
Dataset description: marine environment climate change projections for Southeast Asia

Projections of physical and biogeochemical conditions in Southeast Asian seas, 1980-2098, RCP4.5 and RCP8.5, derived from climate models.

Dataset created for the GCRF Blue Communities project <u>www.blue-communities.org</u> by Susan Kay, Plymouth Marine Laboratory, <u>suka@pml.ac.uk</u>.

Model used: v6.3 of the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS, Holt and James 2001) coupled to v15.06 of the European Regional Seas Ecosystem Model (ERSEM, Butenschon et al. 2016).

Model domain: a region of the Global Coastal Ocean Modelling System (Holt et al., 2009). Horizontal resolution 0.1° x 0.1° (approximately 11 km); 40 vertical levels at each grid point, on a modified sigma distribution. Model cells near the open boundaries, which are strongly affected by boundary conditions, have been removed from this dataset. This figure shows the trimmed domain:

Forcing and boundary conditions: surface forcing from a regionally-downscaled CMIP5 model, HadGEM2-ES-RCA4; ocean boundary conditions from the global version of the same model, HadGEM2-ES (Jones et al. 2011); river inputs of fresh water and nutrients from the global model NEWS2 (Mayorga et al. 2010). River nutrient concentrations were not changed over time; discharge values were adjusted in line with applied precipitation.

Climate scenarios: for 2006 to 2098 the model was run for two Representative Concentration Pathways, RCP4.5 and RCP8.5. For 1980-2005 the model was driven by the historical run of the climate model.

Initial conditions: temperature, salinity, oxygen and nutrients from the World Ocean Atlas 2013 (Levitus et al., 2015); DIC and total alkalinity from GLODAP2.2016b

(Lauvset et al., 2016). The model was run for a 10-year spin-up time before the main run started at 1980.

Model variables included in the dataset: The original model was depth-resolved (40 levels) but only two-dimensional outputs are included in this dataset for space reasons. The available variables are:

	surface	bottom	column	column
	level	level	total	average
temperature	х	х		х
salinity	х	х		х
eastward velocity	х			x
northward velocity	х			x
mixed layer depth	x			
water depth	x			
nitrate	x	х	x	
phosphate	x	х	x	
silicate	x	х	x	
oxygen	x	х	x	
рН	x	х		x
pCO2	x			
total alkalinity	x	х		x
dissolved inorganic carbon	x	х		x
aragonite saturation state	x	х		X
light attenuation	x	х		X
chlorophyll-a, total	х	х	x	
chlorophyll-a, by PFT*	х	х		
phytoplankton biomass, total			x	
phytoplankton biomass, by PFT*	x	х		
zooplankton biomass, total			x	
zooplankton biomass, by PFT*	x	х		
bacteria biomass	x	х	x	
dissolved organic carbon	x	X	x	
particulate organic carbon	x	x	x	
net primary production	x	х	x	
gross primary production	x	x	x	
secondary production	x	x	x	
community production	x	x	x	

Units are included in the file metadata.

* PFT = plankton function type. ERSEM has four phytoplankton functional types (diatoms, microphytoplankton, nanophytoplankton, picophytoplankton) and three zooplankton functional types (mesozooplankton, microzooplankton, heterotrophic nanoflagellates).

Note: the data for rcp45.2051.09 was corrupted. All values are masked.

Acknowledgement

This work has received funding in part from the Global Challenges Research Fund (GCRF) via the United Kingdom Research and Innovation (UKRI) under grant agreement reference NE/P021107/1 to the Blue Communities project.

References

Butenschon M, Clark JR, Aldridge JN, et al (2016) ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels. Geosci Model Dev 9:1293–1339. <u>https://doi.org/10.5194/gmd-9-1293-2016</u>

Holt J, Harle J, Proctor R, et al (2009) Modelling the Global Coastal Ocean. Philos Trans R Soc Math Phys Eng Sci 367:939–951.<u>https://doi.org/10.1098/rsta.2008.0210</u>

Holt JT, James ID (2001) An s coordinate density evolving model of the northwest European continental shelf 1, Model description and density structure. J Geophys Res 106:14015–14,034. <u>https://doi.org/10.1029/2000JC000304</u>

Jones CD, Hughes JK, Bellouin N, et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570. https://doi.org/10.5194/gmd-4-543-2011

Lauvset, S. K., Key, R. M., Olsen, A., et al. (2016) A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340, <u>https://doi.org/10.5194/essd-8-325-2016</u>, 2016.

Levitus, Sydney; Boyer, Tim P.; Garcia, Hernan E. et al. (2015). World Ocean Atlas 2013 (NCEI Accession 0114815). NOAA National Centers for Environmental Information. Dataset. <u>https://doi.org/10.7289/v5f769gt</u>

Mayorga E, Seitzinger SP, Harrison JA, et al. (2010) Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation. Environ Model Softw 25:837–853. <u>https://doi.org/10.1016/j.envsoft.2010.01.007</u>