, C. Gennings, R. Hauser, T.F. Webster, What can epidemiological studies tell us about the Live is film binding to defining 37 $\frac{38}{38}$ impact of chemical mixtures on human health? Environ. Health Perspect. 124 (2016) A6-A9.
- [103] J.A. Campillo, A. Sevilla, C. González-Fernández, J. Bellas, C. Bernal, M. Cánovas, M. Albentosa, Metabolomic responses of mussel Mytilus galloprovincialis to fluoranthene exposure under different nutritive conditions, Mar. Environ. Res. 144 (2019) 194-202.
- [104] R.J. Van Meter, D.A. Glinski, S.T. Purucker, W.M. Henderson, Influence of exposure to pesticide mixtures on the metabolomic profile in post-metamorphic green frogs (Lithobates clamitans), Sci. Total Environ., 624 (2018) 1348-1359.
- [105] M.-H. Li, L.-Y. Ruan, J.-W. Zhou, Y.-H. Fu, L. Jiang, H. Zhao, J.-S. Wang, Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure, Aquat. Toxicol. 188 (2017) 159-169.
- [106] E.G. Nagato, A.J. Simpson, M.J. Simpson, Metabolomics reveals energetic impairments in Daphnia magna exposed to diazinon, malathion and bisphenol-A, Aquat. Toxicol. 170 (2016) 175-186.
- [107] C.K. Faeste, F. Pierre, L. Ivanova, A. Sayyari, D. Massotte, Behavioural and metabolomics changes from ehemia distant avancume to low low chronic dietary exposure to low-level deoxynivalenol reveal impact on mouse well-being, Arch. Toxicol. 93

compared 1991 0087 2103 (2013) 2007-2102. (2019) 2087-2102.
- [108] Y. Zhao, Y. Zhang, G. Wang, R. Han, X. Xie, Effects of chlorpyrifos on the gut microbiome and urine metabolome in mouse (Mus musculus), Chemosphere 153 (2016) 287-293.
- [109] K. Lu, R.P. Abo, K.A. Schlieper, M.E. Graffam, S. Levine, J.S. Wishnok, J.A. Swenberg, S.R. Tannenbaum, J.G. Fox, Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: An integrated metagenomic and metabolomics analysis, Environ. Health Perspect. 122 (2014) 284-291.

- [110] Z. Meng, D. Wang, W. Liu, R. Li, S. Yan, M. Jia, L. Zhang, Z. Zhou, W. Zhu, Perinatal exposure to bisphenol S (BPS) promotes obesity development by interfering with lipid and glucose metabolism in male mouse offspring, Environ. Res. 173 (2019) 189-198.
- ⁴ [111] A.A. O'Kane, O.P. Chevallier, S.F. Graham, C.T. Elliott, M.H. Mooney, Metabolomic profiling of in vivo plasma responses to dioxin-associated dietary contaminant exposure in rats: Implications for identification of $\frac{6}{2}$ sources of animal and human exposure, *Environ. Sci. Technol.* 47 (2013) 5409-5418.
- [112] K. Nomiyama, A. Eguchi, K. Takaguchi, J. Yoo, H. Mizukawa, T. Oshihoi, S. Tanabe, H. Iwata, Targeted $\frac{8}{3}$ metabolome analysis of the dog brain exposed to PCBs suggests inhibition of oxidative phosphorylation by 9 metabolome analysis of the dog brand 10 hydroxylated PCBs, Toxicol. Appl. Pharm. 377 (2019) 114620.
https://www.colongalism.com/2010/2010/2010/2010/2010
- [113] M. Arias, O.P. Chevallier, S.F. Graham, A. Gasull-Gimenez, T. Fodey, K.M. Cooper, S.R.H. Crooks, M. Danaher, C.T. Elliott, Metabolomics reveals novel biomarkers of illegal 5-nitroimidazole treatment in pigs. Further evidence of drug toxicity uncovered, Food Chem. 199 (2016) 876-884.
- [114] M.V. Caballero, M. Candiracci, Zebrafish as screening model for detecting toxicity and drugs efficacy, J. Unexplored Med. Data 3 (2018) 4.
- [115] M.R. Elie, J. Choi, Y.M. Nkumah-Elie, G.D. Gonnerman, J.F. Stevens, R.L. Tanguay, Metabolomic analysis 17 to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish, *Environ. Res.* 140 (2015) 502-510.
- [116] G.D. Loizou, Animal-free chemical safety assessment, Front. Pharmacol. 7 (2016) 218.
- [117] A. Poloznikov, I. Gazaryan, M. Shkurnikov, S. Nikulin, O. Drapkina, A. Baranova, A. Tonevitsky, In vitro and in silico liver models: Current trends, challenges and opportunities, ALTEX 35 (2018) 397-412.
- 22
22 **[118] N. Van den Eede, M. Cuykx, R.M. Rodrigues, K. Laukens, H. Neels, A. Covaci, T. Vanhaecke, Metabolomics** $\frac{23}{24}$ analysis of the toxicity pathways of triphenyl phosphate in HepaRG cells and comparison to oxidative stress 24 analysis of the toxicity pathways of mechanisms caused by acetaminophen, Toxicol. In Vitro 29 (2015) 2045-2054.
- [119] J. Gu, F. Su, P. Hong, Q. Zhang, M. Zhao, $1/2$ H NMR-based metabolomic analysis of nine organophosphate flame retardants metabolic disturbance in Hep G2 cell line, Sci. Total Environ. 665 (2019) 162-170.
- [120] F. Wang, H. Zhang, N. Geng, B. Zhang, X. Ren, J. Chen, New insights into the cytotoxic mechanism of hexabromocyclododecane from a metabolomics approach, Environ. Sci. Technol. 50 (2016) 3145-3153.
- [121] J. Chong, O. Soufan, C. Li, I. Caraus, S. Li, G. Bourque, D.S. Wishart, J. Xia, MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis, Nucleic Acids Res. 46 (2018) W486-W494.
- [122] W. Huang, L. Zhu, C. Zhao, X. Chen, Z. Cai, Integration of proteomics and metabolomics reveals promotion of proliferation by exposure of bisphenol S in human breast epithelial MCF-10A cells, Sci. Total Environ. 712 $\frac{34}{25}$ (2020) 136453.
- [123] J. Kostal, A. Voutchkova-Kostal, Going all in: A strategic investment in in silico toxicology, Chem. Res. Toxicol. 33 (2020) 880-888. 37 March 33 (2020) 000 000.
- [124] B. van Ravenzwaay, M. Herold, H. Kamp, M.D. Kapp, E. Fabian, R. Looser, G. Krennrich, W. Mellert, A. **Prokoudine, V. Strauss, T. Walk, J. Wiemer, Metabolomics: A tool for early detection of toxicological effects and** 40 an opportunity for biology based grouping of chemicals - From QSAR to QBAR, Mutat. Res. Genet. Toxicol. Environ. Mutagen. 746 (2012) 144-150.
- [125] M.R. Viant, T.M.D. Ebbels, R.D. Beger, D.R. Ekman, D.J.T. Epps, H. Kamp, P.E.G. Leonards, G.D. Loizou, J.I. MacRae, B. van Ravenzwaay, P. R.-Serra, R.M. Salek, T. Walk, R.J.M. Weber, Use cases, best practice and reporting standards for metabolomics in regulatory toxicology, Nat. Commun. 10 (2019) 3041.
- [126] E. Benfenati, Q. Chaudhry, G. Gini, J. Lou Dorne, Integrating in silico models and read-across methods for predicting toxicity of chemicals: A step-wise strategy, Environ. Int. 131 (2019) 105060.
- [127] B. van Ravenzwaay, S. Sperber, O. Lemke, E. Fabian, F. Faulhammer, H. Kamp, W. Mellert, V. Strauss, A. Strigun, E. Peter, M. Spitzer, T. Walk, Metabolomics as read-across tool: A case study with phenoxy herbicides, Regul. Toxicol. Pharm. 81 (2016) 288-304.
- [128] G.J. Myatt, E. Ahlberg, Y. Akahori, D. Allen, A. Amberg, L.T. Anger, A. Aptula, S. Auerbach, L. Beilke, P. [120] U.J. Myatt, L. Alliberg, T. Akai Bellion, R. Benigni, J. Bercu, E.D. Booth, D. Bower, A. Brigo, N. Burden, Z. Cammerer, M.T.D. Cronin, K.P. Cross, L. Custer, M. Dettwiler, K. Dobo, K.A. Ford, M.C. Fortin, S.E. Gad-McDonald, N. Gellatly, V. Gervais, K.P. Glover, S. Glowienke, J. Van Gompel, S. Gutsell, B. Hardy, J.S. Harvey, J. Hillegass, M. Honma, J.-H. Hsieh, C.-W. Hsu, K. Hughes, C. Johnson, R. Jolly, D. Jones, R. Kemper, M.O. Kenyon, M.T. Kim, N.L. Kruhlak, S.A. Kulkarni, K. Kümmerer, P. Leavitt, B. Majer, S. Masten, S. Miller, J. Moser, M. Mumtaz, W. Muster, L. Neilson, T.I. Oprea, G. Patlewicz, A. Paulino, E. Lo Piparo, M. Powley, D.P. Quigley, M.V. Reddy, A.-N. Richarz, P. Ruiz, B. Schilter, R. Serafimova, W. Simpson, L. Staviskaya, R. Stidl, D. Suarez-Rodriguez, D.T. Szabo, A. Teasdale, A. Trejo-Martin, J.-

- P. Valentin, A. Vuorinen, B.A. Wall, P. Watts, A.T. White, J. Wichard, K.L. Witt, A. Woolley, D. Woolley, C. Zwickl, 2 C. Hasselgren, In silico toxicology protocols, Regul. Toxicol. Pharmacol. 96 (2018) 1-17.
- [129] S. Sperber, M. Wahl, F. Berger, H. Kamp, O. Lemke, V. Starck, T. Walk, M. Spitzer, B. van Ravenzwaay, 4 Metabolomics as read-across tool: An example with 3-aminopropanol and 2-aminoethanol, Regul. Toxicol. Pharmacol. 108 (2019) 104442.
- $\frac{6}{2}$ [130] R. Mesnage, M. Biserni, S. Balu, C. Frainay, N. Poupin, F. Jourdan, E. Wozniak, T. Xenakis, C.A. Mein, M.N. Antoniou, Integrated transcriptomics and metabolomics reveal signatures of lipid metabolism dysregulation in 8 HepaRG liver cells exposed to PCB 126, *Arch. Toxicol.* 92 (2018) 2533-2547.
- 9 repairs include consex posed to red 120 $\frac{10}{10}$ [131] A. Pikkarainen, M. Lehtonen, H. Håkansson, S. Auriola, M. Viluksela, Gender- and dose-related and and the straighteen in the official straighteen and the straighteen and the straighteen and the straighte metabolome alterations in rat offspring after in utero and lactational exposure to PCB 180, Toxicol. Appl. Pharm. 370 (2019) 56-64.
- 13 [132] J. Wei, X. Li, L. Xiang, Y. Song, Y. Liu, Y. Jiang, Z. Cai, Metabolomics and lipidomics study unveils the impact 14 of polybrominated diphenyl ether-47 on breast cancer mice, J. Hazard. Mater. 390 (2020) 121451.
- [133] W. Tao, J. Tian, T. Xu, L. Xu, H.Q. Xie, Z. Zhou, Z. Guo, H. Fu, X. Yin, Y. Chen, H. Xu, S. Zhang, W. Zhang, C. Ma, F. Ji, J. Yang, B. Zhao, Metabolic profiling study on potential toxicity in male mice treated with Dechlorane 602 using UHPLC-ESI-IT-TOF-MS, Environ. Pollut. 246 (2019) 141-147.
- [134] E. Ortiz-Villanueva, J. Jaumot, R. Martínez, L. Navarro-Martín, B. Piña, R. Tauler, Assessment of endocrine disruptors effects on zebrafish (Danio renio) embryos by untargeted LC-HRMS metabolomic analysis, Sci. Total Environ. 635 (2018) 156-166.
- [135] N. Yu, S. Wei, M. Li, J. Yang, K. Li, L. Jin, Y. Xie, J.P. Giesy, X. Zhang, H. Yu, Effects of perfluorooctanoic acid $\frac{22}{22}$ on metabolic profiles in brain and liver of mouse revealed by a high-throughput targeted metabolomics 23
approach, Sci. Rep. 6 (2016) 23963. approach, Schinger, O (2010) 23303.
- [136] S. Potratz, H. Jungnickel, S. Grabiger, P. Tarnow, W. Otto, E. Fritsche, M. von Bergen, A. Luch, Differential cellular metabolite alterations in HaCaT cells caused by exposure to the aryl hydrocarbon receptor-binding 27 polycyclic aromatic hydrocarbons chrysene, benzo[a]pyrene and dibenzo[a,l]pyrene, Toxicol. Rep. 16 (2016) 763-773.
- [137] K.-B. Kim, S.H. Kim, S.Y. Um, M.W. Chung, J.S. Oh, S.-C. Jung, T.S. Kim, H.J. Moon, S.Y. Han, H.Y. Oh, B.M. Lee, K.H. Choi, Metabolomics approach to risk assessment: Methoxyclor exposure in rats, J. Toxicol. Environ. Health Part A 72 (2009) 1352-1368.
- [138] X. Wang, D. Wang, Z. Zhou, W. Zhu, Subacute oral toxicity assessment of benalaxyl in mice based on metabolomics methods, Chemosphere 191 (2018) 373-380.
- [139] D.-F. Hao, W. Xu, H. Wang, L.-F. Du, J.-D. Yang, X.-J. Zhao, C.-H. Sun, Metabolomic analysis of the toxic effect of chronic low-dose exposure to acephate on rats using ultra-performance liquid chromatography/mass 36
spectrometry, Ecotoxicol. Environ. Saf. 83 (2012) 25-33.
- 37 Spectrometry, Ecotonicol. Environ. 50 [140] N.C. Kleinstreuer, A.M. Smith, P.R. West, K.R. Conard, B.R. Fontaine, A.M. Weir-Hauptaman, J.A. Palmer, T.B. Knudsen, D.J. Dix, E.L.R. Donley, G.G. Cezar, Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics, Toxicol. Appl. Pharmacol. 257 (2011) 111-121.
- [141] B. van Ravenzwaay, G.A. Montoya, E. Fabian, M. Herold, G. Krennrich, R. Looser, W. Mellert, E. Peter, V. Strauss, T. Walk, H. Kamp, The sensitivity of metabolomics versus classical regulatory toxicology from a NOAEL perspective, Toxicol. Lett. 227 (2014) 20-28.
- [142] F.S. vom Saal, C. Hughes, An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment, Environ. Health Perspect. 113 (2005) 926-933.
- [143] N.J. Cabaton, C. Canlet, P.R. Wadia, M. Tremblay-Franco, R. Gautier, J. Molina, C. Sonnenschein, J.-P. Cravedi, B.S. Rubin, A.M. Soto, D. Zalko, Effects of low doses of bisphenol A on the metabolome of perinatally exposed CD-1 mice, Environ. Health Perspect. 121 (2013) 586-593.
- [144] N. Geng, X. Ren, Y. Gong, H. Zhang, F. Wang, L. Xing, R. Cao, J. Xu, Y. Gao, J.P. Giesy, J. Chen, Integration of 144 ; 143 , 161 ; 161 , 17 , 180 $\frac{52}{52}$ metabolomics and transcriptomics reveals short-chain chlorinated paraffin-induced hepatotoxicity in male Sprague-Dawley rat, Environ. Int. 133 (2019) 105231.
- [145] N.J. Cabaton, N. Poupin, C. Canlet, M. Tremblay-Franco, M. Audebert, J.-P. Cravedi, A. Riu, F. Jourdan, D. 55 Zalko, Metabolic modulations of HepG2 cells exposed to low doses of bisphenol A and 17β-estradiol, Front. Endocrinol. 9 (2018) 571.
- [146] N. Bonvallot, C. Canlet, F. Blas-Y-Estrada, R. Gautier, M. Tremblay-Franco, S. Chevolleau, S. Cordier, J.-P. Cravedi, Metabolome disruption of pregnant rats and their offspring resulting from repeated exposure to a pesticide mixture representative of environmental contamination in Brittany, Plos ONE 13 (2018) e0198448.

 [147] C. Demur, B. Métais, C. Canlet, M. Tremblay-Franco, R. Gautier, F. Blas-Y-Estrada, C. Sommer, L. Gamet- Payrastre, Dietary exposure to a low dose of pesticides alone or as a mixture: The biological metabolic fingerprint and impact on hematopoiesis, Toxicology 308 (2013) 74-87.

 $\frac{4}{148}$ [148] J. Ji, P. Zhu, I. Blaženovic, F. Cui, M. Gholami, J. Sun, J. Habimana, Y. Zhang, X. Sun, Explaining combinatorial effects of mycotoxins Deoxynivalenol and Zearalenone in mice with urinary metabolomics $\frac{6}{2}$ profiling, Sci. Rep. 8 (2018) 3762.

- $\frac{7}{6}$ [149] A.A. O'Kane, C.T. Elliott, M.H. Mooney, Complex interactions between dioxin-like and non-dioxin-like $\frac{8}{3}$ compounds for *in vitro* cellular responses: Implications for the identification of dioxin exposure biomarkers, $\frac{60}{2}$ compounds for *m* virto cendial respo Chem. Res. Toxicol. 27 (2014) 178-187.
- 11 [150] K.E.M. Ahmed, H.G. Frøysa, O.A. Karlsen, N. Blaser, K.E. Zimmer, H.F. Berntsen, S. Verhaegen, E. Ropstad, R. Kellmann, A. Goksøyr, Effects of defined mixtures of POPs and endocrine disruptors on the steroid metabolome of the human H295R adrenocortical cell line, Chemosphere 218 (2019) 328-339.
- [151] M.-Y. Xu, Y.-J. Sun, P. Wang, H.-Y. Xu, L.-P. Chen, L. Zhu, Y.-J. Wu, Metabolomics analysis and biomarker identification for brains of rats exposed subchronically to the mixtures of low-dose cadmium and chlorpyrifos, Chem. Res. Toxicol. 28 (2015) 1216-1223.
- [152] N. Hadrup, T. Svingen, K. Mandrup, K. Skov, M. Pedersen, H. Frederiksen, H.L. Frandsen, A.M. Vinggaard, 18 Juvenile male rats exposed to a low-dose mixture of twenty-seven environmental chemicals display adverse health effects, Plos ONE 11 (2016) e0162027.
- ²⁰ [153] L. Du, H. Wang, W. Xu, Y. Zeng, Y. Hou, Y. Zhang, X. Zhao, C. Sun, Application of ultraperformance liquid chromatography/mass spectrometry-based metabonomic techniques to analyze the joint toxic action of long-22 torm low lovel avancure to a mixtu term low-level exposure to a mixture of organophosphate pesticides on rat urine profile, Toxicol. Sci. 134
23 24 (2013) 133-200. (2013) 195-206.
- [154] A.M. Tsatsakis, A.O. Docea, C. Tsitsimpikou, New challenges in risk assessment of chemicals when simulating real exposure scenarios; simultaneous multi-chemicals' low dose exposure, Food Chem. Toxicol. 96 (2016) 174-176.
- [155] A. Kortenkamp, M. Faust, Regulate to reduce chemical mixture risk, Science 361 (2018) 224-226.
- [156] L.S. Sheldon, Exposure framework, in: R.I. Krieger, J. Doull, J.J. van Hemmen, E. Hodgson, H.I. Maibach, L. 30 Ritter, J. Ross, W. Slikker (Eds.), Handbook of pesticide toxicology. Vol. 1, 3rd ed. Elsevier, Burlington (MA), 2010, pp. 971-976.
- [157] R. López-Ruiz, R. Romero-González, A.G. Frenich, Metabolomics approaches for the determination of multiple contaminants in food, Curr. Opin. Food Sci. 28 (2019) 49-57.
- [158] S.S. Andra, C. Austin, D. Patel, G. Dolios, M. Awawda, M. Arora, Trends in the application of highas the secolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental Exposured mass spectrometry for human somometing. Yn undrytted primer to steady.

chemical space of the human exposome, Environ. Int. 100 (2017) 32-61.
- 37 Chemical space of the haman exposure [159] K. Preindl, D. Braun, G. Aichinger, S. Sieri, M. Fang, D. Marko, B. Warth, A generic liquid chromatographytandem mass spectrometry exposome method for the determination of xenoestrogens in biological matrices, Anal. Chem. 91 (2019) 11334-11342.
- [160] D.I. Walker, T. Mallon, P.K. Hopke, K. Uppal, Y.-M. Go, P. Rohrbeck, K. Pennell, D.P. Jones, Deployment- associated exposure surveillance with high-resolution metabolomics, J. Occup. Environ. Med. 58 (2016) S12- **S21.** S21.
- [161] M. Pourchet, L. Debrauwer, J. Klanova, E.J. Price, A. Covaci, N. Caballero-Casero, H. Oberacher, M. Lamoree, A. Damont, F. Fenaille, J. Vlaanderen, J. Meijer, M. Krauss, D. Sarigiannis, R. Barouki, B. Le Bizec, J.-P. 46 Antignac, Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation rules, Environ. Int. 139 (2020) 105545.
- [162] J.R. Sobus, J.N. Grossman, A. Chao, R. Singh, A.J. Williams, C.M. Grulke, A.M. Richard, S.R. Newton, A.D. McEachran, E.M. Ulrich, Using prepared mixtures of ToxCast chemicals to evaluate non-targeted analysis (NTA) 51 Michael Barbonnessen Angl Diagnal $\frac{52}{52}$ method performance, Anal. Bioanal. Chem. 411 (2019) 835-851.
- [163] C.P. Wild, Complementing the genome with an "exposome": the outstanding 53 exposure measurement in molecular epidemiology, Cancer Epidemiol. Biomarkers Prev. 14 (2005) 1847-1850.
- [164] B.I. Escher, J. Hackermüller, T. Polte, S. Scholz, A. Aigner, R. Altenburger, A. Böhme, S.K. Bopp, W. Brack, W. Bush, M. Chadeau-Hyam, A. Covaci, A. Eisenträger, J.J. Galligan, N. García-Reyero, T. Hartung, M. Hein, G. Herberth, A. Jahnke, J. Kleinjans, N. Klüver, M. Krauss, M. Lamoree, I. Lehmann, T. Luckenbach, G.W. Miller, A. Müller, D.H. Phillips, T. Reemtsma, U. Rolle-Kampczyk, G. Schüürmann, B. Schwikowski, Y.-M. Tan, S. Trump, S.
-

 effects, Environ. Int. 99 (2017) 97-106. [165] C.S. Bloszies, O. Fiehn, Using untargeted metabolomics for detecting exposome compounds, Curr. Opin. Toxicol. 8 (2018) 87-92. [166] B.B. Misra, Metabolomics tools to study links between pollution and human health: an exposomics $\frac{6}{2}$ perspective, Curr. Pollut. Rep. 5 (2019) 93-111. $\frac{7}{6}$ [167] M.K. Chung, K. Kannan, G.M. Louis, C.J. Patel, Toward capturing the exposome: Exposure biomarker 8
variability and coexposure patterns in the shared environment, *Environ. Sci. Technol.* 52 (2018) 8801-8810. 9 Maria Millet La China de Caposar El patricirita del 1990 10 [168] J.A. Stingone, G.M. Buck Louis, S.F. Nakayama, R.C.H. Vermeulen, R.K. Kwok, Y. Cui, D.M. Balshaw, S.L.
Taitallasuus Tausaul appeten insulamentation of the supercome appearable appelling within anyingground. $\frac{1}{11}$ Teitelbaum, Toward greater implementation of the exposome research paradigm within environmental

Walter-Rohde, J.F. Wambaugh, From the exposome to mechanistic understanding of chemical-induced adverse

- epidemiology, Annu. Rev. Public Health 38 (2017) 315-327.
- 13 [169] D.P. Jones, Sequencing the exposome: A call to action, Toxicol. Rep. 3 (2016) 29-45.
- [170] A.K. Manrai, Y. Cui, P.R. Bushel, M. Hall, S. Karakitsios, C.J. Mattingly, M. Ritchie, C. Schmitt, D.A. Sarigiannis, D.C. Thomas, D. Wishart, D.M. Balshaw, C.J. Patel, Informatics and data analytics to support exposome-based discovery for public health, Annu. Rev. Public Health 38 (2017) 279-294.
- [171] L. Maitre, O. Robinson, D. Martinez, M.B. Toledano, J. Ibarluzea, L.S. Marina, J. Sunyer, C.M. Villanueva, 18 H.C. Keun, M. Vrijheid, M. Coen, Urine metabolic signatures of multiple environmental pollutants in pregnant women: An exposome approach, Environ. Sci. Technol. 52 (2018) 13469-13480.
- ²⁰ [172] R. Vermeulen, E.L. Schymanski, A.-L. Barabási, G.W. Miller, The exposome and health: Where chemistry meets biology, Science 367 (2020) 392-396.
- $\frac{22}{22}$ [173] D. Gayle Debord, T. Carreón, T.J. Lentz, P.J. Middendorf, M.D. Hoover, P.A. Schulte, Use of the 23 [175] D. Guyle Bebora, i. cancor $\frac{23}{24}$ "exposome" in the practice of epidemiology: A primer on –omic technologies, Am. J. Epidemiol. 184 (2016) 302- 244 . 314.
- [174] M.C. Turner, P. Vineis, E. Seleiro, M. Dijmarescu, D. Balshaw, R. Bertollini, M. Chadeau-Hyam, T. Gant, J. Gulliver, A. Jeong, S. Kyrtopoulos, M. Martuzzi, G.W. Miller, T. Nawrot, M. Nieuzenhuijsen, D.H. Philips, N. Probst-Hensch, J. Samet, R. Vermeulen, J. Vlaanderen, M. Vrijheid, C. Wild, M. Kogevinas, EXPOsOMICS Consortium, EXPOsOMICS: final policy workshop and stakeholder consultation, BMC Public Health 18 (2018) **260. 200.** 260.
- [175] P. Vineis, O. Robinson, M. Chadeau-Hyam, A. Dehghan, I. Mudway, S. Dagnino, What is new in the exposome? Environ. Int. 143 (2020) 105887.
- [176] R.S. Kelly, H. Bayne, A. Spiro II, P. Vokonas, D. Sparrow, S.T. Weiss, J. Schwartz, F.L. Nassan, K. Lee-Sarwar, M. Huang, P. Kachroo, S.H. Chu, A.A. Litonjua, J.A. Lasky-Su, Metabolic signatures of lead exposure in the VA Normative Aging Study, Environ. Res. 190 (2020) 110022.
- [177] N. Bonvallot, M. Tremblay-Franco, C. Chevrier, C. Canlet, C. Warembourg, J.-P. Cravedi, S. Cordier, 37 Later Bonvallot, W. Hemblay H $\frac{38}{38}$ Metabolomics tools for describing complex pesticide exposure in pregnant women in Brittany (France), Plos ONE 8 (2013) e64433.
- [178] S. Salihovic, A. Ganna, T. Fall, C.D. Broeckling, J.E. Prenni, B. van Bavel, P. Monica Lind, E. Ingelsson, L. 41 Lind, The metabolic fingerprint of p,p'-DDE and HCB exposure in humans, Environ. Int. 88 (2016) 60-66.
- [179] I. Alassane-Kpembi, C. Canlet, M. Tremblay-Franco, F. Jourdan, M. Chalzaviel, P. Pinton, A.M. Cossalter, C. 43 Achard, M. Castex, S. Combes, A.P.L. Bracarense, I.P. Oswald, ¹H-NMR metabolomics response to a realistic diet contamination with the mycotoxin deoxynivalenol: Effect of probiotics supplementation, Food Chem. Toxicol. 138 (2020) 111222.
- [180] H.M. Kauffmann, H. Kamp, R. Fuchs, B.N. Chorley, L. Deferme, T. Ebbels, J. Hackermüller, S. Perdichizzi, A. Poole, U.G. Sauer, K.E. Tollefsen, T. Tralau, C. Yauk, B. van Ravenzwaay, Framework for the quality assurance of **Comics technologies considering GLP requirements, Reg. Toxicol. Pharmacol. 91 (2017) S27-S35.**
- [181] U.G. Sauer, L. Deferme, L. Gribaldo, J. Hackermüller, T. Tralau, B. van Ravenzwaay, C. Yauk, A. Poole, W. Tong, T.W. Gant, The challenge of 51 Tulig, T.W. Galit, The chancing of Background and outlook, Reg. Toxicol. Pharmacol. 91 (2017) S14-S26.
- [182] L.W. Summer, A. Amberg, D. Barrett, M.H. Beale, R. Beger, C.A. Daykin, T.W.-M. Fan, O. Fiehn, R. Goodacre, J.L. Griffin, T. Hankemeier, N. Hardy, J. Harnly, R. Higashi, J. Kopka, A.N. Lane, J.C. Lindon, P. Marriott, A.W. Nicholls, M.D. Reily, J.J. Thaden, M.R. Viant, Proposed minimum reporting standards for chemical analysis, Metabolomics 3 (2007) 211-221.
- [183] R.D. Beger, Interest is high in improving quality control for clinical metabolomics: setting the path forward for community harmonization of quality control standards, Metabolomics 15 (2019) 1.

 [184] H. Oberacher, M. Sasse, J.-P. Antignac, Y. Guitton, L. Debrauwer, E.L. Jamin, T. Schulze, M. Krauss, A. Covaci, N. Caballero-Casero, K. Rousseau, A. Damont, F. Fenaille, M. Lamoree, E.L. Schymanski, A European proposal for quality control and quality assurance of tandem mass spectral libraries, Environ. Sci. Eur. 32 (2020) $\frac{4}{4}$ 43. 43.

⁵ [185] M. Wang, J. Carver, V. Phelan, et al. Sharing and community curation of mass spectrometry data with $\frac{6}{5}$ Global Natural Products Social Molecular Networking, Nat. Biotechnol. 34 (2016) 828–837.

 [186] R.J.M. Weber, T.N. Lawson, R.M. Salek, T.M.D. Ebbels, R.C. Glen, R. Goodacre, J.L. Griffin, K. Haug, A. $\frac{8}{3}$ Koulman, P. Moreno, M. Ralser, C. Steinbeck, W.B. Dunn, M.R. Viant, Computational tools and workflows in 9 Rodman, r. Moreno, M. Raiser, e. 50 $\frac{10}{10}$ metabolomics: An international survey highlights the opportunity for harmonisation through Galaxy, 1¹ Metabolomics 13 (2017) 12.
11 Metabolomics 13 (2017) 12.

- [187] M.D. Wilkinson, M. Dumontier, I.J.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L.B. da Silva Santos, P.E. Bourne, J. Bouwman, A.J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C.T. Evelo, R. Finkers, A. Gonzalez-Beltran, A.J.G. Gray, P. Groth, C. Goble, J.S. Grethe, J. Heringa, P.A.C 't Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S.J. Lusher, M.E. Martone, A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M.A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, B. Mons, The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data 3 (2016), 160018.
- 20 [188] K. Haug, R.M. Salek, C. Steinbeck, Global open data management in metabolomics, Curr. Opin. Chem. Biol. $\frac{21}{36}$ 36 (2017) 58-63.
- [189] T. Ramirez, M. Daneshian, H. Kamp, F.Y. Bois, M.R. Clench, M. Coen, B. Donley, S.M. Fischer, D.R. Ekman, E. Fabian, C. Guillou, J. Heuer, H.T. Hogberg, H. Jungnickel, H.C. Keun, G. Krennrich, E. Krupp, A. Luch, F. Noor, E. **E. Fabiali, C. Guillou, J. Fleuer, Fl. F. Fly**
Reference M. Germany, M. Gline Peter, B. Riefke, M. Seymour, N. Skinner, L. Smirnova, E. Verheij, S. Wagner, T. Hartung, B. van Ravenzwaay, M. 26 Leist, Metabolomics in toxicology and preclinical research, ALTEX 30 (2013) 209-225.
- [190] Y.-M. Go, D.I. Walker, Y. Liang, K. Uppal, Q.A. Soltow, V. Tran, F. Strobel, A.A. Quyyumi, T.R. Ziegler, K.D. Pennell, G.W. Miller, D.P. Jones, Reference standardization for mass spectrometry and high-resolution metabolomics applications to exposome research, Toxicol. Sci. 148 (2015) 531-543.
- [191] M.R. Viant, D.W. Bearden, J.G. Bundy, I.W. Burton, T.W. Collette, D.R. Ekman, V. Ezernieks, T.K. Karakach, C.Y. Lin, S. Rochfort, J.S. de Ropp, Q. Teng, R.S. Tjeerdema, J.A. Walter, H. Wu, International NMR-based environmental metabolomics intercomparison exercise, Environ. Sci. Technol. 43 (2009) 219-225.
- [192] G. Dervilly-Pinel, A.-L. Royer, E. Bozzetta, M. Pezzolato, L. Herpin, S. Prevost, B. Le Bizec, When LC-HRMS $\frac{34}{2}$ metabolomics gets ISO17025 accredited and ready for official controls – application to the screening of forbidden compounds in livestock, Food Addit. Contam. Part A 35 (2018) 1948-1958.
- [193] Y.-M. Tan, J. A Leonard, S. Edwards, J. Teeguarden, A. Paini, P. Egeghy, Aggregate exposure assessment Letters is support subleau of 37 $\frac{3}{3}8$ pathways in support or risk assessment, Curr. Opin. Toxicol. 9 (2018) 8-13.
- [194] N.J. Plant, An introduction to systems toxicology, Toxicol. Res. 4 (2015) 9-22.

Figure captions

 $\frac{3}{4}$ **Figure 1.** Risk analysis framework.

 Figure 2. 'Omics cascade' showing $\frac{1}{8}$ created in BioRender.com.

 $\qquad \qquad$ \qquad $\qquad \qquad$ \qquad \qquad **Figure 3.** A) Global overview of metabolic pathways, B) Bisphenol degradation pathway, C) Bisphenol A. $\frac{11}{10}$ Metabolic pathways have been extracted from the Kyoto Encyclopedia of Genes and Genomes (KEGG) with 12 motorono palimajo nare secon chile permission [55].

 Figure 4. (A) Chromatogram of the polar extract of a serum sample analyzed in ESI+ mode. (B) The scores plot displaying the separation between the two sample groups (i.e. low and high DDE exposure). Explained (52) (52) (52) (62) (72) (62) (72) (82) (12) $\frac{19}{19}$ variance (R2) was 94%, predictive ability (Q2) was 85%, and root-mean-square error of validation (RMSEV) was 20 18%. (C) The loadings plots that correspond to the scores in B. Metabolites that significantly differ between \cdots \cdots \cdots groups are indicated in red and blue, and are related to high and to low DDE exposure, respectively. These 23 motobolitas are further amphasized metabolites are further emphasized by the S-line-plot (D) and their relative variable importance to the model. 25 Figure reprinted with permission from [101]. Copyright (2017) Elsevier.

Eight Eight F Drapaced pathway of $\frac{27}{28}$ Figure 5. Proposed pathway of inhibition of ATP biosynthesis by disruption of oxidative phosphorylation (OXPHOS) derived from the uncoupling action by OH-PCBs in beagle brain and inactivation of the urea cycle with 31 reduced ATP production. Black thick arrows indicate the metabolites with decreased concentrations. Figure 32 reprinted with permission from [119] reprinted with permission from [112]. Copyright (2019) Elsevier.

Figure 6. Changes in metabolic profile of Sprague-Dawley rat liver after 28-day oral administration of SCCPs. (A) PI S-DA score plot of liver metabo (A) PLS-DA score plot of liver metabolites after exposed to SCCPs at various doses. (B) MELI of liver metabolism fingerprint in the control and SCCP-treated groups. (C) Metabolic correlation networks of the differential 39 (1.1% 1.1%) $\frac{1}{40}$ metabolites and related pathways. SM: sphingomyelin; PC: phosphatidyl choline; LysoPC: lysophosphatidyl choling: PF: nhosnhatidul athanolam choline; PE: phosphatidyl ethanolamine; LysoPE: lysophosphatidyl ethanolamine; PA: phosphatidic acid; CoA: coenzyme A; GSSH: oxidized glutathione; ADP: Adenosine diphosphate. (D) Hierarchical clustering based on the differential metabolites with p -vall nalmitovlathanolamide: Δ E Δ ; ananda palmitoylethanolamide; AEA: anandamide; Leu-pro: leucylproline; MG: monoacyl glycerol; DG: diacyl glycerols. *, 48 p -value < 0.05; **, p -value < 0.01. Figure reprinted with permission from [144]. Copyright (2019) Elsevier. groups are indicated in red and blue, and are related to high and to low DDE exposure, respectively. These
metabolites are further emphasized by the S-line-plot (D) and their relative variable importance to the model.
Figu Figure reprinted with permission from [101]. Copyright (2017) Elsevier.
 Figure 5. Proposed pathway of inhibition of ATP biosynthesis by disruption of oxidative phosphorylar

(OXPHOS) derived from the uncoupling action

Figure 5.

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

A) Untargeted metabolomics

B) Semi-targeted metabolomics

Dr Maykel Hernández-Mesa obtained his PhD in Chemistry in the laboratory of Prof. García- Campaña at the University of Granada (Spain) in 2016 (PhD Extraordinary Award in Sciences-UGR). He then joined LABERCA (ONIRIS; France) with a postdoctoral fellowship ('Fundación Ramón Areces'; Spain) to investigate the potential of ion mobility spectrometry (IMS)-mass spectrometry (MS) for the characterization of steroids. He is currently a Marie Skłodowska-Curie fellow at LABERCA. His HAZARDOmics project aims to apply metabolomics approaches in hazard identification of bisphenol A and polychlorinated biphenyls. His current research interests are IMS-MS, liquid chromatography-MS and capillary electrophoresis-MS and their application in food safety and risk analysis.

Dr Bruno LE BIZEC, is professor in Public health, director of French National Reference Laboratory and head of INRAE research unit within the National Veterinary College of Nantes, France. He has more than 30 years of expertise in analytical chemistry. He is the head of the CONTAM panel at ANSES. As EFSA member, he has been involved in the data collection working group for the identification of emerging risks related to food and feed (DACO). He is also JECFA expert (FAO member).

Dr Gaud Dervilly is head deputy of INRAE research unit within the National Veterinary College of Nantes, France. For 20 years, her research activity has been devoted to Chemical Food Safety issues. She is responsible for the management of research projects related to the modelling of contaminants transfer along the food chain
and the evaluation of consumer's chemical exposure. Her competences range from targeted mass spectrometric approaches to more global and non-targeted strategies, such as metabolomics, to study the effects of chemical exposure and related biomarkers discovery, in a risk assessment perspective.

