

UNC Collaboration

Testing the Binding of 53 compounds against WDR41 by SPR

Fengling Li (Sr. RA) Molecular Biophysics

> SGC Toronto 21st Jan. 2021

UNICAMP

Summary

- Binding of 53 compounds to WDR41 (30-459aa) were tested in singlet (summary slides 2-3):
 - > 16 compounds (highlighted in Black) showed binding with the regular binding signals (RU, >20; slides 4-5).
 - 11 compounds (highlighted in Gray) showed binding with the lower signals (around 11 RU) that are higher than the negative control with around 5 RU (slides 6-7).
 - > 9 compounds (highlighted in Yellow) showing the linear signals up to 100 μ M (slide 8).
 - 17 compounds (highlighted in Red, NB: Not binding) showed low binding signals (<10) that are similar to the negative control (slide 9).</p>
 - ➤ K_D values were generated from the steady state fittings.
- RBBP4 was used as a negative control protein.

SPR Conditions:

WDR41 (**30-459**aa) was immobilized on the flow cell of a CM5 sensor chip in 1x HBS-EP buffer, yielding 8000 RU. RBBP4 (1-425aa) was immobilized on another flow cell of CM5 chip, yielding 6000 RU as a negative control. Using the same buffer with **2%** DMSO and single cycle kinetic with 60s contact time and a dissociation time of 120s at a flow rate of 40 μ L/min. All compounds were tested at 100 μ M as the highest concentration, with dilution factor of 0.25 to yield 5 concentrations.

Summary

Note Hits: Black: regular signals (RU>20).

Possible hits: Gray: Low signal (likely the K_D values are not accurate).

False positives:

Red: No binding (NB). Yellow: Linear up to 100 μM.

	V (NA)		
ChemiReg ID	Toronto ID	Cat#	κ _D (μινι)
XS125008b	XSSU125008b	CSSS00026120636	1.3
XS127764b	XSSU127764b	CSSS00026108053	2.5
MR042879a	MRSU042879a	CSSS00028033776	3.2
MR042843a	MRSU042843a	CSSS00027743374	4.5
MR042865a	MRSU042865a	CSSS00026109023	5.4
MR042860a	MRSU042860a	CSSS00026190317	7.5
XS171346b	XSSU171346b	CSSS00026107916	8
MR042872a	MRSU042872a	CSSS00026476575	8
MR042834a	MRSU042834a	CSSS00026476522	9
MR042849a	MRSU042849a	CSSS00027958535	9
MR042859a	MRSU042859a	CSSS00026166444	12
MR042848a	MRSU042848a	CSSS00026187536	14
MR042853a	MRSU042853a	CSSS00133078949	15
MR042871a	MRSU042871a	CSSS00026476108	16
MR042873a	MRSU042873a	CSSS00028333170	18
MR042864a	MRSU042864a	CSSS00027963090	25
MR042838a	MRSU042838a	CSSS00027743321	27
MR042854a	MRSU042854a	CSSS00138549331	27
MR042850a	MRSU042850a	CSSS00103934117	44
XS138274b	XSSU138274b	CSSS00026190245	50
MR042877a	MRSU042877a	CSSS00028033818	52
MR042867a	MRSU042867a	CSSS00027743331	58
XS171510b	XSSU171510b	CSSS00027738113	76
MR042847a	MRSU042847a	CSSS00028033815	106
MR042856a	MRSU042856a	CSSS00026190247	>100
XS127442b	XSSU127442b	CSSS00026476824	>100
MR042875a	MRSU042875a	CSSS00026476817	>100

	K (NA)		
ChemiReg ID	Toronto ID	Cat#	
MR042846a	MRSU042846a	CSSS00026106898	>100
MR042845a	MRSU042845a	CSSS00026476391	Linear
MR042835a	MRSU042835a	CSSS00026190395	Linear
MR042836a	MRSU042836a	CSSS00138548301	Linear
MR042839a	MRSU042839a	CSSS00028229619	Linear
MR042851a	MRSU042851a	CSSS00138550542	Linear
MR042852a	MRSU042852a	CSSS00138533454	Linear
MR042866a	MRSU042866a	CSSS00026120644	Linear
MR042876a	MRSU042876a	CSSS00028034086	Linear
MR042844a	MRSU042844a	CSSS00026120601	NB
MR042837a	MRSU042837a	CSSS00026111267	NB
MR042840a	MRSU042840a	CSSS00026119822	NB
MR042841a	MRSU042841a	CSSS00026475421	NB
MR042842a	MRSU042842a	CSSS00028033840	NB
MR042855a	MRSU042855a	CSSS00138538427	NB
XS137714b	XSSU137714b	CSSS00026160571	NB
MR042857a	MRSU042857a	CSSS00027779705	NB
MR042858a	MRSU042858a	CSSS00026120592	NB
MR042868a	MRSU042868a	CSSS00027955419	NB
MR042869a	MRSU042869a	CSSS00028033762	NB
MR042870a	MRSU042870a	CSSS00028034111	NB
MR042861a	MRSU042861a	CSSS00000737961	NB
MR042862a	MRSU042862a	CSSS00026107596	NB
MR042863a	MRSU042863a	CSSS00028321305	NB
MR042874a	MRSU042874a	CSSS00026475989	NB
MR042878a	MRSU042878a	CSSS00026475530	NB

Structures of 16 hits

16 Compounds with Regular Signals -Steady State Responses (expected RU_{max} 50-90) WDR41-SPR 201015-MDR41-6formande results 2 File 201015-MDR4146formande results 2 File 201015-MDR4146formande results 2

WDR41 SPR: 16 Compounds SPR-Sensorgrams with Regular Signals (expected RU_{max} 50-90)

SGC

11Compounds with Lower binding Signals (around 11RU, expected RU_{max} 50-90)

11 Compound SPR-Sensorgrams with Lower binding Signals (around 11RU)

SGC

9 Compounds Linear up to 100uM (expected RUmax 50-90)

🖸 SGC

17 Compounds No Significant binding to WDR41 (expected RU_{max} 50-90)

SGC

ACKNOWLEDGEMENTS

Molecular Biophysics SGC Toronto

> Masoud Vedadi Principal Investigator, Molecular Biophysics

Protein was purified by: Elisa Gibson

Compound Management: Albina Bolotokova

www.thesgc.org

FUNDING PARTNERS

The SGC is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada through Ontario Genomics Institute [OGI-055], Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck KGaA, Darmstadt, Germany, MSD, Novartis Pharma AG, Ontario Ministry of Research, Innovation and Science (MRIS), Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome.

UNC collaboration

Testing UNC 423 compounds library against WDR41 by DSF

Albina Bolotokova Molecular Biophysics

SGC Toronto

27 October 2020

Testing UNC 423 compound library against WDR41 by DSF

- A library of 423 close analogs was screened by DSF against WDR41 in 100 mM Hepes, 150 mM NaCl and pH 7.5 buffer at 0.1mg/ml protein at two DMSO concentrations.
- Initially the compounds were prepared for screening at 50 μM in 0.25% DMSO. Most compounds showed visible precipitation in this buffer. The plate was sonicated which increased compound resuspension, and compounds were tested. The original hit (XSOI050073c) was used as a control.
- More than 140 compounds showed ΔT_m of more than 2°C. However, due to heavy compound precipitation, we decided to re-screen the compounds at higher DMSO concentrations.
- Our assessment indicated that WDR41 can tolerate up to 2.5% DMSO with no significant effect on stability of the protein.
- Compounds were re-screened at 50, 100 and 200 μM in 2.5% DMSO in original buffer.
- The original hit (XSOI050073c) was used as a control.
- 9 compounds were identified as hits at all three concentrations.

Summary

Compound		Screen #1		Screen #2				
Compound				ΔTm (°C) @ Conc. (μM)				
ChemiReg ID	Catalog Number	Toronto Local ID	50	50	100	200		
XS358649a	CSC027288209	XSUN358649a	2	1.2	3.2	3.7		
XS358653a	CSC027743159	XSUN358653a	2.2	2.1	2.1	2.4		
XS358534a	CSC052076151	XSUN358534a	1.5	1.7	2.2	2.2		
XS358801a	CSC027743325	XSUN358801a	1.5	1.9	2.4	2.2		
XS358613a	CSC000743789	XSUN358613a	3.7	1.8	1.8	2		
XS358603a	CSC026190132	XSUN358603a	2.6	1.7	1.6	1.9		
XS358570a	CSC026182648	XSUN358570a	1.3	1.3	1.6	NA (HF)		
XS358561a	CSC026476555	XSUN358561a	3.2	2	NA	NA		
XS358631a	CSC028079896	XSUN358631a	2.3	2.6	NA	NA		
	control	XSOI050073c	5.6	2.4	3.7	7.7		

→ 50 µM → 50 µM → 100 µM → 200 µM → control 2(

XSUN358534a

XSUN358801a

XSUN358613a

SGC

XSUN358603a

XSUN358570a

ACKNOWLEDGEMENTS

Molecular Biophysics SGC Toronto

> Masoud Vedadi Principal Investigator, Molecular Biophysics

Protein was purified by: Elisa Gibson

www.thesgc.org

FUNDING PARTNERS

The SGC is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada through Ontario Genomics Institute [OGI-055], Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck KGaA, Darmstadt, Germany, MSD, Novartis Pharma AG, Ontario Ministry of Research, Innovation and Science (MRIS), Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome [106169/ZZ14/Z].

Reproducible WDR41 DSF Screening hits for further Hit Expansion and Chemistry

Aliakbar Khalili Yazdi, Ling Yan Gao, Albina Bolotokova and Masoud Vedadi

Molecular Biophysics, SGC Toronto.

Jun<mark>e 8th 20</mark>20

Compounds to consider

Compounds to consider

Compounds to consider

Compound Name	Catalog Number	Internal ID	K _p (μM)_SPR	Rmax	Notes
OICR0338621A01	7821679	XSOI050073c	8	11	Precipitation at high Conc.
OICR0356503A01	Z30822756	XSOI054173c	65	43	Confirmed by DSF
OICR0330033A01	6356628	XSOI048925c	95	17	Confirmed by DSF
Z1263529568	Z1263529568	XSOI327455a	145*	61	Analogue of XSOI044959b
Z50131928	Z50131928	XSOI327456a	160*	50	Analogue of XSOI044959b
Z2465619968	Z2465619968	XSOI327457a	> 250*	67	Analogue of XSOI044959b

OICR0338621A01 XSOI050073a

XSOI048925a

Z2465619968 H₂ XSOI327457a

ACKNOWLEDGEMENTS

Molecular Biophysics SGC Toronto

> Masoud Vedadi Principal Investigator, Molecular Biophysics

Screening: Ling Yan Gao and Albina Bolotokova

Compound Management: Albina Bolotokova

SPR: Aliakbar Khalili Yazdi (PDF)

www.thesgc.org

FUNDING PARTNERS

The SGC is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada through Ontario Genomics Institute [OGI-055], Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck KGaA, Darmstadt, Germany, MSD, Novartis Pharma AG, Ontario Ministry of Research, Innovation and Science (MRIS), Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome.

Internal Update

Testing a 20K library against WDR41 by DSF

Albina and Masoud 30/05/ 2020

- ~19840 compounds from the OICR_20K library were screened by DSF at 50 μM in 100 mM Hepes pH 7.5, 150 mM NaCl buffer, 0.1 mg/ml WDR41:PBC016-F05
- S2 compounds were found to have a ∆Tm of ≥2°C and were cherry picked for confirmation
- 9 compounds from the reconfirmed hit list and 3 analogs of XSOI044959a were ordered and tested by titration. (Note: synthesis of XSOI044959a was not successful, therefore the compound was not received)
- Further, 5 compounds (XSOI054173c, XSOI052110e, XSOI050073c, XSOI048925c and XSOI048904d) were verified by titration for binding.
- Due to difficulty buying XSOI044959a, a list of analogs of XSOI044959a was created (Peter and Santha). 21 compounds were chosen and purchased for testing.
- Out of 21 analogs, 2 compounds (XSTR338417a and XSTR338419a) showed good binding to WDR41.

Testing hits from powders

10 compounds from the original hit list and 3 analogs of XSOI044959a were ordered and tested for confirmation by titration.

11 compounds from the list (two more are still to receive) were titrated from 6 μM to 200 μM in duplicate

	200 µM	100 µM	50 µM	25 μΜ	12 µM	6 μΜ
XSOI327457a	0.3	0.9	1.5	1.3	0.6	0.8
XSOI327456a	-0.1	0.3	0.4	0.2	0.0	0.7
XSOI327455a	1.2	0.7	0.7	0.4	0.1	0.7
XSOI054173c	NA	NA	<mark>3.1</mark>	<mark>2.1</mark>	<mark>1.7</mark>	<mark>1.5</mark>
XSOI052110e	NA	<mark>2.9</mark>	<mark>2.4</mark>	<mark>1.6</mark>	<mark>2.2</mark>	<mark>0.7</mark>
XSOI051337e	NA	1.3	1.9	2.1	3.2	1.3
XSOI050073c	<mark>4.8</mark>	<mark>4.5</mark>	<mark>4.1</mark>	<mark>3.8</mark>	<mark>3.5</mark>	<mark>3.6</mark>
XSOI049568e	0.4	0.5	1.0	1.3	1.3	1.0
XSOI048925c	<mark>2.6</mark>	<mark>2.1</mark>	<mark>1.6</mark>	<mark>1.2</mark>	<mark>1.1</mark>	<mark>1.0</mark>
XSOI048904d	<mark>1.9</mark>	<mark>2.1</mark>	<mark>2.4</mark>	<mark>2.2</mark>	<mark>1.7</mark>	<mark>1.3</mark>
XSOI035428c	-0.1	0.4	0.6	0.9	1.5	1.3

Compound Name Catalog Number		Internal ID	Comment
Z2465619968	Z2465619968	XSOI327457a	Analogue of XSOI044959b
Z50131928	Z50131928	XSOI327456a	Analogue of XSOI044959b
Z1263529568	Z1263529568	XSOI327455a	Analogue of XSOI044959b
OICR0356503A01	Z30822756	XSOI054173c	
OICR0361454L01	Z44519772	XSOI052110e	
OICR0415607A01	Z243534060	XSOI051337e	
OICR0338621A01	7821679	XSOI050073c	
OICR0332395A01	6883111	XSOI049568e	
OICR0330033A01	6356628	XSOI048925c	
OICR0329583A01	6211414	XSOI048904d	
OICR0388449A01	Z48867750	XSOI035428c	
OICR0305340A01	<mark>Z3220179707</mark>	<mark>XSOI044959b</mark>	<mark>to be tested</mark>
OICR0305364A01	EN300-235704	XSOI044938b	to be tested

XSOI048925c

Testing an expansion list

21 compounds were selected as an expansion to the original confirmed hit (XSOI044959a) and tested in duplicate from 6 μM to 200 μM in 100 mM Hepes pH 7.5, 150 mM NaCl buffer, 0.1 mg/ml WDR41:PBC016-F05

Catalog Number	Internal ID	200 µM	100 µM	50 µM	25 μΜ	12 µM	6 μΜ
	XSOI044938d						
EN300-235704	(original hit)	-0.3	NA	1.4	1.4	1.8	1.1
Z3225841132	XSTR338420a	NA	0.8	0.1	-0.3	0.5	0.5
<mark>Z3225515524</mark>	XSTR338419a	<mark>2.7</mark>	<mark>2.2</mark>	<mark>1.9</mark>	<mark>1.7</mark>	<mark>1.2</mark>	<mark>0.5</mark>
Z220533898	FMTR000532b	-0.2	-0.3	-0.2	-0.1	0.8	0.5
<mark>Z30822308</mark>	<mark>XSTR338417a</mark>	<mark>NA</mark>	<mark>NA</mark>	<mark>2.4</mark>	<mark>1.6</mark>	<mark>0.6</mark>	<mark>0.0</mark>
Z57044173	XSTR338416a	1.2	1.0	0.7	0.6	0.5	0.0
Z28141409	XSTR338415a	0.6	0.6	0.8	0.5	1.0	0.8
Z30181385	XSTR338414a	0.4	0.0	0.1	-0.1	0.7	0.8
Z30822225	XSTR338413a	0.0	0.2	0.4	0.3	1.1	1.2
Z44592077	XSTR338412a	1.6	1.4	2.2	0.6	2.1	2.2
Z68085277	XSTR338411a	0.0	0.1	0.3	0.3	0.6	0.9
Z44583833	XSTR338410a	0.4	0.5	0.4	0.4	0.3	0.0
Z234893453	XSTR338409a	0.3	0.0	0.0	-0.1	-0.2	0.0
Z235344383	XSTR338408a	0.6	0.7	0.5	0.2	-0.2	-0.3
Z1262324631	XSTR338407a	-0.2	0.0	0.2	0.5	0.6	1.1
5109730	XSTR338406a	-2.1	-1.3	-0.8	-0.3	0.1	0.9
7953084	XSTR338405a	1.7	1.8	1.3	0.7	0.3	0.0
Z56756575	XSTR210323c	0.0	0.4	0.4	0.5	0.6	1.1
7682431	XSTR047713c	-0.4	-0.2	0.1	0.6	0.8	1.1
7909359	XSTR033363b	1.3	1.4	1.2	0.7	0.3	0.0
Z57115067	XSTR016487j	-0.2	-0.2	-0.1	0.1	0.1	0.8
7700857	XSTR003232d	0.4	0.4	0.5	0.9	1.2	1.4

*structures of inactive compounds are on the next slide

Compound	Concentration (µM)								
	200	100	50	25	12	6			
XSOI054173c	NA	NA	3.1	2.1	1.7	1.5			
XSOI052110e	NA	2.9	2.4	1.6	2.2	0.7			
XSOI050073c	4.8	4.5	4.1	3.8	3.5	3.6			
XSOI048925c	2.6	2.1	1.6	1.2	1.1	1			
XSOI048904d	1.9	2.1	2.4	2.2	1.7	1.3			
XSTR338419a	2.7	2.2	1.9	1.7	1.2	0.5			
XSTR338417a	NA	NA	2.4	1.6	0.6	0			

XSOI048925c XSTR338417a * XSOI048904d 100-100 Normalized Intensity - 00 - 07 - 05 - 05 Normalized Intensity 200 µM Normalized Intensity 200 µM 80-80 100 µM 100 µM 60-50 µM 50 µM 60-25 µM 25 µM 40-40-— 12 µM — 12 µM 6 µM 20-6 µM 20 Control Control 0-0-60 65 70 75 80 0-45 50 55 75 80 55 60 65 70 45 50 50 55 60 65 45 70 Temperature (°C) Temperature (°C) Temperature (°C) XSOI052110e XSOI054173c * XSTR338419a 100-100-100-Normalized Intensity Normalized Intensity 80 Normalized Intensity 80-80-100 µM 50 µM 60-60-50 µM 60-25 µM 25 µM 40 40-12 µM 40- – 12 μM 6 µM — 6 µM 20-20-20- Control — Control 0-0 75 50 55 60 65 70 75 80 65 70 45 50 55 60 80 0-60 65 70 45 50 55 Temperature (°C) Temperature (°C) SGC Temperature (°C)

200 µM — 100 µM – 50 µM – 25 μM — 12 μM 6 µM control 75

ACKNOWLEDGEMENTS

Molecular Biophysics SGC Toronto

> Masoud Vedadi Principal Investigator, Molecular Biophysics

DSF assays were performed by: Albina Bolotokova

Protein was purified by: Levon Halabelian Elisa Gibson

www.thesgc.org

FUNDING PARTNERS

The SGC is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada through Ontario Genomics Institute [OGI-055], Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck KGaA, Darmstadt, Germany, MSD, Novartis Pharma AG, Ontario Ministry of Research, Innovation and Science (MRIS), Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome.

K_D Determination for 11 WDR41 Compounds Using SPR

Aliakbar Khalili Yazdi, Ling Yan Gao and Albina Bolotokova

Molecular Biophysics, SGC Toronto.

20th January 2020

Analysis of the Interaction of 11 Compounds with WDR41 Using SPR

Compound Name	Catalog Number	Internal ID	K _p (μM)_SPR	Rmax	Notes
OICR0338621A01	7821679	XSOI050073c	8	11	Precipitation at high Conc.
OICR0388449A01	Z48867750	XSOI035428c	29	16	Not re-confirmed by DSF
OICR0356503A01	Z30822756	XSOI054173c	65	43	Confirmed by DSF
OICR0330033A01	6356628	XSOI048925c	95	17	Confirmed by DSF
Z1263529568	Z1263529568	XSOI327455a	145*	61	Analogue of XSOI044959b
Z50131928	Z50131928	XSOI327456a	160*	50	Analogue of XSOI044959b
Z2465619968	Z2465619968	XSOI327457a	> 250*	67	Analogue of XSOI044959b
OICR0329583A01	6211414	XSOI048904d	PNSB	>1000	High Rmax
OICR0361454L01	Z44519772	XSOI052110e	PNSB	>1000	High Rmax
OICR0332395A01	6883111	XSOI049568e	NB	2	Low Rmax
OICR0415607A01	Z243534060	XSOI051337e	NB	2	Low Rmax

Expected Rmax for small compounds is between 45-60; NB: No Binding; PSNB = Possible Non-specific binding; *Not expected to be easily detected by DSF.

- 8 WDR41 hits and 3 analogues of compound 59 were received and tested by SPR.
- WDR41 was coupled to the CM5 chip by amine coupling.
- 2 compounds (XSOI048904d and XSOI052110e) showed signs of possible non-specific binding (PNSB).
- For 2 compounds (showed with NB), the observed Rmax was much lower than the expected Rmax.
- The rest of the compounds showed measurable K_{D} values.
- Compound XSOI050073c showed visible sign of precipitation in SPR buffer (specially the 2 highest concentrations).

SPR Conditions:

- HBS-EP Buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.005% Tween 20, and 2% DMSO) was used for SPR, using a Biacore T200 instrument.
- His-tagged-WDR41, was coupled on a CM5 SPR Sensor chip by amine coupling (GE healthcare). Compounds were injected into the sensitized chip at 5 concentrations (0.82, 2.47, 7.40, 22.22, and 66.66 μM) plus 2% DMSO at 40 μL/min. Contact time was 60 (S), and disassociation time was 60 (S). Buffer only (plus 2 % DMSO) was used for blank injections; and buffers containing 1 to 3 % DMSO were used for solvent corrections.

- Expected Rmax for small compounds is between 45-60.

SGC

For easier comparison between samples, the Y-axis of plots are set to the same value.

For easier comparison between samples, the Y-axis of plots are set to the same value. 40 45 50 55 60 65 70 75 80

SGC

— 50 µM

25 µM

— 12 µM

— 6 µM

Control

Temperature (°C)

Molecular Biophysics

- Expected Rmax for small compounds is between 45-60.

SGC

For easier comparison between samples, the Y-axis of plots are set to the same value.

- Expected Rmax for small compounds is between 45-60.

SGC

For easier comparison between samples, the Y-axis of plots are set to the same value.

WDR41 is amenable to screening by DSF

- WDR41 is amenable to screening by differential scanning fluorimetry (DSF).
- WDR41 was screened against a library of 20K diverse compounds at 50 μM:
 - 52 compounds were identified as hits with ΔT_m of ≥2°C. The compounds were cherry picked from the stock solutions for confirmation.
 - Compounds were titrated from 3 μM to 100 μM.
 - The data for 10 compounds were reproducible from the stock solutions.
- Hits have been ordered and compounds will be tested from solid by DSF and orthogonal methods.

ACKNOWLEDGEMENTS

Molecular Biophysics SGC Toronto

> Masoud Vedadi Principal Investigator, Molecular Biophysics

Compound Management and DSF by: Albina Bolotokova

SPR: Aliakbar Khalili Yazdi (PDF)

www.thesgc.org

FUNDING PARTNERS

The SGC is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada through Ontario Genomics Institute [OGI-055], Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck KGaA, Darmstadt, Germany, MSD, Novartis Pharma AG, Ontario Ministry of Research, Innovation and Science (MRIS), Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome.

Screening WDR41 against a library of 20K diverse compounds by DSF

Masoud

20/ 12/ 2019

NO 1810****

WDR41 is amenable to screening by DSF

- WDR41 is amenable to screening by differential scanning fluorimetry (DSF).
- WDR41 was screened against a library of 20K diverse compounds at 50 μM:
 - 52 compounds were identified as hits with ΔT_m of ≥2°C. The compounds were cherry picked from the stock solutions for confirmation.
 - Compounds were titrated from 3 μM to 100 μM.
 - The data for 10 compounds were reproducible from the stock solutions.
- Hits have been ordered and compounds will be tested from solid by DSF and orthogonal methods.

ACKNOWLEDGEMENTS

Molecular Biophysics SGC Toronto

Masoud Vedadi Principal Investigator, Molecular Biophysics

Screened by: Ling Yan Cao (Pharmacology Student) Albina Bolotokova

Compound Management: Albina Bolotokova

Protein was purified by: Levon Halabelian

www.thesgc.org

FUNDING PARTNERS

The SGC is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada through Ontario Genomics Institute [OGI-055], Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck KGaA, Darmstadt, Germany, MSD, Novartis Pharma AG, Ontario Ministry of Research, Innovation and Science (MRIS), Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome.