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Abstract—This paper proposes a novel human-aware method
that generates robot plans for autonomous and human-robot
cooperative tasks in industrial environments. We modify the
standard Behavior Trees (BTs) formulation in order to take
into account the action-related costs, and design suitable metrics
and cost functions to account for the cooperation with a worker
considering human availability, decisions, and ergonomics. The
developed approach allows the robot to online adapt its plan
to the human partner, by choosing the tasks that minimize
the execution cost(s). Through simulations, we first tuned the
weights of the cost function for a realistic scenario. Subse-
quently, the developed method is validated through a proof-
of-concept experiment representing the boxing of 4 different
objects. The results show that the proposed cost-based BTs,
along with the defined costs, enable the robot to online react
and plan new tasks according to the dynamic changes of the
environment, in terms of human presence and intentions. Our
results indicate that the proposed solution demonstrates high
potential in increasing robot reactivity and flexibility while,
at the same time, in optimizing the decision-making process
according to human actions.

I. INTRODUCTION

Nowadays, compliant lightweight robots are increasingly
exploited to address the upcoming needs of the new in-
dustries, where cyber-physical systems continuously com-
municate and collaborate with each other and their human
counterparts. Beyond the requirement for high flexibility to
accomplish a wide variety of tasks, the improvement of
worker ergonomics is of high relevance. Moreover, while
achieving such tasks, robot behaviors should be adapted
to the worker intentions and commands, from control to
task planning level [1]. To address the above specifications,
several attempts have been made to develop dexterous robots
with agile motions, ranging from humanoids [2], [3], to
single, or dual-arm wheeled manipulators [4], [5]. The latter
category has received slightly more attention in industry due
to an inherently greater postural stability, while dealing with
heavy manipulation tasks. The examples include logistics
[6]–[8] and manufacturing [9] scenarios. The mobility of
such systems allows to exploit their loco-manipulation ca-
pabilities to ensure safe human-robot collaboration, through
intuitive interfaces that allow the human operators to interact
with the robot [10], [11]. Nevertheless, such interfaces should
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Fig. 1: Schematic overview of the proposed method. The reactive
task planner, exploiting Behavior Trees (BTs), selects online the
new robot task according to the minimization of a weighted cost,
based on duration, ergonomics and travel distance indices.

not only allow to regulate the interaction at the control level
but also adapt robot behavior to human intentions, actions
and preferences.

In literature, different methods have been used to face
the adaptation of robot behavior to human intentions or
interactions. In auction-based planning, the plan is generated
through human-robot communication using gestures [9] or
verbal statements [12]. Alternative approaches, to address
this problem, combine motion [13] to consider human activ-
ities together with dynamic changes of the environment [14].
For instance, a Human Aware Task Planner (HATP) for
collaborative and interactive robotic applications producing
socially acceptable plans for several agents is proposed in
[15]. To anticipate human activities, in [16] the authors
presented a learning method, based on Markov decision
processes, that learns the human actions from RGB-D videos.
One of the shortcomings of the approach is that the dataset is
limited to human actions in domestic environments and the
method requires re-training to be able to learn new tasks.

To solve the task planning problem, it is necessary to
exploit models that allow taking into account all the possible
robot actions and reactions in accomplishing a set or se-
quence of tasks. This can be achieved by taking advantage of
heuristics [17] and deterministic [18] methods. Specifically,
in [17], the authors proposed a method that can decompose
a causal graph of a translated planning task into a sequence



of tasks and to plan with a heuristic system. In [18], the
presented approach generates plans including probabilistic
values, which are obtained from Markov Logic Networks
(MLN), a learning statistical relational model. The problem
of blending decision making with task execution has been
widely tackled with methods like Decision Trees (DTs) [19]
and Hierarchical Finite State Machines (HFSMs) [20]. DTs
are constituted by predicates and control statements that map
possible consequences like event results and utility. HFSM is
a FSM in which the states can be other FSMs. This structure
is easy to implement and design and the hierarchical property
reduces the state dimensions’ growth when its complexity
increases. Nevertheless, the state transitions have to be de-
fined manually and cannot change dynamically, hence, each
scenario-related behavior is usually not reusable.

Behavior Trees (BTs) represent another method, that has
been extensively used in the behavior development of the
Non-Player Character in the game AI. BTs can be considered
as an evolution of HFSMs in which the states are replaced by
atomic actions and the state transitions are defined implicitly
in the BT structure [21]. Moreover, they have the advantages
to be reactive, modular, maintainable and reusable. Recently,
researchers started to develop methods to integrate task
planning concepts with BTs. For instance, the CoSTAR
system was developed to design robotic programming for
non-expert users exploiting the user-friendly BTs structure
[22]. The architecture allows users to plan abstract goals by
defining generic actions. Extended BTs [23] were developed
to generate a plan using a planner for a problem defined with
the planning language Planning Domain Definition Language
(PDDL), to create a hierarchical tree and then to optimize
it to minimize the execution time and resources usage. In
[24], the authors merged the PDDL with the Hierarchical
task and motion Planning in the Now (HPN) to update
dynamically the BT every time it fails. Similarly, in [25], the
approach extended the BTs adding pre- and post-conditions.
Finally, Utility BTs [26] allow creating behaviors where
each action is selected among a set of actions, like the one
that maximizes the utility value. The other actions are then
discarded from the plan.

The standard BT structure and the above-mentioned ex-
tensions were not designed to operate in human-populated
environments, and moreover in industrial scenarios. They do
not provide the possibility to change online the structure of
the BT. Furthermore, they do not envision the presence of
other agents in the plan. In Human-Robot Collaboration, it
is important not only to adapt to the dynamic changes of
the environment but also to modify the generated plan with
respect to human intentions, activities, motion and avail-
ability. To overcome these limitations, this paper proposes
an online adaptation of the robot plan to human decision-
making as a first step towards human-aware task planning
using Behavior Trees. We extended Utility BTs in order to
plan robot behaviors according to production-related indices,
such as time performance, distance traveled by the agents
and human ergonomics, ordering the sequences of actions
to maximize the utility factor. One of the advantages of the

Type of Node Symbol Success Failure Running

Sequence →
All children
succeed One child fails

One child
returns
Running

Fallback ? One
child succeeds

All children
fail

One child
returns
Running

Decorator ♢ Custom Custom Custom

Parallel ⇉
≥M children

succeed
> N −M
children fail else

Condition True False Never

Action ▭ Upon
completion

Impossible to
complete

During
execution

TABLE I: BT node types and return status.

proposed method is that the same BT can handle different
levels of engagement between humans and robots: from
coexistence to cooperation, and autonomous task execution.
The developed method (see Figure 1) models the task-related
cost considering distances from the human and the robot
to the task, human ergonomics in terms of weights and
object location, and the task duration. The performance
of the proposed approach is evaluated experimentally both
in simulation and in a real scenario, where the MObile
Collaborative robotic Assistant (MOCA) plans each new task
adapting and reacting to human presence while achieving
object transportation tasks.

II. BEHAVIOR TREES FOR HUMAN-AWARE TASK
PLANNING

A. Preliminaries on Behavior Trees
A BT is a directed rooted tree, consisting of internal

nodes for control flow and leaf nodes for action execution
or condition evaluation. Pairs of adjacent nodes are denoted
as parent and child. The only node without parents, the
root, periodically sends a signal, called tick, through the tree,
which is propagated to its children to allow their execution.
Then, the queried child returns immediately a status to the
parent, depending on the type of node: SUCCESS if the node
successfully completed its execution, FAILURE if it failed
and RUNNING if the execution is not complete. There are
four standard types of control nodes (Fallback, Sequence,
Decorator, Parallel) and two standard categories of execution
nodes (Condition, Action). In Table I the standard node
types are summarized, with their symbol and the return
status depending on each case. A more detailed overview
of standard BTs can be found in Colledanchise et al. [21].

B. Custom Cost Behavior Trees
First, we developed a custom decorator node to allow

the execution of repetitive actions or sub-behaviors. The so-
called Keep Running Until Success node ticks continuously
the only child until it returns SUCCESS, so that, if an action
fails, the action is repeated until it is achieved. The pseu-
docode of the Keep Running Until Success node, represented
by the ↻ symbol, is synthesized in Algorithm 1.

Moreover, in the standard BT formulation, the execution
order of sequence and selector node children is intrinsically



fixed. Thus, the execution order of conditions and actions
must be established beforehand by the programmer, which
is, in the case of complex tasks, non-trivial. To enable
adaptation to human presence we employ Utility BTs to
assign a utility value to each action. This value is normally

Algorithm 1 Tick() function of the "KeepRunningUntilSuccess"
node.
1: procedure KEEPRUNNINGUNTILSUCCESS::TICK()
2: cℎild_status← cℎild.T ick()
3: if cℎild_status == RUNNING then
4: return RUNNING
5: else if cℎild_status == SUCCESS then
6: return SUCCESS
7: end if
8: end procedure

used by the fallback node to pick the action that maximizes
such value. We extend this concept, enabling a sequence node
to order the actions according to the utility value. In this way,
the following ticked child is no longer fixed but is selected
online as the one with minimal cost. The pseudocode for a
Sequence Costs node with N children, represented by the
→$ symbol, is summarized in Algorithm 2.

Algorithm 2 Tick() function of the "SequenceCosts" node.
1: procedure SEQUENCECOSTS::TICK()
2: costsidxs ← SORT_INDICES(costs)
3: for i← 1 to N do
4: while ¬ (FIND costsidxs(j) IN executed_cℎildidxs) do
5: j++
6: end while
7: idx← costsidxs(j)
8: cℎild_status← cℎild(idx).T ick()
9: if cℎild_status == RUNNING then
10: return RUNNING
11: else if cℎild_status == FAILURE then
12: CLEAR(executed_cℎildidxs)
13: else if cℎild_status == SUCCESS then
14: ADD(idx IN executed_cℎildidxs)
15: end if
16: end for
17: CLEAR(executed_cℎildidxs)
18: return SUCCESS
19: end procedure

C. Metrics and Cost Function Design
The meaning of the utility factor in game AI and also

how it should change in relation to the situation, feelings,
risks, etc., is quite clear [27], while, in human-populated
environments, and especially in industrial ones, other fac-
tors influence the cost evaluations. We propose to use, as
relevant factors in these scenarios, three different metrics
that influence task performance: task execution time, human
ergonomics, and total travel cost of each agent.

a) Duration Index: We consider the duration of a task
as a suitable metric to measure the agent’s performance
in achieving the task. In manufacturing processes, such as
assembly lines, the same sequence of tasks is continuously

repeated. The average task duration represents a simple
index to measure task performance. Moreover, this index
could allow reducing the overall execution time in future
executions. The duration index cost, Ti, is computed by:

Ti =
� i − �i,des
�i,des

(1)

where � i is the average execution time of the i-th task at
the previous shift of the production line and �i,des is the
nominal duration of the i-th task dictated by the manufac-
turing process. The higher the duration index, the slower
the execution of the task. The minimization of such index
allows executing first the actions the robot is able to achieve
in time and the human does not. In this way, the robot will
leave to the worker the tasks the latter is faster. Since the
worker is not obliged to execute those tasks, the robot will
schedule them as last. Moreover, if he is not present in the
workcell, the robot will execute all tasks from the fastest to
the slowest. In case the human enters later in the scene, the
remaining tasks are the ones the robot performs slower than
the previous ones.

b) Ergonomics Index: A fundamental aspect of the
employment of cobots in industry is the opportunity to boost
worker ergonomics while keeping productivity. Therefore,
we would like to achieve that the robot entrusts itself with
the heaviest and uncomfortable tasks. Thanks to ergonomics
indicators, it is possible to assign to each task an execution-
related cost that indicates the level of ergonomic risk of
the worker in achieving such a task. In literature, differ-
ent ergonomics indicators are present, from posture-related
(RULA, REBA, OWAS) to more task-specific (OCRA, NIOSH,
EAWS). In this work, we select an ergonomic risk assess-
ment for manual material handling tasks, the Washington
Industrial Safety and Health Act (WISHA) [28]. This index
allows taking into account not only the weights of the objects
but also the relative position of the task with respect to
the human (in terms of height and horizontal distance), the
frequency of the task execution in a day, the task duration
and the body twist angle required to achieve the task. The
cost related to the ergonomics index Ei is defined as:

Ei =
uiail
wi

(2)

where ui is the unadjusted weight limit (i.e. the weight
limit that a worker can lift, not considering the twisting
adjustment) that changes according to vertical position and
horizontal distance of the i-th task from the human, ai is the
twisting adjustment for the i-th task, l is the limit reduction
multiplier that takes into account the frequency of repetition
and the duration of tasks in a day and wi is the weight of
the i-th task1. For the sake of simplicity, in this paper, we
consider the horizontal distance, ai and l as constant and
hence not affecting the computed value.

1The values of these variables are assigned using the tables in https:
//ergo-plus.com/wisha-lifting-calculator-guide/.

https://ergo-plus.com/wisha-lifting-calculator-guide/
https://ergo-plus.com/wisha-lifting-calculator-guide/
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Fig. 2: Setup of the simulation experiments. The tasks on the
workbench, starting from the right, are: press and laser cutter
machines. The tasks on the shelves, starting from the top, are: box1
and box2.
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Fig. 3: BT of the simulation experiment. The →$ is the "Sequence-
Costs" node explained in Algorithm 2, the R? is the Reactive Fall-
back and the ↻ is the "KeepRunningUntilSuccess" node explained
in Algorithm 1.

c) Travel Distance Index: We would like to account for
the relative distance between tasks and agents. For instance,
it is more likely that the human executes all the tasks close
to his current position than he starts a new task far from
him.For this reason, we consider a travel cost. In addition,
we evaluate, with less priority, also a robot travel cost. In
this way, among the tasks far from the human, the robot
will pick the closest to the current one. Moreover, this
component allows optimizing travel cost when the human
is not present (and hence its travel cost is 0). As travel cost
we simply consider the Euclidean distance between task and
robot position (Ri) and the inverse of the Euclidean distance
between task and human (Hi), as:

Hi =
1

‖

ℎxti‖
(3)

Ri = ‖

rxti‖ (4)

where rxti and
ℎxti are the distances between the human, the

robot and the i-th task, respectively. In this way, each task
close to the human will have a high cost, whereas a task
close to the robot will have a lower cost.

d) Cost Function Design: To allow a meaningful com-
parison between the terms, each cost is normalized by
dividing it by the maximum cost value of the same metric.
Moreover, in the denominator of the computation of Hi
and Ei, there is an additional � > 0, small enough, to
avoid numerical issues. Then, the total cost of each task
is computed as a weighted sum of the considered factors
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Fig. 4: Task duration costs of the 4 tasks of the simulation
experiment. Weights: � = 1 and � = � = � = 0. In all cost plots,
the dashed and dotted lines represent the instant in which the robot
(R) and the human (H) choose the task to accomplish, respectively.
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Fig. 5: Ergonomics costs of the 4 tasks of the simulation experi-
ment. Weights: � = 1 and � = � = � = 0.

explained before. Hence, the total cost of the i-th task, Ci is
simply defined as:

Ci = �Hi + �Ri + �Ei + �Ti (5)

where �, �, � and � are the semi-positive weights of the
respective costs and can be tuned in order to obtain the
desired behavior.

The cost weights can be set arbitrarily, but, in our sce-
nario, we tuned them to obtain the desired robot behavior.
For instance, the distance cost weights need to satisfy the
following constraint:

� + � = 1, (6)

The condition reflects the fact that human-task and robot-
task distance are jointly normalized, and, if the human is not
available, � = 1. Moreover, only if the human is present in
the workcell, we assume � > �. This additional condition
reflects the fact that if the two agents have the same distance
from a task, and other tasks are available, the robot will leave
such task to the human.

III. SIMULATION EXPERIMENTS

First, we test the operation of the proposed approach in
a simulated scenario. We consider 4 different tasks: the
manipulation of an object, with two different tools, a press
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(d) Robot plan computed with the
mixed cost in Figure 8.

Fig. 6: Plans of the simulated task. Each block represents a subtree of the BT in Figure 3. The non-transparent squared blocks represent
the tasks accomplished by the robot. The transparent blocks are the planned tasks at the instant when the robot decided to accomplish
the non-transparent one. The curved squared blocks are the tasks accomplished by the human. Each row shows the updated plan.

Fig. 7: Travel distance costs of the 4 tasks of the simulation
experiment. Weights: � = 0.51, � = 0.49 and � = � = 0. The two
plots in the top depict the cost considering only the contribution
of the robot-task distance and the human-task distance, while the
third plot shows the weighted sum of the two.

machine and a laser cutter, both located on the workbench in
different positions, and the transportation of two toolboxes,
located at different heights on the shelf. Moreover, we
simulate the presence of a human worker.

a) Setup: The simulation setup can be found in Fig-
ure 2. In the simulation, the robot’s goal is to accomplish
all tasks. The robot is not aware of the human intentions
and planned tasks, hence, it has to react according to worker
action. In all the simulations, the objects’ locations and the
worker action are fixed. The worker always accomplishes
the insertion of the object in the laser cutter at the same
instant. The BT of the simulation is depicted in Figure 3.
All the tasks can be either accomplished by the MOCA
autonomously or cooperating with the human. The Reactive
Fallback allows to continuously check the condition while
executing the action, in order to react in case the worker
decides to accomplish a task. The goal of the simulation is
to verify the robot behavior according to the selected costs
and weights. To do so, first, we test individually the proposed
indices, then we combine them together by means of (5).

b) Results: First, the robot considers only the task
duration in choosing which task to accomplish. The costs of
the tasks in time are shown in Figure 42. They are constant
since the execution time does not change. The plan, in
Figure 6a, is updated when the human accomplished the task
using the laser cutter. Noteworthy, due to the normalization,

2For the sake of clarity, from now on, the dashed and dotted lines in all
cost plots represent the instant in which the robot (R) and the human (H)
choose the task to accomplish, respectively.

the unit cost is always assigned to the most expensive task.
The tasks are selected by the BTs starting with the most
efficiently performed. Next, the weights are tuned in order to
take into account only the ergonomics of the worker. So, the
robot starts to plan from the most risky task for the human,
which is the one with the lowest cost for the cobot, as shown
in Figure 5. Also, in this case, the plan, in Figure 6b, is
updated only when the human achieved the task related to the
laser cutter. Next, the weights are tuned in order to consider
only the human and robot distances to the tasks. The costs are
shown in Figure 7 and the plan is illustrated in Figure 6c. The
weights are chosen as: � = 0.51, � = 0.49 and � = � = 0. It
can be noticed that the cobot starts to accomplish the farthest
task from the human but, at the same time, closest to its
position. Then the robot updates the plan when the human
achieved the manipulation task with the laser cutter. Finally,
the combined cost case is considered. The chosen weights
are: � = 0.51, � = 0.49, � = 0.6 and � = 0.35. Since the
human is present in the workcell, � = 0.51 and � = 0.49 are
chosen to satisfy the conditions in (6), where the two weights
are similar to not privilege a specific agent. Moreover, in our
scenario, we would like to favor worker ergonomics instead
of the execution time. For this reason, we select � > �. The
plot of the costs in time can be seen in Figure 8. The plan,
in Figure 6d, is not updated since the task of the laser cutter,
later achieved by the human, is planned as last. Once the
robot executed the transportation of the box2, the plan is
ended. Noteworthy, tuning the weights in different manners
generates different plans and hence behaviors of the robot.
Therefore, the design of the weights has a high impact on
the cobot behavior and each user can design them in relation
to the desired index to maximize.

IV. EXPERIMENTS

The proposed approach is further validated in a proof-of-
concept experiment with a fast-reconfigurable and flexible
setup, inspired by the SOPHIA3 project use-case.

Setup: A single cobot, MOCA, has to accomplish
different tasks in sequence. MOCA is a robotics research
platform made of a torque-controlled redundant manipulator
mounted on top of a velocity-controlled mobile base. It
is controlled by means of a Cartesian weighted whole-
body impedance controller [7], [11] that executes smooth
polynomial Cartesian trajectories. The depicted task is the

3Socio-Physical Interaction Skills for Cooperative Human-Robot Systems
in Agile Production: https://project-sophia.eu/

https://project-sophia.eu/


Fig. 8: Mixed costs of the 4 tasks of the simulation experiment.
Weights: � = 0.51, � = 0.49, � = 0.6 and � = 0.35. The four plots
in the top depict the cost considering the single contributions, while
the fifth plot shows the weighted sum of the four.
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Fig. 9: Experimental setup. The human exploits a web GUI clicking
on the phone screen the button of the task that he wants to
accomplish. In the right of the image, a pole can be seen in which is
attached a RGB-D camera that allows to track the skeleton of the
worker. The objects are in the starting position, except the gear2
which initial location is on the table next to the rotor. The goal
location is the Box.

boxing of four parts of an electric motor, i.e., two gears,
a rotor and a stator, with different dimensions and weights,
located in different places in space. These 4 spots represent
the end of the production line, where objects of the same type
are manufactured, or different temporary containers where
these objects are placed before being boxed and delivered. In
our experiment, gear1 and the stator are located on the shelf,
the rotor and gear2 on the table. The experimental setup
is depicted in Figure 9. To track human pose and skeleton
joint positions in real-time, we placed an RGB-D camera,
an Intel RealSense D435i, fixed in the workcell, running
OpenPose [29], similar to [11]. Thanks to the skeleton
tracker, it was possible to account for human presence in
the work-cell, automatizing the change of the cost weights.
Moreover, the skeleton keypoints’ positions were used to
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(a) Horizontal representation of the BT of the experiment. The tick signal
queries the children in top down order. The Pick and Place gear2 (P&PG2)
subtree is illustrated in Figure 10b.
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(b) Pick and Place gear2 (P&PG2) subtree of Figure 10a.

Fig. 10: BT of the experiments. The →$ is the SequenceCosts node
explained in Algorithm 2, the R? is the Reactive Fallback and the
↻ is the KeepRunningUntilSuccess node explained in Algorithm 1.
gear1, rotor and stator subtrees have the same structure of the gear2
subtree showed in Figure 10a.

Fig. 11: Travel distance Costs of the 4 tasks of the experiment in
the autonomous scenario. Weights: � = 1 and � = � = � = 0.

calculate the task-related distances and to estimate the height
of the shoulder, waist and knee of the human, needed to
compute the ergonomic index. The position of the object was
considered known. To estimate the relative transformation
between objects and MOCA we employed a motion capture
system, OptiTrack. In this way, it was also possible to
avoid large drifts on the odometry localization of the robot.
Moreover, we developed and endowed the worker with a
web GUI working on the browser of the cellphone. Thanks
to the web GUI, the worker could inform the system about
the intention to achieve a specific task, simply by pressing
the task-related button (see Figure 9).

The BT of the experiments is illustrated in Figure 10.
To prove that with the same BT it is possible to handle
different situations, such as cooperation and autonomous task
execution, we envision two different scenarios. In the first
scenario, no workers are present in the work-cell and MOCA
has to accomplish autonomously all the tasks. Then, we re-
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Fig. 12: Snapshots of the experiment. Since no workers are available, the BT plan allows MOCA to achieve autonomously the 4 tasks.
MOCA grasps gear2 (A), since it is the closest to the initial position, and immediately places it in the box (B). When the human enters
in the scene (C), MOCA updates the weights of the cost function and his next task changes to the placement of the stator. The worker
selects the rotor in the GUI (D), and completes its placement in the box (E). In the meanwhile, MOCA moves towards the stator. The
worker selects the gear1 while MOCA still moves towards the stator (F). At this point the worker could still select the stator, even if this
action is less ergonomic. While MOCA is approaching the stator, the worker grasps the gear1 (G) and places it in the box (H). Finally,
MOCA grasps and places the stator in the box (I). Below: Mixed costs of the 4 tasks of the experiment in the cooperative scenario.
Before the human enters the scene the weights are: � = 1 and � = � = � = 0. After the detection the weights are automatically set to:
� = 0.51, � = 0.49, � = 0.6 and � = 0. The dash-dot line in magenta indicates the instant in which the human is detected by the camera.
A Video of the experiment is available in the multimedia extension.

peated the same experiment, asking a human subject to enter
the work-cell and place some of the objects, acknowledging
the decision with the web GUI. A video of the cooperative
experiment is available in the multimedia extension. In the
experimental settings, we will not consider task duration,
since the task does not require the repetitive execution of
the same task.

Results: In the first experiment, since no workers are
present, the cost weights are set as: � = 1 and � = � = � = 0.
In this way, only the robot distance to each task is considered.
The time evolution of the costs is shown in Figure 11. Since
the cobot starts next to the shelves, it picks gear1 as the first
task. Then, while MOCA moves towards the box with the
grasped item, he acknowledges that there exist another task
that is closer to him than the planned one. For this reason,
the planned sequence of tasks is updated accordingly.

In the second experiment, the robot starts to execute the
task autonomously. In this situation the weights are exactly
the same as in the previous case (� = 1 and � = � = � = 0),
while we change initial robot position. After the first object
(gear2) is grasped, the human enters the work-cell. Thus,
the costs consider also the human-related quantities, with

new weights: � = 0.51, � = 0.49, � = 0.6 and � = 0.
Since, in the beginning, the human is not in the workspace,
gear2 is the closest object to MOCA and, hence, the one
with the least cost (Figure 12). Then, while the cobot is
placing the gear2 in the box, the human is detected (dash-dot
line in magenta). Because of that, the costs instantaneously
change and the plan, depicted in Figure 13b, is updated. At
this moment, the task with least cost is the stator that is
the farthest from the human, and, at the same time, the
nearest to the robot and with the largest ergonomic risk
factor for the worker. Then, the worker decides to place the
rotor (its closest task). To acknowledge this decision, the
worker selects the task in the web GUI (this specific moment
is illustrated in Figure 9). Once the button is pressed, the
decision is communicated to the BT and the plan is online
updated leaving the selected task to the human. As can be
noticed in Figure 13b, the rotor and the gear1 tasks are
accomplished by the human subsequently. We would like to
highlight that the experiments were conducted using only one
BT. This proves that the presented method allows encoding
different robot behaviors, depending on the considered cost
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Fig. 13: Plans of the experimental task.

metrics and weights. Moreover, the human-centric planning
strategy adapts robot behavior to the human actions and
intentions, executing unpleasant tasks and the riskiest for
human ergonomics.

V. DISCUSSION AND CONCLUSION

In this work, we proposed a novel human-aware task
planner taking advantage of the Behavior Trees paradigm.
The approach enables the robot to plan online the execution
of tasks while obtaining different robot behaviors in relation
to the user choice. The developed methods allow considering
costs in the selection of the task to execute. Moreover, we
presented three different metrics, suitable for manufacturing
environments, to compute the cost values. Therefore, the
robot can plan adapting to the dynamic changes of the
environment and, especially, to human intentions, motion,
decisions and availability. The same structure permits to
consider different levels of engagement between robots and
humans: coexistence, cooperation and even autonomous task
execution. The explained results showed the high potential
of the developed methods in improving robot reactivity and
flexibility and, at the same time, considering the human
motion, decisions and ergonomics. Future works will focus
on extending the approach to multi-robot and multi-human
teams and on merging robot task planning with an interactive
task allocator.

REFERENCES

[1] A. Ajoudani et al., “Smart collaborative systems for enabling flexible
and ergonomic work practices [industry activities],” IEEE Robotics
Automation Magazine, vol. 27, no. 2, pp. 169–176, 2020.

[2] T. Asfour et al., “Armar-6: A high-performance humanoid for human-
robot collaboration in real-world scenarios,” IEEE Robotics & Automa-
tion Magazine, vol. 26, no. 4, pp. 108–121, 2019.

[3] A. Kheddar et al., “Humanoid robots in aircraft manufacturing: The
airbus use cases,” IEEE Robotics Automation Magazine, vol. 26, no. 4,
pp. 30–45, 2019.

[4] A. Cherubini et al., “A collaborative robot for the factory of the
future: Bazar,” The International Journal of Advanced Manufacturing
Technology, vol. 105, no. 9, pp. 3643–3659, 2019.

[5] N. Kashiri et al., “Centauro: A hybrid locomotion and high power re-
silient manipulation platform,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 1595–1602, 2019.

[6] K. I. Alevizos, C. P. Bechlioulis, and K. J. Kyriakopoulos, “Physical
human–robot cooperation based on robust motion intention estima-
tion,” Robotica, vol. 38, no. 10, pp. 1842–1866, 2020.

[7] E. Lamon, M. Leonori, W. Kim, and A. Ajoudani, “Towards an
intelligent collaborative robotic system for mixed case palletizing,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 9128–9134.

[8] P. Balatti, F. Fusaro, N. Villa, E. Lamon, and A. Ajoudani, “A
collaborative robotic approach to autonomous pallet jack transportation
and positioning,” IEEE Access, vol. 8, pp. 142 191–142 204, 2020.

[9] I. El Makrini et al., “Working with walt: How a cobot was developed
and inserted on an auto assembly line,” IEEE Robotics & Automation
Magazine, vol. 25, no. 2, pp. 51–58, 2018.

[10] I. El Makrini, K. Merckaert, D. Lefeber, and B. Vanderborght, “Design
of a collaborative architecture for human-robot assembly tasks,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017, pp. 1624–1629.

[11] E. Lamon, F. Fusaro, P. Balatti, W. Kim, and A. Ajoudani, “A visuo-
haptic guidance interface for the mobile collaborative robotic assistant
(moca),” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020, p. forthcoming.

[12] G. Buisan, G. Sarthou, and R. Alami, “Human aware task planning
using verbal communication feasibility and costs,” in The 12th Inter-
national Conference on Social Robotics (ICSR 2020), 2020.

[13] V. Montreuil, A. Clodic, M. Ransan, and R. Alami, “Planning human
centered robot activities,” in 2007 IEEE International Conference on
Systems, Man and Cybernetics. IEEE, 2007, pp. 2618–2623.

[14] M. Cirillo, L. Karlsson, and A. Saffiotti, “Human-aware task planning
for mobile robots,” in 2009 International Conference on Advanced
Robotics. IEEE, 2009, pp. 1–7.

[15] S. Alili, M. Warnier, M. Ali, and R. Alami, “Planning and plan-
execution for human-robot cooperative task achievement,” in 19th
international conference on automated planning and scheduling, 2009.

[16] H. S. Koppula, A. Jain, and A. Saxena, “Anticipatory planning for
human-robot teams,” in Experimental robotics. Springer, 2016.

[17] M. Helmert, “A planning heuristic based on causal graph analysis.” in
ICAPS, vol. 16, 2004, pp. 161–170.

[18] A. A. Al-Moadhen, M. Packianather, R. Setchi, and R. Qiu, “Robot
task planning in deterministic and probabilistic conditions using
semantic knowledge base,” International Journal of Knowledge and
Systems Science (IJKSS), vol. 7, no. 1, pp. 56–77, 2016.

[19] W.-Y. Loh, “Classification and regression trees,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 1,
pp. 14–23, 2011.

[20] P. Allgeuer and S. Behnke, “Hierarchical and state-based archi-
tectures for robot behavior planning and control,” arXiv preprint
arXiv:1809.11067, 2018.

[21] M. Colledanchise and P. Ögren, “Behavior trees in robotics and ai: an
introduction,” arXiv preprint arXiv:1709.00084, 2017.

[22] C. Paxton, F. Jonathan, A. Hundt, B. Mutlu, and G. D. Hager,
“Evaluating methods for end-user creation of robot task plans,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 6086–6092.

[23] F. Rovida, B. Grossmann, and V. Krüger, “Extended behavior trees
for quick definition of flexible robotic tasks,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 6793–6800.

[24] H. Zhou, H. Min, and Y. Lin, “An autonomous task algorithm based on
behavior trees for robot,” in 2019 2nd China Symposium on Cognitive
Computing and Hybrid Intelligence (CCHI). IEEE, 2019, pp. 64–70.

[25] E. Giunchiglia, M. Colledanchise, L. Natale, and A. Tacchella, “Con-
ditional behavior trees: Definition, executability, and applications,” in
2019 IEEE International Conference on Systems, Man and Cybernetics
(SMC). IEEE, 2019, pp. 1899–1906.

[26] B. Merrill, “Building utility decisions into your existing behavior tree,”
Game AI Pro 360: Guide to Architecture, pp. 81–90, 2019.

[27] M. L. McShaffry, Behavioral mathematics for game AI. Cengage
Learning, 2009.

[28] T. R. Waters, V. Putz-Anderson, A. Garg, and L. J. Fine, “Revised
niosh equation for the design and evaluation of manual lifting tasks,”
Ergonomics, vol. 36, no. 7, pp. 749–776, 1993.

[29] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person
2d pose estimation using part affinity fields,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017,
pp. 7291–7299.


	Introduction
	Behavior Trees for Human-Aware Task Planning
	Preliminaries on Behavior Trees
	Custom Cost Behavior Trees
	Metrics and Cost Function Design

	Simulation Experiments
	Experiments
	Discussion and Conclusion
	References

