
Ghost Signals: Verifying Termination of

Busy Waiting

(Technical Report)

Tobias Reinhard and Bart Jacobs

imec-DistriNet Research Group, KU Leuven, Belgium
{tobias.reinhard,bart.jacobs}@kuleuven.be

May 20, 2021

Abstract

In this work we propose a separation logic to verify termination of
busy-waiting for arbitrary events through so-called ghost signals.

Contents

1 Universe 2

2 General 3

3 Syntax 4

4 Example 4

5 Resources 4

6 Semantics 6

7 Assertions 7

8 Proof Rules 12

9 Annotated Semantics 16

10 Hoare Triple Model Relation 22

11 Soundness 24

1

12 Verification Example 32
12.1 Minimal Example . 32
12.2 Bounded FIFO . 32

List of Figures

1 Syntax. 5
2 Example Program. 5
3 Single thread reduction rules. 8
4 Thread pool reduction rules. 9
5 Assertion syntax. 10
6 Assertion model relation. 12
7 View shift rules. 13
8 Proof rules (part 1). 14
9 Proof rules (part 2). 15
10 Derived proof rule. 15
11 Annotated single thread reduction rules (part 1). 17
12 Annotated single thread reduction rules (part 2). 18
13 Ghost thread pool reduction rules (part 1). 19
14 Ghost thread pool reduction rules (part 2) 20
15 Non-ghost thread pool reduction rules. 20
16 Verification example (main thread). 33
17 Verification example (busy-waiting thread). 34
18 Fine-grained view shift rules for signal creation. 35
19 Producer-consumer program with bounded FIFO. 35
20 Verification example bounded FIFO. 36
21 Lock invariant . 37
22 Verification example bounded FIFO, forking & outer loop of pro-

ducer. 37
23 Producer’s loop invariant. 38
24 Verification example bounded FIFO, producer loop. 39
25 Verification example bounded FIFO, producer thread’s produc-

tion step. 40
26 Verification example bounded FIFO, producer’s wait step. 41
27 Consumer’s loop invariant. 42
28 Verification example bounded FIFO, consumer loop. 43
29 Verification example bounded FIFO, consumer thread’s consump-

tion step. 44
30 Verification example bounded FIFO, consumer’s wait step. 45

1 Universe

Throughout this work we assume the existence of the following sets:

• X : An infinite set of program variables.

2

• Locs: An infinite set of heap locations.

• LocsG: An infinite set of ghost locations.

• Levs, <L: An infinite, well-founded partially ordered set of levels.

• ∆, <∆: An infinite, well-founded partially ordered set of degrees.

• ID: An infinite set of IDs.

• Θ: An infinite, totally ordered and well-founded set of thread IDs.

• Values: A set of values which includes:

– A unit value tt ∈ Values

– Booleans B = {True,False} ⊂ Values

– Heap locations Locs ⊂ Values

• ValuesG: A set of ghost values.

• Ops: A set of operations (i.e. partial functions) on values.

We denote program variables by x, heap locations by `, ghost locations by ̂̀,
levels by L, degrees by δ, IDs by id, thread IDs by θ, values by v, ghost values
by v̂, boolean by b and operations by op.

2 General

Definition 2.1 (Projections). For any Cartesian product C =
∏
i∈I Ai and any

index k ∈ I, we denote the kth projection by πCk :
∏
i∈I Ai → Ak. We define

πCk ((ai)i∈I) := ak.

In case the domain C is clear from the context, we write πk instead of πCk .

In the following we define our notion of bags, in the literature also referred
to as multisets.

Definition 2.2 (Bags). For any set X we define the set of bags Bags(X) and
the set of finite bags Bagsfin(X) over X as

Bags(X) := X → N,
Bagsfin(X) := {B ∈ Bags(X) | {x ∈ B | B(x) > 0} finite}.

We define union and subtraction of bags as

(B1]B2)(x) := B1(x) +B2(x),
(B1 \B2)(x) := max(0, B1(x)−B2(x)).

3

For finite bags where the domain is clear from the context, we define the following
set-like notation:

∅ := x 7→ 0,

{[x]} :=

{
x 7→ 1
y 7→ 0 for y 6= x,

{[x1, . . . , xn]} :=

n]
i=1

{[xi]}.

We define the following set-like notations for element and subset relationship:

x ∈ B ⇔ B(x) > 0,
B1 ⊆ B2 ⇔ ∀x ∈ B1. B1(x) ≤ B2(x),
B1 ⊂ B2 ⇔ ∃C ⊆ B1. C 6= ∅ ∧ B1 = B2 \ C.

For any bag B ∈ Bags(X) and predicate P ⊆ X we define the following refine-
ment:

{[x ∈ B | P (x)]} :=

{
x 7→ B(x) if P (x),
x 7→ 0 otherwise.

Definition 2.3 (Disjoint Union). Let A,B be sets. We define their disjoint
union as

A tB := A ∪B

if A ∩B = ∅ and leave it undefined otherwise.

3 Syntax

Definition 3.1. We define the sets of commands Cmds and expressions Exps
according to the syntax presented in Figure 1.

We define c ; c′ as shorthand for let x := c in c′ where x does not occur free
in c′ but let · ; · bind stronger. Further, we define e 6= e′ as abbreviation for
¬(e = e′).

4 Example

Figure 2 presents the example program we plan to verify. For this example we
let Values include natural numbers.

5 Resources

In this section we define physical resources. We will use the physical resources
to define the semantics of our programming language.

4

v ∈ Values x ∈ X op ∈ Ops

e ∈ Exps ::= x | v | e = e | ¬e | op(ē)
c ∈ Cmds ::= while c do skip | fork c |

let x := c in c | if c then c |
cons(e) | [e] | [e] := e |
new mutex | acquire e | release e |
e |
consumeItPerm intermediate representation

Figure 1: Syntax.

let x := cons(0) in
let m := new mutex in
fork (while (acquire m;

let y := [x] in
release m;
y = 0)

do skip);
acquire m;
[x] := 1;
release m

Figure 2: Example Program.

5

Definition 5.1 (Physical Resources). We define the set of physical resources
Rphys syntactically as follows:

rp ∈ Rphys ::= ` 7→ v | unlockedpRes(`) | lockedpRes(`)

` ∈ Locs v ∈ Values

Definition 5.2 (Physical Heaps). We define the set of physical heaps as

Heapsphys := Pfin(Rphys)

and the function locspRes : Heapsphys → Pfin(Locs) mapping physical heaps to the
sets of allocated heap locations as

locspRes(h) := {` ∈ Locs | unlockedpRes(`) ∈ h ∨ lockedpRes(`) ∈ h ∨
∃v ∈ Values. ` 7→ v ∈ h}

We denote physical heaps by h.

6 Semantics

Definition 6.1 (Evaluation of Closed Expressions). We define a partial evalu-
ation function [[·]] : Exps ⇀ Values on expressions by recursion on the structure
of expressions as follows:

[[v]] := v if v ∈ Values
[[e = e′]] := True if [[e]] = [[e′]] 6= ⊥
[[e = e′]] := False if [[e]] 6= [[e′]] ∧ [[e]] 6= ⊥ ∧ [[e′]] 6= ⊥
[[¬e]] := False if [[e]] = True
[[¬e]] := True if [[e]] = False
[[e]] := ⊥ otherwise

We identify closed expressions e with their ascribed value [[e]].

Definition 6.2 (Evaluation Context). We define the set of evaluation contexts
EvalCtxts as follows:

E ∈ EvalCtxts ::= if � then c | let x :=� in c

c ∈ Cmds x ∈ X
For any c ∈ Cmds and E ∈ EvalCtxts, we define E[c] := E[c/�].

Note that for every c ∈ Cmds, E ∈ EvalCtxts, we have E[c] ∈ Cmds.

Definition 6.3 (Single Thread Reduction Relation). We define a reduction
relation st for single threads according to the rules presented in Figure 3. A
reduction step has the form

h, c st h
′, c′, T

for a set of forked threads T ⊂ Cmds with |T | ≤ 1.
For simplicity of notation, we omit T if it is clear from the context that no

thread is forked and T = ∅.

6

Note that we do not provide a reduction rule for consumeItPerm, since
we only use it as an intermediate representation for the annotated reduction
relation presented in Section 9.

Definition 6.4 (Thread Pools). We define the set of thread pools TP as the set
of finite partial functions mapping thread IDs to threads:

TP := Θ ⇀fin (Cmds ∪ {term}).

The symbol term represents a terminated thread. We denote thread pools by P ,
thread IDs by θ and the empty thread pool by ∅tp, i.e.,

∅tp : Θ ⇀fin (Cmds ∪ {term}),
dom(∅tp) = ∅.

We define the operation +tp : TP × {C ⊂ Cmds | |C| ≤ 1} → TP as follows:

P +tp ∅ := P,
P +tp{c} := P [θnew := c] for θnew := min(Θ \ dom(P)).

Definition 6.5 (Thread Pool Reduction Relation). We define a thread pool
reduction relation tp according to the rules presented in Figure 4. A reduction
step has the form

h, P
θ
 tp h

′, P ′.

Definition 6.6 (Reduction Sequence). Let (hi)i∈N and (Pi)i∈N be infinite se-
quences of physical heaps and thread pools, respectively.

We call (hi, Pi)i∈N a reduction sequence if there exists a sequence of thread
IDs (θi)i∈N such that

hi, Pi
θi tp hi+1, Pi+1

holds for every i ∈ N.

Definition 6.7 (Fairness). We call a reduction sequence (hi, Pi)i∈N fair iff for
all i ∈ N and θ ∈ dom(Pi) with Pi(θ) 6= term there exists some k ≥ i with

hk, Pk
θ
 tp hk+1, Pk+1.

7 Assertions

Definition 7.1 (Fractions). We define the set of fractions as

F := {f ∈ Q | 0 < f ≤ 1}.

Definition 7.2 (Thread Phase IDs). We define the set of thread phase literals
as

T := {Forker, Forkee}.
We call a finite sequence of thread phase literals a phase ID and denote it by
τ ∈ T ∗. We write τ1 v τ2 to express that τ1 is a (non-strict) prefix of τ2.

7

ST-Red-EvalCtxt
h, c st h

′, c′, T

h,E[c] st h
′, E[c′], T

ST-Red-Fork

h, fork c st h, tt, {c}

(a) Basic Constructs.

ST-Red-While

h,while c do skip st h, if c then while c do skip

ST-Red-IfTrue

h, if True then c st h, c
ST-Red-IfFalse

h, if False then c st h, tt

ST-Red-Let

h, let x := v in c st h, c[v/x]

(b) Control Structures.

ST-Red-Cons
` 6∈ locspRes(h)

h, cons(v) st h ∪ {` 7→ v}, `

ST-Red-ReadHeapLoc
` 7→ v ∈ h

h, [`] st h, v

ST-Red-Assign

h t {` 7→ v′}, [`] := v st h t {` 7→ v}, tt

(c) Heap Access.

ST-Red-NewMutex
` 6∈ locspRes(h)

h,new mutex st h ∪ {unlockedpRes(`)}, `

ST-Red-Acquire

h t {unlockedpRes(`)},acquire ` st h t {lockedpRes(`)}, tt

ST-Red-Release

h t {lockedpRes(`)}, release ` st h t {unlockedpRes(`)}, tt

(d) Mutexes.

Figure 3: Single thread reduction rules.

8

TP-Red-Lift
P (θ) = c h, c st h

′, c′, T

h, P
θ
 tp h

′, P [θ := c′] +tp T

TP-Red-Term
P (θ) = v

h, P
θ
 tp h, P [θ := term]

Figure 4: Thread pool reduction rules.

Definition 7.3. We define the sets of ghost signals S, obligations O, wait
permission Ω and iteration permissions Λ as follows:

S := ID × Levs,
O := (Locs ∪ ID)× Levs,
Ω := T ∗ × ID ×∆,
Λ := T ∗ ×∆.

We denote ghost signals by s, obligations by o, and bags of obligations by O.
For convenience of notation we define the selector function:

(id, L).id := L.

Definition 7.4 (Assertions). We define the set of assertions A according to the
syntax presented in Figure 5.1 Further, we define implication and equivalence
as the usual abbreviations:

a1 → a2 := ¬a1 ∨ a2,
a1 ↔ a2 := (a1 → a2) ∧ (a2 → a1).

Let (a(i))i∈I be a family of assertions indexed by some set I. We define quan-
tification over I as the following abbreviations:

∃i ∈ I. a(i) :=
∨
{a(i) | i ∈ I},

∀i ∈ I. a(i) := ¬∃i ∈ I.¬a(i).

We omit the index set I when its choice becomes clear from the context and
write ∃i. a(i) and ∀i. a(i) instead of ∃i ∈ I. a(i) and ∀i ∈ I. a(i), respectively.

Definition 7.5 (Logical Resources). We define the set of logical resources Rlog

syntactically as follows:

rl ∈ Rlog ::= ` 7→ v | ̂̀ 7→ v̂ | signallRes((id, L), b) |
uninitlRes(`) | mutexlRes((`, L), a) | lockedlRes((`, L), a, f) |
phaselRes(τ) | obslRes(O) | wpermlRes(τ, id, δ) |
itpermlRes(τ, δ)

1That is, we define A as the least fixpoint of F where F (A) = {True,False} ∪ {¬a | a ∈
A}∪{a1∧a2 | a1, a2 ∈ A}∪· · ·∪{

∨
A′ | A′ ⊆ A}∪ Since F is a monotonic function over a

complete lattice, it has a least fixpoint according to the Knaster-Tarski theorem [Tarski(1955)].

9

a ∈ A := True | False | ¬a |
a ∧ a | a ∨ a | a ∗ a | [f]` 7→ v | [f]̂̀ 7→ v̂ |∨
A |

[f]uninit(`) |
[f]mutex((`, L), a) | [f]locked((`, L), a, f) |
[f]signal((id, L), b) |
phase(τ) | obs(O) | wperm(τ, id, δ) | itperm(τ, δ)

f ∈ F v ∈ Values v̂ ∈ ValuesG ` ∈ Locs ̂̀∈ LocsG

L ∈ Levs id ∈ ID b ∈ B = {True,False} δ ∈ ∆

A ⊆ A O ∈ Bags(O) τ ∈ T ∗

Figure 5: Assertion syntax.

Further, we define the functions getHLocslRes : Rlog → Locs and getGLocslRes :
Rlog → Pfin(LocsG) mapping logical resources to their respective (either empty
or singleton) set of involved heap locations and ghost locations, respectively, as

getHLocslRes(` 7→ v) := {`},
getHLocslRes(uninitlRes(`)) := {`},
getHLocslRes(mutexlRes((`, L), a)) := {`},
getHLocslRes(lockedlRes((`, L), a, f)) := {`},
getHLocslRes() := ∅ otherwise,

getGLocslRes(
̂̀ 7→ v̂) := {̂̀},

getGLocslRes() := ∅ otherwise.

Definition 7.6 (Mutexes). We define the set of mutexes as M := Locs×Levs
and denote mutexes by m. For convenience of notation we define the selector
function

(`, L).loc := `.

Definition 7.7 (Logical Heaps). We define the set of logical heaps as

Heaps log := Rlog → {q ∈ Q | q ≥ 0}.

We define the empty logical heap ∅log as the constant zero function

∅log : rl 7→ 0.

We denote logical heaps by H, point-wise addition by + and multiplication with
non-negative rationals by ·, i.e.,

(H1 +H2)(rl) := H1(rl) +H2(rl),
(q ·H)(rl) := q · (H(rl))

10

for q ∈ Q with q ≥ 0. For convenience of notation we represent logical heaps
containing finitely many resources by sets of resources and define left-associative
functions +lh, −lh : Heaps log → Rlog → Heaps log as follows

{rl
1, . . . , r

l
n} :=

{
rl
i 7→ 1
x 7→ 0 if x 6∈ {rl

1, . . . , r
l
n},

H +lh r
l := H[rl :=H(rl) + 1],

H −lh r
l := H[rl := max(0, H(rl)− 1)].

We give · a higher precedence than +, +lh and −lh.
Further, we define the function getGLocslh : Heaps log → P(LocsG) mapping

logical heaps to their respective set of allocated ghost locations as

getGLocslh(H) :=
⋃

rl∈Rlog

H(rl)>0

getGLocslRes(r
l).

We call a logical heap H complete and write completelh(H) if it contains ex-
actly one obligations chunk and exactly one phase chunk, i.e., if there exist a bag
of obligations O and a phase ID τ with H(obslRes(O)) = 1 and H(phaselRes(τ)) =
1 and if there do not exist any bag of obligations O′ nor any phase ID τ ′ with
(i) O 6= O′ and H(obslRes(O

′)) > 0 or with (ii) τ 6= τ ′ and H(phaselRes(τ
′)) > 0.

We call a logical heap H finite and write finitelh(H) if it contains only finitely
many resources, i.e., if the set {rl ∈ Rlog | H(rl) > 0} is finite.

We call a logical heap H consistent and write consistentlh(H) if (i) it contains
only full phase, obligations, wait and iteration permission chunks, i.e., if

H(phaselRes(τ)) ∈ N,
H(obslRes(O)) ∈ N,
H(wpermlRes(τ, id, δ)) ∈ N,
H(itpermlRes(τ, δ)) ∈ N

holds for all τ ∈ T ∗, O ∈ Bags(O), id ∈ ID and δ ∈ ∆ and if (ii) heap locations
and ghost locations are unique in H, i.e., if there are no rl

1, r
l
2 ∈ Rlog with

rl
1 6= rl

2, H(rl
1) > 0, H(rl

2) > 0 and with getHLocslRes(r
l
1) ∩ getHLocslRes(r

l
2) 6= ∅

or getGLocslRes(r
l
1) ∩ getGLocslRes(r

l
2) 6= ∅.

To simplify the specification of logical heaps containing only a single obliga-
tions chunk with certain properties, we introduce the abbreviation

(H.obs = O) := (completelh(H) ∧ H(obslRes(O)) = 1).

Definition 7.8 (Assertion Model Relation). We define a model relation �A⊂
Heaps log×A for assertions by recursion on the structure of assertions according
to the rules presented in Figure 6. We write H �A a to express that logical heap
H models assertion a and H 6�A a to express that H �A a does not hold.

11

H �A True
H 6�A False
H �A ¬a if H 6�A a
H �A a1 ∧ a2 if H �A a1 ∧ H �A a2

H �A a1 ∨ a2 if H �A a1 ∨ H �A a2

H �A a1 ∗ a2 if ∃H1, H2 ∈ Heaps log.
H = H1 +H2 ∧
H1 �A a1 ∧ H2 �A a2

H �A [f]` 7→ v if H(` 7→ v) ≥ f
H �A [f]̂̀ 7→ v̂ if H(̂̀ 7→ v̂) ≥ f
H �A

∨
A if ∃a ∈ A. H �A a

H �A [f]uninit(`) if H(uninitlRes(`)) ≥ f
H �A [f]mutex(m,P) if H(mutexlRes(m,P)) ≥ f
H �A [f]locked(m,P, fu) if H(lockedlRes(m,P, fu)) ≥ f
H �A [f]signal(s, b) if H(signallRes(s, b)) ≥ f
H �A phase(τ) if H(phaselRes(τ)) ≥ 1
H �A obs(O) if H(obslRes(O)) ≥ 1
H �A wperm(τ, id, δ) if H(wpermlRes(τ, id, δ)) ≥ 1
H �A itperm(τ, δ) if H(itpermlRes(τ, δ)) ≥ 1

Figure 6: Assertion model relation.

8 Proof Rules

Definition 8.1 (Level Ascriptions). We define a function lev : (ID ∪ Locs) ×
Levs→ Levs as

lev((, L)) := L.

Definition 8.2 (View Shift). We define a view shift relation V ⊂ A × A
according to the rules presented in Figure 7.

Definition 8.3 (Proof Relation). We define a proof relation ` ⊂ A×Cmds ×
(Values → A) according to the rules presented in Figures 8 and 9.

Note that our proof rules do not allow us to reason about the command
consumeItPerm, since we only use it as an intermediate representation during
reduction.

Lemma 8.4. We can derive the proof rule presented in Figure 10.

Proof. Trivial.

12

VS-SemImp
∀H. consistentlh(H) ∧H �A A⇒ H �A B

AV B

VS-Trans
AV C C V B

AV B

VS-Or
A1 V B A2 V B

A1 ∨A2 V B

VS-NewSignal
L ∈ Levs

obs(O)V ∃id. obs(O] {[(id, L)]}) ∗ signal((id, L),False)

VS-SetSignal

obs(O] {[s]}) ∗ signal(s,)V obs(O) ∗ signal(s,True)

VS-WaitPerm
δ′ <∆ δ

itperm(τ ′, δ)V wperm(τ ′, id, δ′)

VS-Wait
τanc v τ ∀o ∈ O. lev(s) <L lev(o)

phase(τ) ∗ obs(O) ∗ wperm(τanc, s.id, δ) ∗ signal(s, b)
V phase(τ) ∗ obs(O) ∗ wperm(τanc, s.id, δ) ∗ signal(s, b) ∗ (¬b↔ itperm(τ, δ))

VS-SpecItPerm
τanc v τ

itperm(τanc, δ)V itperm(τ, δ)

VS-SpecWaitPerm
τanc v τ

wperm(τanc, id, δ)V wperm(τ, id, δ)

VS-WeakPerm
δ′ <∆ δ N ∈ N

itperm(τ ′, δ)V∗
1,...,N

itperm(τ ′, δ′)

VS-MutInit
L ∈ Levs

uninit(`) ∗ P V mutex((`, L), P)

VS-NewGCell

TrueV ∃̂̀. ̂̀ 7→ v̂
VS-SetGCell̂̀ 7→ v̂ V ̂̀ 7→ v̂′

Figure 7: View shift rules.

13

PR-Frame
` {A} c {B}

` {A ∗ F} c {B ∗ F}

PR-ViewShift
AV A′ ∧ phase(τ) ` {A′} c {B′} ∀τ ′.

(
B′ ∧ phase(τ ′) ∧ τ v τ ′ V B

)
` {A} c {B}

PR-VS-Simp
AV A′ ` {A′} c {B′} B′ V B

` {A} c {B}

PR-Exp
[[e]] ∈ Values

` {True} e {λr. r = [[e]]}

PR-Exists
∀a ∈ A. ` {a} c {B}
` {

∨
A} c {B}

PR-Fork
` {phase(τ.Forkee) ∗ obs(Of) ∗A} c {obs(∅)}

` {phase(τ) ∗ obs(Om]Of) ∗A} fork c {λr. phase(τ.Forker) ∗ obs(Om) ∗ r = tt}

(a) Basic proof rules.

PR-If
` {A} cb {λb. C(b) ∧ (b = True ∨ b = False)}
` {C(True)} ct {B} C(False)V B

` {A} if cb then ct {B}

PR-While

∀τit. τ v τit ⇒ `
{

phase(τit) ∗ I(τit)
}
cb

λb.

∃τ ′it, τanc. τanc v τ ′it ∗ phase(τ ′it)
∗ (b = True ∨ b = False)
∗ (b→ itperm(τanc, δ) ∗ I(τ ′it))
∗ (¬b→ B(τ ′it))

` {phase(τ) ∗ I(τ)} while cb do skip {∃τ ′. τ v τ ′ ∗ phase(τ ′) ∗B(τ ′)}

PR-Let
` {A} c {λr. C(r)} ∀v. ` {C(v)} c′[v/x] {B}

` {A} let x := c in c′ {B}

(b) Control structures.

Figure 8: Proof rules (part 1).

14

PR-Acquire

m.lev ≺L O

`
{obs(O) ∗ [f]mutex(m,P)}

acquire m.loc
{λr. r = tt ∗ obs(O] {[m]}) ∗ locked(m,P, f) ∗ P}

PR-Release
obs(O) ∗AV obs(O) ∗ P ∗B

`
{obs(O] {[m]}) ∗ locked(m,P, f) ∗A}

release m.loc
{λr. r = tt ∗ obs(O) ∗ [f]mutex(m,P) ∗B}

PR-NewMutex

` {True} new mutex {λ`. uninit(`)}

(a) Mutexes.

PR-Cons

` {True} cons(v) {λ`. ` 7→ v}
PR-ReadHeapLoc

` {[f]` 7→ v} [`] {λr. r = v ∗ [f]` 7→ v}

PR-AssignToHeap

` {` 7→ } [`] := v {λr. r = tt ∗ ` 7→ v}

(b) Heap access.

Figure 9: Proof rules (part 2).

PR-While-Simp
τanc v τ ` {phase(τ) ∗A} cb {λb. phase(τ) ∗ (b → itperm(τanc, δ) ∗A) ∗ (¬b → B)}

` {phase(τ) ∗A} while cb do skip {phase(τ) ∗B}

Figure 10: Derived proof rule.

15

9 Annotated Semantics

Definition 9.1 (Annotated Resources). We define the set of annotated re-
sources AnnoRes as follows:

ra ∈ AnnoRes ::= ` 7→ v | uninitaRes(`) |
unlockedaRes((`, L), a,H) | lockedaRes((`, L), a, f) |
signalaRes((id, L), b)

Definition 9.2 (Annotated Heaps). We define the set of annotated heaps as

Heapsannot := Pfin(AnnoRes),

the function locsah : Heapsannot → Pfin(Locs) mapping annotated heaps to the
sets of allocated heap locations as

locsah(ha) := {` ∈ Locs | ∃v ∈ Values. ∃L ∈ Levs. ∃a ∈ A.
∃H ∈ Heaps log. ∃f ∈ F .
` 7→ v ∈ ha ∨ uninitaRes(`) ∈ ha ∨
unlockedaRes((`, L), a,H) ∈ ha ∨
lockedaRes((`, L), a, f) ∈ ha}

and the function idsah : Heapsannot → Pfin(ID) mapping annotated heaps to sets
of allocated signal IDs as

idsah(ha) := {id ∈ ID | ∃L ∈ Levs. ∃b ∈ B. signalaRes((id, L), b) ∈ ha}.

We denote annotated heaps by ha.
We call an annotated heap ha finite and write finiteah(ha) if there exists no

chunk unlockedaRes((`, L), a,H) ∈ ha for which finitelh(H) does not hold.

Definition 9.3 (Annotated Single Thread Reduction Relation). We define a
reduction relation ast for annotated threads according to the rules presented in
Figures 11 and 12. A reduction step has the form

ha, H, c ast h
a′, H ′, c′, T a

for a set of annotated forked threads T a ⊂ Heaps log × Cmds with |T a| ≤ 1.
It indicates that given annotated heap ha and a logical heap H, command

c can be reduced to annotated heap ha′, logical heap H ′ and command c′. The
either empty or singleton set T a represents whether a new thread is forked in
this step.

For simplicity of notation we omit T a if it is clear from the context that no
thread is forked and T a = ∅.

Definition 9.4 (Annotated Thread Pools). We define the set of annotated
thread pools TPa as the set of finite partial functions mapping thread IDs to
annotated threads:

TPa := Θ ⇀fin Heaps log × (Cmds ∪ {term}).

16

AST-Red-EvalCtxt
ha, H, c ast h

a′, H ′, c′, T

ha, H,E[c] ast h
a′, H ′, E[c′], T

AST-Red-Fork
ha, Hm + {phaselRes(τ), obslRes(Om]Of)}+Hf , fork c ast

ha, Hm + {phaselRes(τ.Forker), obslRes(Om)}, tt, {({phaselRes(τ.Forkee), obslRes(Of)}+Hf), c)}

(a) Basic constructs.

AST-Red-While

ha, H,while c do skip ast h
a, H, if c then (consumeItPerm; while c do skip)

AST-Red-IfTrue

ha, H, if True then c ast h
a, H, c

AST-Red-IfFalse

ha, H, if False then c ast h
a, H, tt

AST-Red-Let

ha, H, let x := v in c ast h
a, H, c[v/x]

(b) Control structures.

AST-Red-ConsumeItPerm
H(phaselRes(τ)) ≥ 1 τanc v τ

ha, H + {itpermlRes(τanc, δ)}, consumeItPerm ast h
a, H, tt

(c) Intermediate representation.

AST-Red-Cons
` 6∈ locsah(ha)

ha, H, cons(v) ast h
a ∪ {` 7→ v}, H + {` 7→ v}, `

AST-Red-ReadHeapLoc
` 7→ v ∈ ha

ha, H, [`] ast h
a, H, v

AST-Red-Assign

h t {` 7→ v}, H + {` 7→ v}, [`] := v ast h t {` 7→ v′}, H + {` 7→ v′}, tt

(d) Heap access.

Figure 11: Annotated single thread reduction rules (part 1).

17

AST-Red-NewMutex
` 6∈ locsah(ha)

ha, H,new mutex ast h
a ∪ {uninitaRes(`)}, H + {uninitlRes(`)}, `

AST-Red-Acquire

f ∈ F m.lev ≺L O

ha t {unlockedaRes(m, a,HP)}, H + {obslRes(O)}+ f · {mutexlRes(m,P)},
acquire m.loc
 ast ha t {lockedaRes(m,P, f)}, H + {obslRes(O] {[m]}), lockedlRes(m,P, f)}+HP ,

tt

AST-Red-Release
HP �A P consistentlh(HP)

∃O. H(obslRes(O)) ≥ 1 ∃τ. H(phaselRes(τ)) ≥ 1

ha t {lockedaRes(m,P, f)}, H + {obslRes(O] {[m]}), lockedlRes(m,P, f)}+HP ,
release m.loc
 ast ha t {unlockedaRes(m,P,HP)}, H + {obslRes(O)}+ f · {mutexlRes(m,P)},

tt

(a) Mutexes.

Figure 12: Annotated single thread reduction rules (part 2).

We denote annotated thread pools by P a and the empty thread pool by ∅atp, i.e.,

∅atp : Θ ⇀fin Heaps log × (Cmds ∪ {term}),
dom(∅atp) = ∅.

We define the modification operations +atp and −atp analogously to +tp and −tp,
respectively, cf. Definition 6.4.

For convenience of notation we define selector functions for annotated threads
as

(H, c).heap := H,
(H, c).cmd := c.

Definition 9.5 (Ghost Reduction Relation). We define a thread pool reduction
relation ghost according to the rules presented in Figures 13 and 14 to express
ghost steps. A ghost reduction step has the form

ha, P a θ
 ghost h

a′, P a′.

We denote its reflexive transitive closure by ∗ghost.

Definition 9.6 (Non-ghost Thread Pool Reduction Relation). We define a
thread pool reduction relation real according to the rules presented in Figure 15

18

GTP-Red-NewSignal
P a(θ) = (H + {obslRes(O)}, c) id 6∈ idsah(ha)

H ′ = H + {signallRes((id, L),False), obslRes(O] {[id, L]})}

ha, P a θ
 ghost h

a ∪ {signalaRes((id, L),False)}, P a[θ := (H ′, c)]

GTP-Red-SetSignal
P a(θ) = (H + {signallRes(s,False), obslRes(O] {[s]})}, c)

H ′ = H + {signallRes(s,False), obslRes(O)}

ha t {signalaRes(s,False)}, P a θ
 ghost h

a t {signalaRes(s,True)}, P a[θ := (H ′, c)]

GTP-Red-WaitPerm
δ′ <∆ δ P a(θ) = (H + {itpermlRes(τ

′, δ)}, c)

ha, P a θ
 ghost h

a, P a[θ := (H + {wpermlRes(τ
′, id, δ′)}, c)]

GTP-Red-Wait
signalaRes(s,False) ∈ ha P a(θ) = (H, c)

H(phaselRes(τ)) ≥ 1 H(wpermlRes(τanc, s.id, δ)) ≥ 1 H(obslRes(O)) ≥ 1
τanc v τ ∀o ∈ O. lev(s) <L lev(O)

ha, P a θ
 ghost h

a, P a[θ := (H + {itpermlRes(τ, δ)}, c)]

GTP-Red-SpecItPerm
τanc v τ P a(θ) = (H + {itperm(τanc, δ)}, c)

ha, P a θ
 ghost h

a, P a[θ := (H + {itperm(τ, δ)}, c)]

GTP-Red-SpecWaitPerm
τanc v τ P a(θ) = (H + {wperm(τanc, id, δ)}, c)

ha, P a θ
 ghost h

a, P a[θ := (H + {wperm(τ, id, δ)}, c)]

GTP-Red-WeakItPerm
δ′ <∆ δ N ∈ N P a(θ) = (H + {itpermlRes(τ

′, δ)}, c)

ha, P a θ
 ghost h

a, P a[θ := (H +N · {itpermlRes(τ
′, δ′)}, c)]

GTP-Red-MutInit
P a(θ) = (H + {uninitlRes(`)}+HP , c) HP �A P consistentlh(HP)

∃O. H(obslRes(O)) ≥ 1 ∃τ. H(phaselRes(τ)) ≥ 1
H ′ = H + {mutexlRes((`, L), HP)}

ha t {uninitaRes(`)}, P a θ
 ghost h

a t {unlockedaRes((`, L), a,HP)}, P a[θ := (H ′, c)]

Figure 13: Ghost thread pool reduction rules (part 1).

19

GTP-Red-NewGhostCell̂̀ 6∈ getGLocslh(H) P a(θ) = (H, c)

ha, P a θ
 ghost h

a, P a[θ := (H + {̂̀ 7→ v̂}, c)]

GTP-Red-MutateGhostCell̂̀ 6∈ getGLocslh(H) P a(θ) = (H + {̂̀ 7→ v̂}, c)

ha, P a θ
 ghost h

a, P a[θ := (H + {̂̀ 7→ v̂′}, c)]

Figure 14: Ghost thread pool reduction rules (part 2)

RTP-Red-Lift
θf = min(Θ \ dom(P a)) P a(θ) = (H, c) ha, H, c ast h

a′, H ′, c′, T a

ha, P a θ
 real h

a′, P a[θ := (H ′, c′)] +atp T
a

RTP-Red-Term
P a(θ) = (H, v) H.obs = ∅

ha, P a θ
 real h

a, P a−atp θ

Figure 15: Non-ghost thread pool reduction rules.

to express real reduction steps. A reduction step has the form

ha, P a θ
 real h

a′, P a′.

Definition 9.7 (Annotated Thread Pool Reduction Relation). We define the
annotated thread pool reduction relation atp as

 atp := ghost ∪ real .

Definition 9.8 (Annotated Reduction Sequence). Let (ha
i)i∈N and (P a

i)i∈N be
infinite sequences of annotated heaps and annotated thread pools, respectively.
Let sig : N⇀ S be a partial function mapping indices to signals.

We call ((ha
i , P

a
i)i∈N, sig) an annotated reduction sequence if there exists a

sequence of thread IDs (θi)i∈N such that the following holds for every i ∈ N:

• ha
i , P

a
i
θi atp h

a
i+1, P

a
i+1

• If this reduction step results from an application of GTP-Red-Wait to
some signal s, then sig(i) = s holds and otherwise sig(i) = ⊥.

In case the signal annotation sig is clear from the context or not relevant, we
omit it and write (ha

i , P
a
i)i∈N instead of ((ha

i , P
a
i)i∈N, sig).

We call (ha
i , P

a
i) an annotated machine configuration.

20

Lemma 9.9 (Preservation of Finiteness). Let (ha
i , P

a
i)i∈N be an annotated re-

duction sequence with finiteah(ha
0) and finitelh(P a

0 (θ).heap) for all θ ∈ dom(P a
0).

Then, finitelh(P a
i (θ).heap) holds for all i ∈ N and all θ ∈ dom(P a

i).

Proof. Proof by induction on i.

Lemma 9.10 (Preservation of Completeness). Let (ha
i , P

a
i)i∈N be an anno-

tated reduction sequence with completelh(P a
0 (θ).heap) for all θ ∈ dom(P a

0). Fur-
thermore, let there be no chunk unlockedaRes(m,P,HP) ∈ ha

0 such that
HP (phaselRes(τ)) > 0 or HP (obslRes(O)) > 0 holds for any τ , O.

Then, completelh(P a
i (θ).heap) holds for every i ∈ N and every θ ∈ dom(P a

i).

Proof. Proof by induction on i.

Definition 9.11 (Fairness of Annotated Reduction Sequences). We call an
annotated reduction sequence (ha

i , P
a
i)i∈N fair iff for all i ∈ N and θ ∈ dom(P a

i)
with P a

i (θ).cmd 6= term there exists some k ≥ i with

ha
k, P

a
k

θ
 real h

a
k+1, P

a
k+1.

Every thread of an annotated thread pool is annotated by a thread-local
logical heap that expresses which resources are owned by this thread. In the
following we define a function to extract the logical heap expressing which re-
sources are owned by threads of a thread pool (i.e. the sum of all thread-local
logical heaps).

Definition 9.12. We define the function ownedResHeapatp : TPa → Heaps log

mapping annotated thread pools to logical heaps as follows:

P a 7→
∑

θ∈ dom(P a)

P a(θ).heap

Annotated resources representing unlocked locks, i.e., unlockedaRes(m, a,Ha),
contain a logical heap Ha that expresses which resources are protected by this
lock. In the following, we define a function that extracts a logical heap from an
annotated heap ha expressing which resources are protected by unlocked locks
in ha.

Definition 9.13. We define the function protectedResHeapah : Heapsannot →
Heaps log mapping annotated heaps to logical heaps as follows:

For any annotated heap ha let

LockInvs(ha) := {[HP ∈ Heaps log | ∃m ∈ Locs× Levs. ∃P ∈ A.
unlockedaRes(m,P,HP) ∈ ha]}

be the auxiliary set aggregating all logical heaps corresponding to lock invariants
of unlocked locks stored in ha. We define protectedResHeapah as

ha 7→
∑

HP ∈LockInvs(ha)

HP .

21

Definition 9.14 (Compatibility of Annotated and Logical Heaps). We induc-
tively define a relation ∼ah lh⊂ Heapsannot × Heaps log between annotated and
logical heaps such that the following holds

∅ ∼ah lh ∅log,
ha ∪ {` 7→ v} ∼ah lh H + {` 7→ v},
ha ∪ {uninitaRes(`)} ∼ah lh H + {uninitlRes(`)},
ha ∪ {unlockedaRes(m,P,HP)} ∼ah lh H + {mutexlRes(m,P)}+HP ,
ha ∪ {lockedaRes(m,P, f)} ∼ah lh H + {lockedlRes(m,P, f)}

+ (1− f) · {mutexlRes(m,P)},
ha ∪ {signalaRes(s, b)} ∼ah lh H + {signallRes(s, b)},
ha ∼ah lh H + {phaselRes(τ)},
ha ∼ah lh H + {obslRes(O)},
ha ∼ah lh H + {wpermlRes(τ, id, δ)},
ha ∼ah lh H + {itpermlRes(τ, δ)},
ha ∼ah lh H + {̂̀ 7→ v̂},

where ha ∈ Heapsannot and H ∈ Heaps log are annotated and logical heaps with
`,m.loc 6∈ locsah(ha), s.id 6∈ idsah(ha) and ha ∼ah lh H.

We consider a machine configuration (ha, P a) to be consistent if it fulfils
three criteria: (i) Every thread-local logical heap is consistent, i.e., for all used
thread IDs θ, P a(θ).heap only stores full phase, obligations, wait permission and
iteration permission chunks. (ii) Every logical heap protected by an unlocked
lock in ha is consistent. (iii) ha is compatible with the logical heap that repre-
sents (a) the resources owned by threads in P a and (b) the resources protected
by unlocked locks stored in ha.

Definition 9.15 (Consistency of Annotated Machine Configurations). We call
an annotated machine configuration (ha, P a) consistent and write
consistentconf(h

a, P a) if all of the following hold:

• consistentlh(P a(θ).heap) for all θ ∈ dom(P a),

• ∀m. ∀P. ∀HP . unlockedaRes(m,P,HP) ∈ ha → consistentlh(HP),

• ha ∼ah lh ownedResHeapatp(P a) + protectedResHeapah(ha).

Lemma 9.16 (Preservation of Consistency). Let (ha
i , P

a
i)i∈N be an annotated

reduction sequence with consistentconf(h
a
0, P

a
0). Then, consistentconf(h

a
i , P

a
i) holds

for every i ∈ N.

Proof. Proof by induction on i.

10 Hoare Triple Model Relation

Definition 10.1 (Command Annotation). We define the predicate annotcmd ⊂
Cmds × Cmds such that annotcmd(c′, c) holds iff c′ results from c by removing
all occurrences of consumeItPerm.

22

Definition 10.2 (Thread Pool Annotation). We define a predicate annottp ⊂
TPa × TP such that:

annottp(P a, P)
⇐⇒

dom(P a) = dom(P) ∧ ∀θ ∈ dom(P). annotcmd(P a(θ).cmd, P (θ))

Definition 10.3 (Compatibility of Annotated and Physical Heaps). We in-
ductively define a relation ∼ah ph ⊂ Heapsannot × Rphys between annotated and
physical heaps such that the following holds:

∅ ∼ah ph ∅,
` 7→ v ∪ ha ∼ah ph ` 7→ v ∪ h,

uninitaRes(`) ∪ ha ∼ah ph unlockedpRes(`) ∪ h,

unlockedaRes((`, L), P,HP) ∪ ha ∼ah ph unlockedpRes(`) ∪ h,

lockedaRes((`, L), P, f) ∪ ha ∼ah ph lockedpRes(`) ∪ h,

signalaRes(s, b) ∪ ha ∼ah ph h

where ha ∈ Heapsannot and h ∈ Heapsphys are annotated and physical heaps with
ha ∼ah ph h.

Definition 10.4 (Safety). We define the safety predicate safe ⊆ Heaps log ×
Cmds coinductively as the greatest solution (with respect to ⊆) of the following
equation:

safe(H, c)
⇐⇒

completelh(H) →
∀P, P ′.∀θ ∈ dom(P).∀h, h′.∀P a.∀ha.

consistentconf(h
a, P a) ∧ ha ∼ah ph h ∧

P (θ) = c ∧ P a(θ) = (H, c) ∧ annottp(P a, P) ∧ h, P
θ
 tp h

′, P ′ →
∃PG, P a′. ∃hG, ha′.

ha, P a
θ

 ∗ghost h
G, PG ∧ hG, PG θ

 real h
a′, P a′ ∧ annottp(P a′, P ′) ∧

ha′ ∼ah ph h
′ ∧

∀(Hf , cf) ∈ range(P a′) \ range(P a). safe(Hf , cf).

Definition 10.5 (Hoare Triple Model Relation). We define the model relation
for Hoare triples �H ⊂ A× Cmds × (Values → A) such that:

�H {A} c {λr.B(r)}
⇐⇒

∀HF . ∀E. (∀v. ∀HB . HB �A B(v) → safe(HB +HF , E[v]))
→ ∀HA. HA �A A → safe(HA +HF , E[c])

We can instantiate context E in above definition to let x :=� in tt, which
yields the consequent safe(HA + HF , let x := c in tt). Note that this implies
safe(HA +HF , c).

23

Lemma 10.6 (Hoare Triple Soundness). Let ` {A} c {B} hold, then also
�H {A} c {B} holds.

Proof. Proof by induction on the derivation of ` {A} c {B}.

Theorem 10.7 (Soundness). Let

` {phase(τ) ∗ obs(∅) ∗
i= 1,...,N∗ itperm(τ, δi)} c {obs(∅)}

hold. There exists no fair, infinite reduction sequence (hi, Pi)i∈N with h0 = ∅
and P0 = {(θ0, c)} for any choice of θ0.

11 Soundness

In this section, we prove the soundness theorem 10.7.

Lemma 11.1 (Construction of Annotated Reduction Sequences). Suppose we
can prove �H {A} c {obs(∅)}. Let HA be a logical heap with HA �A A and
completelh(HA) and ha

0 an annotated heap with ha
0 ∼ah lh HA. Let (hi, Pi)i∈N be

a fair plain reduction sequence with ha
0 ∼ah ph h0 and P0 = {(θ0, c)} for some

thread ID θ0 and command c.
Then, there exists a fair annotated reduction sequence (ha

i , P
a
i)i∈N with P a =

{(θ0, (HA, c))} and consistentconf(h
a
i , P

a
i) for all i ∈ N.

Proof. We can construct the annotated reduction sequence inductively from the
plain reduction sequence.

Definition 11.2 (Program Order Graph). Let ((ha
i , P

a
i)i∈N, sig) be an annotated

reduction sequence. Let Nr be the set of names referring to reduction rules
defining the relations real, ghost and ast. We define the set of annotated
reduction rule names N a where GTP-Red-Wait is annotated by signals as

N a := (Nr \ {GTP-Red-Wait})
∪ ({GTP-Red-Wait} × S).

We define the program order graph G(((ha
i , P

a
i)i∈N, sig)) = (N, E) with root 0

where E ⊂ N×Θ×N a × N.

A node a ∈ N corresponds to the sequence’s ath reduction step, i.e., ha
a, P

a
a

θ
 atp

ha
a+1, P

a
a+1 for some θ ∈ dom(P a

a). An edge from node a to node b expresses
that the bth reduction step continues the control flow of step a. For any ` ∈ N,
let θ` denote the ID of the thread reduced in step `. Furthermore, let na

` denote
the name of the reduction rule applied in the `th step, in the following sense:

• If ha
`, P

a
`

θ
 atp h

a
`+1, P

a
`+1 results from an application of RTP-Red-Lift

in combination with single-thread reduction rule nst, then na
` = nst.

24

• If ha
`, P

a
`

θ
 atp h

a
`+1, P

a
`+1 results from an application of GTP-Red-Wait,

then na
` = (GTP-Red-Wait, sig(`)).

• Otherwise, na denotes the applied (real or ghost) thread pool reduction
rule.

An edge (a, θ, na, b) ∈ N×Θ×N a ×N is contained in E if na = na
a and one

of the following conditions applies:

• θ = θa = θb and b = min({k > a | ha
k, P

a
k
θa atp h

a
k+1, P

a
k+1}).

In this case, the edge expresses that step b marks the first time that thread
θa is rescheduled for reduction (after step a).

• dom(P a
a+1) \ dom(P a

a) = {θ} and

b = min {k ∈ N | ha
k, P

a
k

θ
 atp h

a
k+1, P

a
k+1}.

In this case, θ identifies the thread forked in step a. The edge expresses
that step b marks the first reduction of the forked thread.

In case the choice of reduction sequence ((ha
i , P

a
i)i∈N, sig) is clear from the

context, we write G instead of G(((ha
i , P

a
i)i∈N, sig)).

Observation 11.3. Let (ha
i , P

a
i)i∈N be an annotated reduction sequence with

|dom(P a
0)| = 1. The sequence’s program order graph G((ha

i , P
a
i)i∈N) is a binary

tree.

For any reduction sequence (ha
i , P

a
i)i∈N, the paths in its program order graph

G((ha
i , P

a
i)i∈N) represent the sequence’s control flow paths. Hence, we are going

to use program order graphs to analyse reduction sequences’ control flows.
We refer to a program order graph’s edges by the kind of reduction step

they represent. For instance, we call edges of the form (a, θ,ST-Red-While, b)
loop edges because they represent a loop backjump and edges of the form
(a, θ, (GTP-Red-Wait, s), b) wait edges. Wait edges of this form represent
applications of GTP-Red-Wait to signal s.

In the following, we prove that any path in a program order graph that does
not involve a loop edge is finite. This follows from the fact that the size of the
command reduced along this path decreases with each non-ghost non-loop step.

Lemma 11.4. Let (ha
i , P

a
i)i∈N be a fair annotated reduction sequence. Let p =

(V,E) be a path in G((ha
i , P

a
i)i∈N). Let L = {e ∈ E | π3(e) = AST-Red-While}

be the set of loop edges contained in p. Then, p is infinite if and only if L is
infinite.

Proof. If L is infinite, p is obviously infinite as well. So, suppose L is finite.
For any command, we consider its size to be the number of nodes contained

in its abstract syntax tree. By structural induction over the set of commands, it
follows that the size of a command c = P a(θ).cmd decreases in every non-ghost

reduction step ha, P a θ
 atp h

a′, P a′ that is not an application of RTP-Red-Lift
in combination with AST-Red-While.

25

Since L is finite, there exists a node x such that the suffix p≥x starting at
node x does not contain any loop edges. By fairness of (ha

i , P
a
i)i∈N, every non-

empty suffix of p≥x contains an edge corresponding to a non-ghost reduction
step. For any edge e = (i, θ, n, j) consider the command ce = P a

i (θ).cmd reduced
in this edge. The size of these commands decreases along p≥x. So, p≥x must be
finite and thus p must be finite as well.

Corollary 11.5. Let (ha
i , P

a
i)i∈N be a fair annotated reduction sequence. Let

p = (V,E) be a path in G((ha
i , P

a
i)i∈N). Let

C = {e ∈ E | π3(e) = AST-Red-ConsumeItPerm}

be the set of consume edges contained in p. Then, p is infinite if and only if C
is infinite.

Proof. Follows from Lemma 11.4 by the fact that the set {e ∈ E | π3(e) =
AST-Red-While} is infinite if and only if C is infinite.

Definition 11.6. Let G = (V,E) be a subgraph of some program order graph.
We define the function waitEdgesG : S → P(E) mapping any signal s to the set
of wait edges in G concerning s as:

waitEdgesG(s) := {(a, θ, (GTP-Red-Wait, s′), b) ∈ E | s′ = s}.

Furthermore, we define the set SG ⊂ S of signals being waited for in G and its
subset S∞G ⊆ SG of signals waited-for infinitely often in G as follows:

SG := {s ∈ S | waitEdgesG(s) 6= ∅},
S∞G := {s∞ ∈ SG | waitEdgesG(s∞) infinite}.

Definition 11.7. Let (ha
i , P

a
i)i∈N be a fair annotated reduction sequence and

let G = (V,E) be a subgraph of the sequence’s program order graph. We define
the function itpermsG : E → Bagsfin(Λ) mapping any edge e to the (potentially
empty) finite bag of iteration permissions derived in the reduction step corre-
sponding to e as follows:

Let (i, θ, n, j) ∈ E be an edge.

• If n = (GTP-Red-Wait, s) for some signal s ∈ S, then the ith reduction
step spawns a single iteration permission (τ, δ), i.e.,
P a
i+1 = P a

i [θ := (P a
i (θ).heap + {itpermlRes(τ, δ)}, P a

i (θ).cmd)].
In this case, we define

itpermsG((i, θ, (GTP-Red-Wait, s), j)) := {[(τ, δ)]}.

• If n = GTP-Red-WeakItPerm, then the ith reduction step consumes
an iteration permission (τ ′, δ) and produces N permissions (τ ′, δ′) of lower
degree, i.e., P a

i (θ).heap = H+{itperm(τ ′, δ)} for some heap H and P a
i+1 =

P a
i [θ := (H ′, P a

i (θ).cmd)] for

H ′ = H +N · {itpermlRes(τ
′, δ′)}.

26

In this case, we define

itpermsG((i, θ,GTP-Red-WeakItPerm, j)) := {[(τ ′, δ′), . . . , (τ ′, δ′)︸ ︷︷ ︸
N times

]}.

• Otherwise, we define

itpermsG((i, θ, n, j)) := ∅.

Definition 11.8 (Signal Capacity). Let (ha
i , P

a
i)i∈N be a fair annotated reduc-

tion sequence and G = (V,E) be a subgraph of the sequence’s program order
graph. We define the function sigCapG : (S \ S∞G) × N → Bagsfin(Λ) mapping
signals and indices to bags of iteration permissions as follows:

sigCapG(s, i) :=]
(a,θ,n,b)∈waitEdgesG(s)

a≥ i

itpermsG((a, θ, n, b)).

We call sigCapG(s, i) the capacity of signal s at index i.

Note that the signal capacity above is indeed finite. For every G and every
signal s ∈ S \ S∞G the set of wait edges waitEdgesG(s) is finite. Hence, the big
union above is a finite union over finite iteration permission bags.

Definition 11.9 (Partial Order on Permissions). We define the partial order
on iteration permissions <Λ ⊂ Λ× Λ induced by <∆ such that

(τ1, δ1) <Λ (τ2, δ2) ⇐⇒ δ1 <∆ δ2.

Lemma 11.10. The partial order <Λ is well-founded.

Proof. Follows directly from well-foundedness of <Λ.

Definition 11.11 (Partial Order on Finite Bags). Let X be a set and let
<X ⊂ X × X a partial order on X. We define the partial order ≺X ⊂
Bagsfin(X) × Bagsfin(X) on finite bags over X as the Dershowitz-Manna or-
dering [Dershowitz and Manna(1979)] induced by <X :

A ≺X B ⇐⇒ ∃C,D ∈ Bagsfin(X). ∅ 6= C ⊆ B
∧ A = (B \ C)]D
∧ ∀d ∈ D. ∃c ∈ C. d <X c.

We define �X ⊂ Bagsfin(X)× Bagsfin(X) such that

A �X B ⇐⇒ A = B ∨ A ≺X B

holds.

Corollary 11.12. The partial order ≺Λ ⊂ Bagsfin(Λ) × Bagsfin(Λ) is well-
founded.

27

Proof. Follows from [Dershowitz and Manna(1979)] and Lemma 11.10.

In the following, we view paths in a program order graph as single-branched
subgraphs. This allows us to apply above definitions on graphs to paths. In
particular, this allows us to refer to the capacity of a signal s on a path p by
referring to sigCapp.

For the following definition, remember that a bag B ∈ Bags(X) is a function
B : X → N while a logical heap H ∈ Heaps log is a function H : Rlog →
Q≥0. Also remember the signatures ownedResHeapatp : TPa → Heaps log and

protectedResHeapah : Heapsannot → Heaps log.

Definition 11.13. We define the functions itpermsconf : Heapsannot × TPa →
Bags(Λ) and wpermsconf : Heapsannot × TPa → Bags(Ω) mapping annotated
machine configurations to bags of iteration and wait permissions, respectively,
as follows:

itpermsconf(h
a, P a)(τ, δ)

:=
⌊(

ownedResHeapatp(P a) + protectedResHeapah(ha)
)
(itpermlRes(τ, δ))

⌋
,

wpermsconf(h
a, P a)(τ, id, δ)

:=
⌊(

ownedResHeapatp(P a) + protectedResHeapah(ha)
)
(wpermlRes(τ, id, δ))

⌋
.

Note that for consistent annotated machine configurations (ha, P a) the above
flooring is without any affect.

Corollary 11.14. Let (ha
i , P

a
i)i∈N be an annotated reduction sequence such that

finiteah(ha
0) and finitelh(P a

0 (θ).heap) hold for every θ ∈ dom(P a
0).

Then, itpermsconf(h
a
i , P

a
i) and wpermsconf(h

a
i , P

a
i) are finite for every choice

of i ∈ N.

Proof. Follows by preservation of finiteness, Lemma 9.9.

Lemma 11.15. Let G((ha
i , P

a
i)i∈N) be a program order graph and let p = (V,E)

be a path in G with S∞p = ∅. For every θ ∈ dom(P a
0) let P a

0 (θ).heap be finite and
complete. Further, let ha

0 be finite and contain no chunks unlockedaRes(m,P,HP)
where HP contains any phase or obligations chunk.

Then, p is finite.

Proof. Assume p is infinite. We prove a contradiction by assigning a finite
capacity to every node along the path. Let θi be the ID of the thread reduced
in step i. For every θ ∈ dom(P a

r) the logical heap P a
0 (θ).heap is complete and

ha
0 contains no chunks unlockedaRes(m,P,HP) where HP contains any phase or

obligations chunk. By preservation of completeness, Lemma 9.10, P a
i (θi).heap is

also complete and hence it contains exactly one phase chunk phaselRes(τi). That
is, for every step i, the phase ID τi of the thread reduced in step i is uniquely
defined.

28

Consider the function nodeCap : V → Bagsfin(Λ) defined as

nodeCap(i) := {[(τanc, δ) ∈ itpermsconf(h
a
i , P

a
i) | τanc v τi]}

]]
id∈waitIDs(τi)

(τanc,id,δ)∈wpermsconf(h
a
i,P

a
i)

L∈Levs

sigCapp((id, L), i).

where waitIDs(τi) := {id | ∃τanc. (τanc, id,) ∈ wpermsconf(h
a
i , P

a
i) ∧ τanc v τi}.

For every i ∈ V , the capacity of node i, i.e., nodeCap(i), is the union of two fi-
nite iteration permission bags: (i) Above {[(τanc, δ) ∈ itpermsconf(h

a
i , P

a
i) | τanc v

τi]} captures all iteration permissions contained in ha and P a
i that are qualified

by an ancestor τanc of phase ID τi and are hence usable by the thread reduced
in node i. This includes the permissions (τanc, δ) held by thread θi as well as
such (temporarily) transferred to another thread via a lock invariant. (ii) Be-

low] sigCapp((id, L), i) captures all iteration permissions that will be created

along the suffix of p that starts at node i by waiting for signals for which thread
θi already holds a wait permission (τanc, id, δ) in step i.

Note that for every i ∈ V , the bag of iteration permissions returned by
nodeCap(i) is indeed finite. The initial annotated heap and all initial thread-
local logical heaps are finite. This allows us to apply Corollary 11.14, by which
we get that itpermsconf(h

a
i , P

a
i) and wpermsconf(h

a
i , P

a
i) are finite.

Since signal IDs are unique, for every fixed choice of i and id, there is at
most one level L, for which sigCapp((id, L), i) 6= ∅. By assumption, along p all
signals are waited for only finitely often, i.e., S∞p = ∅. Hence, also the big union

] sigCapp((id, L), i) is defined and finite.

Consider the sequence (nodeCap(i))i∈V . Since every element is a finite bag
of permissions, we can order it by ≺Λ. We are going to prove a contradiction
by proving that the sequence is an infinitely descending chain.

Consider any edge (i, θ, n, j) ∈ E. There are only three cases in which
nodeCap(i) 6= nodeCap(j) holds.

• n = GTP-Red-WaitPerm:
In this case, there are degrees δ, δ′ with δ′ <∆ δ, a signal s and N ∈ N for
which we get

nodeCap(j) = (nodeCap(i) \ {[(τ ′, δ)]})] {[(τ ′, δ′)︸ ︷︷ ︸
N times

]}.

That is, nodeCap(j) ≺Λ nodeCap(i).

• n = GTP-Red-WeakItPerm: Same as above.

• n = AST-Red-ConsumeItPerm:
In this case, we know that nodeCap(j) = nodeCap(i) \ {[(τanc, δ)]} ≺Λ

nodeCap(i) holds for some τanc and δ.

29

(Note that in case of n = GTP-Red-Wait, we have nodeCap(i) = nodeCap(j)
since

{[(τanc, δ) ∈ itpermsconf(h
a
j , P

a
j) | τanc v τj]}

=
{[(τanc, δ) ∈ itpermsconf(h

a
i , P

a
i) | τanc v τi]}] {[(τ, δ)]}

and

] sigCapp((id, L), j) =
(] sigCapp((id, L), i)

)
\ {[(τ, δ)]}

for some δ.) So, nodeCap is monotonically decreasing.
By assumption p is infinite. According to Corollary 11.5 this implies that

the path contains infinitely many consume edges, i.e., edges with a labelling
n = AST-Red-ConsumeItPerm. Hence, the sequence (nodeCap(i))i∈V forms
an infinitely descending chain. However, according to Corollary 11.12, ≺Λ is
well-founded. A contradiction.

Lemma 11.16. Let (ha
i , P

a
i)i∈N be a fair annotated reduction sequence with

consistentconf(h
a
0, P

a
0), P a

0 = {(θ0, (H0, c))}, completelh(H0), finitelh(H0) and with
finiteah(ha

0). Let H0 contain no signal or wait permission chunks. Further, let ha
0

contain no chunks unlockedaRes(m,P,HP) where HP contains any obligations,
phase or signal chunks. Let G be the program order graph of (ha

i , P
a
i)i∈N. Then,

S∞G = ∅.

Proof. Suppose S∞G 6= ∅. Since Levs is well-founded, the same holds for the set
{lev(s) | s ∈ S∞}. Hence, there is some smin ∈ S∞ for which no z ∈ S∞ with
lev(z) <L lev(smin) exists.

Since neither the initial logical heap H0 nor any unlocked lock invariant
stored in ha

0 does contain any signals, smin must be created during the re-
duction sequence. The reduction step creating signal smin is an application of
GTP-Red-NewSignal, which simultaneously creates an obligation to set smin.
By preservation of completeness, Lemma 9.10, every thread-local logical heap
P a
i (θ).heap annotating some thread θ in some step i is complete. According to re-

duction rule GTP-Red-Wait, every wait edge (a, θ, (GTP-Red-Wait, smin), b)
implies together with completeness that in step a (i) thread θ does not hold any
obligation for smin (i.e. P a

a(θ).heap.obs = O for some bag of obligations O with
smin 6∈ O) and (ii) smin has not been set, yet (i.e. signalaRes(smin,False) ∈ ha

a).
Hence, in step a another thread θob 6= θ must hold the obligation for smin (i.e.
P a
a(θob).heap.obs = O for some bag of obligations O with smin ∈ O). Since there

are infinitely many wait edges concerning smin in G, the signal is never set.
By fairness, for every wait edge as above, there must be a non-ghost reduction

step ha
k, P

a
k

θob atp h
a
k+1, P

a
k+1 of the thread θob holding the obligation for smin

with k ≥ a. Hence, there exists an infinite path pob in G where each edge
(e, θob, n, f) ∈ edges(pob) concerns some thread θob holding the obligation for
smin. (Note that this thread ID does not have to be constant along the path,
since the obligation can be passed on during fork steps.)

30

The path pob does not contain wait edges (e, θob, (GTP-Red-Wait, s∞), f)
for any s∞ ∈ S∞, since reduction rule GTP-Red-Wait would (together with
completeness of P a

e (θob).heap) require s∞ to be of a lower level than all held
obligations. This restriction implies lev(s∞) <L lev(smin) and would hence con-
tradict the minimality of smin. That is, S∞pob = ∅.

By preservation of finiteness, Lemma 9.9, we get that every logical heap
associated with the root of pob is finite. This allows us to apply Lemma 11.15,
by which we get that pob is finite. A contradiction.

Lemma 11.17. Let

�H {phase(τ0) ∗ obs(∅) ∗
i= 1,...,N∗ itperm(τ0, δi)} c {obs(∅)}

hold. There exists no fair, infinite annotated reduction sequence (ha
i , P

a
i)i∈N with

ha
0 = ∅, P a

0 = {(θ0, (H0, c))} and

H0 = {phaselRes(τ0), obslRes(∅), itpermlRes(τ0, δ1), . . . , itpermlRes(τ0, δN)}.

Proof. Suppose a reduction sequence as described above exists. We are going
to prove a contradiction by considering its infinite program order graph G.

According to Observation 11.3, G is a binary tree with an infinite set of
vertices. By the Weak König’s Lemma [Simpson(1999)] G has an infinite branch,
i.e. an infinite path p starting at root 0.

The initial logical heap H0 is complete and finite and the initial annotated
machine configuration (ha

0, P
a
0) is consistent. By Lemma 11.16 we know that

S∞G = ∅. Since S∞p ⊆ S∞G , we get S∞p = ∅. This allows us to apply Lemma 11.15,
by which we get that p is finite, which is a contradiction.

Theorem 10.7 (Soundness). Let

` {phase(τ) ∗ obs(∅) ∗
i= 1,...,N∗ itperm(τ, δi)} c {obs(∅)}

hold. There exists no fair, infinite reduction sequence (hi, Pi)i∈N with h0 = ∅
and P0 = {(θ0, c)} for any choice of θ0.

Proof. Suppose a reduction sequence as described above exists. Since we can

prove ` {phase(τ) ∗ obs(∅) ∗∗i= 1,...,N
itperm(τ, δi)} c {obs(∅)}, we can also conclude

�H {phase(τ) ∗ obs(∅) ∗∗i= 1,...,N
itperm(τ, δi)} c {obs(∅)} by Hoare triple soundness,

Lemma 10.6. Consider the logical heap

H0 = {phaselRes(τ), obslRes(∅), itpermlRes(τ, δ1), . . . , itpermlRes(τ, δN)}

and the annotated heap ha
0 = ∅. It holdsH0 �A phase(τ)∗obs(∅)∗∗i= 1,...,N

itperm(τ, δi),

ha
0 ∼ah lh H0 and ha

0 ∼ah ph h0. This allows us to apply Lemma 11.1, by which
we can construct a corresponding fair annotated reduction sequence (ha

i , P
a
i)i∈N

that starts with ha
0 = ∅ and P a

0 = {(θ0, (H0, c))}. By Lemma 11.17 (ha
i , P

a
i)i∈N

does not exist. A contradiction.

31

12 Verification Example

12.1 Minimal Example

Figures 16 and 17 sketch the verification of the example program presented in
Figure 2. For this verification we let the set of values Values include natural
numbers and choose Levs = ∆ = N.

12.2 Bounded FIFO

For this section, we let the set of values Values include natural numbers and
finite sequences, aka lists, of natural numbers. Further, the set of operations
Ops includes the canonical operations on natural numbers and lists, i.e., (i) <,
≤, − and (ii) list concatenation l1 · l2, prepending an element e :: l, getting the
head and tail of a list head(l) (defined for non-empty l), tail(l) and getting the
size of a list size(l). We denote the empty list by nil. We use the abbreviation
a R1 b R2 c for R1, R2 ∈ {<,≤} to denote a R1 b ∗ b R2 c. Furthermore,
we choose Levs = ∆ = N. Figure 19 presents an example program involving a
bounded FIFO.

To simplify its verification, we refine the process of creating a new ghost
signal, i.e., we split it in two steps: allocating a new signal ID and initializing
a signal. To implement this, we replace view shift rule VS-NewSignal by
the rules VS-AllocSigID and VS-SigInit presented in Figure 18. This way
we can fix the IDs of all the signals we need throughout the proof at its begin-
ning. This refinement does not affect the soundness of our verification approach.
Figures 20 – 30 sketch the program’s verification using fine-grained signals.

References

[Dershowitz and Manna(1979)] N. Dershowitz and Z. Manna. Proving termina-
tion with multiset orderings. In ICALP, 1979. doi:10.1007/3-540-09510-1 15.

[Simpson(1999)] S. Simpson. Subsystems of second order arithmetic. In Per-
spectives in mathematical logic, 1999. doi:10.1017/CBO9780511581007.

[Tarski(1955)] A. Tarski. A lattice-theoretical fixpoint theorem and
its applications. Pacific Journal of Mathematics, 5:285–309, 1955.
doi:10.2307/2963937.

32

https://doi.org/10.1007/3-540-09510-1_15
https://doi.org/10.1017/CBO9780511581007
https://doi.org/10.2307/2963937

{phase(()) ∗ obs(∅) ∗ itperm((), 1)}
let x := PR-Let & PR-VS-Simp & VS-SemImp

{ True ∗ phase(()) ∗ obs(∅) ∗ itperm((), 1)}
cons(0) PR-Cons & PR-Frame

{λ`. ` 7→ 0 ∗ phase(()) ∗ obs(∅) ∗ itperm((), 1)}
in
∀`x. `x represents value bound to x.

{phase(()) ∗ obs(∅) ∗ itperm((), 1) ∗ `x 7→ 0 }
let m := PR-Let & PR-VS-Simp & VS-SemImp

{ True ∗ phase(()) ∗ obs(∅) ∗ itperm((), 1) ∗ `x 7→ 0}
new mutex PR-NewMutex & PR-Frame

{λ`. uninit(`) ∗ phase(()) ∗ obs(∅) ∗ itperm((), 1) ∗ `x 7→ 0}
in
∀`m. `m represents value bound to m.

{phase(()) ∗ obs(∅) ∗ itperm((), 1) ∗ `x 7→ 0 ∗ uninit(`m) } PR-VS-Simp & VS-NewSignal & PR-Frame{
∃ids. signal((ids, 1),False) ∗ phase(()) ∗ obs({[(ids, 1)]})
∗ itperm((), 1) ∗ `x 7→ 0 ∗ uninit(`m)

}
PR-Exists

∀ids.{
∃ids. signal((ids, 1),False) ∗ phase(()) ∗ obs({[(ids, 1)]})
∗ itperm((), 1) ∗ `x 7→ 0 ∗ uninit(`m)

}
PR-VS-Simp & VS-SemImp{

∃vx. `x 7→ vx ∗ signal((ids, 1), vx 6= 0)

∗obs({[(ids, 1)]}) ∗ itperm((), 1) ∗ uninit(`m)

}
P := ∃vx. `x 7→ vx

∗ signal((ids, 1), vx 6= 0)

{ P ∗ phase(()) ∗ obs({[(ids, 1)]}) ∗ itperm((), 1) ∗ uninit(`m)} PR-VS-Simp & VS-MutInit & PR-Frame

{phase(()) ∗ obs({[(ids, 1)]}) ∗ itperm((), 1) ∗ mutex((`m, 0),P) } PR-VS-Simp & VS-SemImp{
phase(()) ∗ obs({[(ids, 1)]}) ∗ itperm((), 1)

∗ [1
2]mutex((`m, 0),P) ∗ [1

2]mutex((`m, 0),P)

}
fork PR-Fork & PR-Frame

{phase(τ.Forkee) ∗ obs(∅) ∗ itperm((), 1) ∗ [1
2]mutex((`m, 0),P)}

. . . ; Continued in Figure 17.
{obs(∅)}

{phase(τ.Forker) ∗ obs({[(ids, 1)]}) ∗ [1
2]mutex((`m, 0),P)}

acquire m; PR-Acquire

{phase(τ.Forker) ∗ obs({[(ids, 1), (`m, 0)]}) ∗ locked((`m, 0),P, 1
2) ∗ P } PR-Exists

∀vx.{
phase(τ.Forker) ∗ obs({[(ids, 1), (`m, 0)]}) ∗ locked((`m, 0),P, 1

2)

∗ ∃vx. `x 7→ vx ∗ signal((ids, 1), vx 6= 0)

}
[x] := 1; PR-AssignToHeap & PR-Frame{

phase(τ.Forker) ∗ obs({[(ids, 1), (`m, 0)]}) ∗ locked((`m, 0),P, 1
2)

∗ `x 7→ 1 ∗ signal((ids, 1), vx 6= 0)

}
PR-VS-Simp & VS-SetSignal{

phase(τ.Forker) ∗ obs({[(ids, 1) , (`m, 0)]}) ∗ locked((`m, 0),P, 1
2)

∗ `x 7→ 1 ∗ signal((ids, 1), True)

}
PR-VS-Simp & VS-SemImp

{phase(τ.Forker) ∗ obs({[(`m, 0)]}) ∗ locked((`m, 0),P, 1
2) ∗ P }

release m PR-Release & PR-Frame

{phase(τ.Forker) ∗ obs((`m, 0) ∅) ∗ [1
2]mutex((`m, 0),P) ∗ P } PR-VS-Simp & VS-SemImp

{obs(∅)}

Figure 16: Verification sketch of main thread of example program presented in
Figure 2. For readability we omit information about a command’s return value
if it is not relevant to the proof.

33

. . . Continuation of Figure 16.
∀`x, ids. `x, ids universally quantified below

. . .
P := ∃vx. `x 7→ vx

∗ signal((ids, 1), vx 6= 0)
{phase(τ.Forkee) ∗ obs(∅) ∗ itperm((), 1) ∗ [1

2]mutex((`m, 0),P)} PR-VS-Simp & VS-WaitPerm
& PR-Frame

{phase(τ.Forkee) ∗ obs(∅) ∗ itperm((), 1) wperm((), ids, 0) ∗ [1
2]mutex((`m, 0),P)}

while PR-While-Simp
{phase(τ.Forkee) ∗ obs(∅) ∗ wperm((), ids, 0) ∗ [1

2]mutex((`m, 0),P)}
acquire m; PR-Acquire

{phase(τ.Forkee) ∗ obs({[(`m, 0)]}) ∗ wperm((), ids, 0) ∗ locked((`m, 0),P, 1
2) ∗ P }

let y := PR-Let{
phase(τ.Forkee) ∗ obs({[(`m, 0)]}) ∗ wperm((), ids, 0) ∗ locked((`m, 0),P, 1

2)
∗ ∃vx. `x 7→ vx ∗ signal((ids, 1), vx 6= 0)

}
PR-Exists & PR-Frame
P

∀vx. vx quantified in local scope.
{`x 7→ vx}
[x]
{λr. r = vx ∗ `x 7→ vx} PR-VS-Simp & VS-SemImp

{λr. ∃vx. r = vx ∗ `x 7→ vx}{
λ r .phase(τ.Forkee) ∗ obs({[(`m, 0)]}) ∗ wperm((), ids, 0) ∗ locked((`m, 0),P, 1

2)
∗ ∃vx. `x 7→ vx ∗ signal((ids, 1), vx 6= 0) ∗ r = vx

}
P

in
∀vy. vy represents value bound to y.{

phase(τ.Forkee) ∗ obs({[(`m, 0)]}) ∗ wperm((), ids, 0) ∗ locked((`m, 0),P, 1
2)

∗ ∃vx. `x 7→ vx ∗ signal((ids, 1), vx 6= 0) ∗ vx = vy

}
release m; PR-Release phase(τ.Forkee) ∗ obs({[(`m, 0) ∅]}) ∗ wperm((), ids, 0)

∗ locked((`m, 0),P, 1
2) ∗ ∃vx. `x 7→ vx ∗ signal((ids, 1), vx 6= 0) ∗ vx = vy

 Release view shift
PR-Exists

∀vx. vx quantified in local scope.{
phase(τ.Forkee) ∗ obs({[∅]}) ∗ wperm((), ids, 0)

∗ ∃vx. `x 7→ vx ∗ signal((ids, 1), vx 6= 0) ∗ vx = vy

}
PR-VS-Simp & VS-Wait
& PR-Frame{

phase(τ.Forkee) ∗ obs({[∅]}) ∗ wperm((), ids, 0)

∗ `x 7→ vx ∗ signal((ids, 1), vx 6= 0) ∗ vx = vy ∗ (vx = 0↔ itperm(τ.Forker, 0))

}
PR-VS-Simp & VS-SemImp{

phase(τ.Forkee) ∗ obs({[∅]}) ∗ wperm((), ids, 0) ∗ P

∗ (vy = 0→ itperm(τ.Forker, 0))

}
 phase(τ.Forkee) ∗ obs({[(`m, 0) ∅]}) ∗ wperm((), ids, 0) ∗ [1

2]mutex((`m, 0),P)

∗P ∗ (vy = 0→ itperm(τ.Forker, 0))

y = 0 PR-Exp & PR-Frame{
λb.phase(τ.Forkee) ∗ obs(∅) ∗ wperm((), ids, 0) ∗ [1

2]mutex((`m, 0),P)

∗ (vy = 0→ itperm(τ.Forker, 0)) ∗ b = [[vy = 0]]

}
PR-VS-Simp & VS-SemImp{

λb.phase(τ.Forkee) ∗ (¬b→ obs(∅))
∗ (b→ obs(∅) ∗ wperm((), ids, 0) ∗ [1

2]mutex((`m, 0),P) ∗ itperm(τ.Forker, 0))

}
do skip
{obs(∅)}

Figure 17: Verification sketch of busy-waiting thread of example program pre-
sented in Figure 2. For readability we omit information about a command’s
return value if it is not relevant to the proof.

34

VS-AllocSigID

TrueV ∃id. uninitSig(id)

VS-SigInit
obs(O) ∗ uninitSig(id)
V obs(O] {[(id, L)]}) ∗ signal((id, L),False)

Figure 18: Fine-grained view shift rules for signal creation.

let fifo10 := cons(nil) in
let m := new mutex in
let cp := cons(100) in
let cc := cons(100) in
fork (

while (
acquire m;
let f := [fifo10] in
if size(f) < 10 then (

let c := [cp] in
[fifo10] := f ·(c :: nil);
[cp] := c− 1

);
release m;
let c := [cp] in
c 6= 0

) do skip;
);
while (

acquire m;
let f := [fifo10] in
if size(f) > 0 then (

let c := [cc] in
[fifo10] := tail(f);
[cc] := c− 1

);
release m;
let c := [cc] in
c 6= 0

) do skip

Figure 19: Example program with two threads communicating via a shared
bounded FIFO with maximal size 10. Producer thread writes numbers 100, . . . ,
1 to shared FIFO and busy-waits until FIFO is not full and next element can
be pushed. Consumer thread pops 100 numbers from FIFO and busy-waits for
next number to arrive.

35

{phase(()) ∗ obs(∅) ∗ itperm((), 2)}
let fifo10 := cons(nil) in let m := new mutex in PR-Let (2x) & PR-Cons
∀`fifo10 , `m. & PR-NewMutex

{phase(()) ∗ obs(∅) ∗ itperm((), 2) ∗ `fifo10 7→ nil ∗ uninit(`m) } PR-VS-Simp & VS-AllocSigID
& PR-Exists (200x)

∀id1
pop, . . . id

100
pop, id

1
push, . . . , id

100
push.

{∗i=1,...,100
uninitSig(idipop) ∗∗i=1,...,100

uninitSig(idipush) ∗ . . .}

Lipop := 102− i, Lipush := 101− i for 1 ≤ i ≤ 100

(Later Li+10
pop < Lipush and Lipush < Lipop must hold, cf. Figures 26 and 28.)

sipush := (idipush, L
i
push), sipop := (idipop, L

i
pop) for 1 ≤ i ≤ 100 PR-VS-Simp & VS-SigInit uninitSig(id100

pop) ∗ uninitSig(id100
push) signal(s100

pop,False) ∗ signal(s100
push,False)

∗ obs({[s100
pop, s

100
push]}) ∗ . . .

 PR-VS-Simp & VS-WeakPerm

{ itperm((), 2) ∗1,...,400
itperm((), 1) ∗ . . .} PR-VS-Simp & VS-Wait

{∗1,...,200
itperm((), 1) ∗ ∗1,...,200

itperm((), 1) ∗i=1,...,100
(wperm((), idipop, 0) ∗ wperm((), idipush, 0)) ∗ . . .}

Later each thread uses∗1,...,100
itperm((), 1) to justify productive iterations.

let cp := cons(100) in let cc := cons(100) in PR-Let & PR-Cons (2x)
∀`cp , `cc .

{ `cp 7→ 100 ∗ `cc 7→ 100 ∗ . . .} PR-VS-Simp & VS-SemImp
phase(()) ∗ obs({[s100

push, s
100
pop]}) ∗ [1

2]`cp 7→ 100 ∗ [1
2]`cc 7→ 100 ∗ uninit(`m)

∗∗i=1,...,100
(wperm((), idipop, 0) ∗ wperm((), idipush, 0)) ∗∗1,...,200

itperm((), 1) ∗ Pm

∗∗i=1,...,99
(uninitSig(idipush) ∗ uninitSig(idipop))

For definition of lock invariant Pm

cf. Figure 21.
PR-VS-Simp & VS-MutInit

mut := (`m, 0)
(Later lev(mut) < Lipush and lev(mut) < Lipop must hold

for all 1 ≤ i ≤ 100, cf. Figures 24 and 28.)

{ uninit(`m) ∗ Pm mutex(mut, Pm) ∗ . . .} PR-VS-Simp & VS-SemImp
phase(()) ∗ obs({[s100

push, s
100
pop]}) ∗ [1

2]`cp 7→ 100 ∗ [1
2]`cc 7→ 100 ∗∗1,...,200

itperm((), 1)

∗∗i=1,...,100
(wperm((), idipop, 0) ∗ wperm((), idipush, 0)) ∗∗i=1,...,99

(uninitSig(idipush) ∗ uninitSig(idipop))

∗ [1
2]mutex(mut, Pm) ∗ [1

2]mutex(mut, Pm)

. . . Continued in Figure 22.

Figure 20: Verification example bounded FIFO, initialisation. To lighten the
notation, we do not show applications of the frame rule.

36

P ′m(vm
fifo10

) := ∃vm
cp
, vm

cc
.

[1
2]`cp 7→ vm

cp
∗ [1

2]`cc 7→ vm
cc
∗ 0 ≤ vm

cp
≤ 100 ∗ 0 ≤ vm

cc
≤ 100 Producer & consumer counters.

∗ `fifo10 7→ vm
fifo10

∗ vm
cc

= vm
cp

+ size(vm
fifo10

) ∗ 0 ≤ size(vm
fifo10

) ≤ 10 Bounded FIFO & its relationship

∗ vm
fifo10

= (vcp + size(vm
fifo10

)) :: . . . :: (vcp + 1) :: nil to counters.

∗
(
vm

cp
> 0 → signal((id

vm
cp

push, L
vm

cp

push),False)
)

Signal set by producer.

∗
(
vm

cc
> 0 → signal((id

vm
cc

pop, L
vm

cc
pop),False)

)
Signal set by consumer.

Pm := ∃vm
fifo10

. P ′m(vm
fifo10

)

Figure 21: Lock invariant

. . . 20 . . . Continuation of Figure 20.
phase(()) ∗ obs({[s100

push, s
100
pop]}) ∗ [1

2]`cp 7→ 100 ∗ [1
2]`cc 7→ 100 ∗∗1,...,200

itperm((), 1)

∗∗i=1,...,100
(wperm((), idipop, 0) ∗ wperm((), idipush, 0))

∗∗i=1,...,99
(uninitSig(idipush) ∗ uninitSig(idipop)) ∗ [1

2]mutex(mut, Pm) ∗ [1
2]mutex(mut, Pm)

fork (PR-Fork

phase((Forkee)) ∗ obs({[s100
push]}) ∗ [1

2]`cp 7→ 100 ∗∗i=1,...,100
itperm((), 1)

∗∗i=1,...,100
wperm((), idipop, 0) ∗∗i=1,...,99

uninitSig(sipush) ∗ [1
2]mutex(mut, Pm)

Resources transferred to
producer thread.
PR-VS-Simp & VS-SemImp

phase((Forkee)) ∗ obs({[s100
push]}) ∗ [1

2]`cp 7→ 100 ∗∗i=1,...,100
itperm((), 1)

∗∗i=1,...,100
wperm((), idipop, 0) ∗∗i=1,...,99

uninitSig(sipush) ∗ [1
2]mutex(mut, Pm)

∃vcp , Op. Lp(vcp , Op) ∗ vcp 6= 0

For definition of producer loop
invariant Lp(n,O) cf. Figure 23.

. . . 24 . . . Producer loop on Figure 24.

{phase((Forkee)) ∗ ∃vcp , Op. Lp(vcp , Op) ∗ vcp 6= 0 obs(∅) } PR-VS-Simp & VS-SemImp

{ phase((Forkee)) ∗ obs(∅)}
);

phase(()) ∗ obs({[s100
push, s

100
pop]}) ∗ [1

2]`cp 7→ 100 ∗ [1
2]`cc 7→ 100

∗∗1,...,100
itperm((), 1) ∗∗1,...,100

itperm((), 1)

∗∗i=1,...,100
wperm((), idipush, 0) ∗∗i=1,...,100

wperm((), idipop, 0)

∗∗i=1,...,99
uninitSig(idipop) ∗∗i=1,...,99

uninitSig(idipush) ∗ [1
2]mutex(mut, Pm) ∗[1

2]mutex(mut, Pm)

Resources remaining with
consumer thread.
PR-VS-Simp & VS-SemImp

phase(()) ∗ obs({[s100

pop]}) ∗ [1
2]`cc 7→ 100 ∗∗1,...,100

itperm((), 1) ∗∗i=1,...,100
wperm((), idipush, 0)

∗∗i=1,...,99
uninitSig(idipop) ∗ [1

2]mutex(mut, Pm) ∃vcc , Oc. Lc(vcc , Oc) ∗ vcc 6= 0

 For definition of consumer loop
invariant Lc(n,O) cf. Figure 27.

. . . 28 . . . Consumer loop on Fgure 28.

{phase((Forker)) ∗ ∃vcc , Oc. Lc(vcc , Oc) ∗ vcc 6= 0 obs(∅) } PR-VS-Simp & VS-SemImp

{ phase((Forker)) ∗ obs(∅)}

Figure 22: Verification example bounded FIFO, forking.

37

Lp(n,Op) := Loop invariant of producer.
[1
2]`cp 7→ n ∗ 0 ≤ n ≤ 100 ∗ [1

2]mutex(mut, Pm)
∗ obs(Op) ∗ (n > 0 ↔ Op = {[snpush]}) ∗ (n = 0 ↔ Op = ∅)

∗ ∗
1,...,n

itperm((), 1)

Iteration permissions consumed
by productive loop iterations, i.e.,
by iterations which decrease the
producer counter cp.

∗ ∗
i=1,...,100

wperm((), idipop, 0)
Used to generate iteration permissions
to justify unproductive loop iterations.

∗ ∗
i=1,...,n−1

uninitSig(idipush)
Remaining allocated signal IDs used to
initialize new signal after next push.

Llocked
p (n,Op) := Shorthand for invariant with

[1
2]`cp 7→ n ∗ 0 ≤ n ≤ 100 acquired mutex.

∗ [1
2]mutex(mut, Pm) locked(mut, Pm,

1
2) ∗ obs(Op]{[mut]})

∗ (n > 0 ↔ Op = {[snpush]}) ∗ (n = 0 ↔ Op = ∅)
∗ ∗

1,...,n

itperm((), 1) ∗ ∗
i=1,...,100

wperm((), idipop, 0) ∗ ∗
i=1,...,n−1

uninitSig(idipush)

L
no:mutex
no:obs
p (n,Op) := ∃idnpush. Shorthand for invariant without

[1
2]`cp 7→ n ∗ 0 ≤ n ≤ 100 ∗ [1

2]mutex(mut, Pm) ∗ obs(Op) mutex chunk and

∗ (n > 0 ↔ Op = {[snpush]}) ∗ (n = 0 ↔ Op = ∅) without obligations chunk.

∗ ∗
1,...,n

itperm((), 1) ∗ ∗
i=1,...,100

wperm((), idipop, 0) ∗ ∗
i=1,...,n−1

uninitSig(idipush)

Figure 23: Producer’s loop invariant.

38

∀`fifo10 , `m, `cp , `cc .
. . . Continuation of Figure 22.
{phase((Forkee)) ∗ ∃vcp , Op. Lp(vcp , Op) ∗ vcp 6= 0}
while (PR-While-Simp & PR-Exists (2x)For definition of producer loop invariant Lp(n,O), lock invariant Pm

∀vcp , Op. & PR-VS-Simp & VS-SemImpand variations cf. Figures 23 and 21.

{phase((Forkee)) ∗ ∃vcp , Op. Lp(vcp , Op) ∗ vcp 6= 0 ∗ ∀o ∈ Op. lev(o) = L
vcp

push } Op = {[svcp

push]} ∨ Op = ∅
lev(mut) = 0 < 101− vcp = L

vcp

push Justification for application of:

acquire m; PR-Acquire

{phase((Forkee)) ∗ Lp(vcp , Op) Llocked
p (vcp , Op) ∗ Pm ∗ vcp 6= 0 ∗ ∀o ∈ Op. lev(o) = . . . } PR-Exists

∀vm
fifo10

.

{ Pm P ′m(vm
fifo10

) ∗ . . .}
let f :=[fifo10] in PR-Let & PR-ReadHeapLoc
{phase((Forkee)) ∗ Llocked

p (vcp , Op) ∗ P ′m(vm
fifo10

) ∗ vcp 6= 0}
if size(f) < 10 then (PR-If

{ size(vm
fifo10

) < 10 ∗ phase((Forkee)) ∗ Llocked
p (vcp , Op) ∗ P ′m(vm

fifo10
) ∗ vcp 6= 0}

. . . 25 . . . Production step presented on Figure 25.

size(vm
fifo10

) < 10 ∗ phase((Forkee)) ∗Llocked
p (vcp , Op) ∗ P ′m(vm

fifo10
) ∗

∃v′cp
, O′p. obs(O′p] {[mut]}) ∗ locked(mut, Pm,

1
2) ∗ ∗ vcp 6= 0

∗
(
size(vm

fifo10
) < 10 → L

no:mutex
no:obs
p (v′cp

, O′p) ∗ Pm ∗ itperm((), 1)
)

∗
(
size(vm

fifo10
) = 10 → L

no:mutex
no:obs
p (vcp , Op) ∗ P ′m(vm

fifo10
) ∗O′p = Op

)

Define PostIfp such that:

=

phase((Forkee))
∗ ∃v′cp

, O′p. obs(O′p] {[mut]})
∗ locked(mut, Pm,

1
2) ∗ PostIfp

) else (

{ size(vm
fifo10

) = 10 ∗ phase((Forkee)) ∗ Llocked
p (vcp , Op) ∗ P ′m(vm

fifo10
) ∗ vcp 6= 0} PR-VS-Simp & VS-SemImp size(vm

fifo10
) = 10 ∗ phase((Forkee)) ∗Llocked

p (vcp , Op) ∗ P ′m(vm
fifo10

) ∗

vcp 6= 0 ∃v′cp
, O′p. obs(O′p] {[mut]}) ∗ locked(mut, Pm,

1
2) ∗ PostIfp

); phase((Forkee)) ∗ Llocked

p (vcp , Op) ∗ P ′m(vm
fifo10

) ∗ vcp 6= 0

∃v′cp
, O′p. obs(O′p] {[mut]}) ∗ locked(mut, Pm,

1
2) ∗ PostIfp

 PR-Exists (2x)

∀v′cp
, O′p.

release m;
Wait step presented on Figure 26, i.e., view shift performed
after releasing mut but before consuming Pm.

PR-Release & PR-Exists (2x)

∀τanc
p , δp.

let c :=[cp] in c 6= 0
PR-Let & PR-ReadHeapLoc
& PR-Exp{

τanc
p v (Forkee) ∗ phase((Forkee))
∗ (v′cp

6= 0 → ∃vcp , Op. Lp(vcp , Op) ∗ vcp 6= 0 ∗ itperm(τanc
p , δp)) ∗ (v′cp

= 0 → obs(∅))

}
Reestablished loop invariant.

) do skip

{phase((Forkee)) ∗ ∃vcp . Lp(vcp) ∗ vcp 6= 0 obs(∅) }
. . . Continued in Figure 22.

Figure 24: Verification example bounded FIFO, producer loop.

39

∀`fifo10 , `m, `cp , `cc , vcp , Op, v
m
fifo10

.
. . . Continuation of Figure 24.

For definition of Pm, P ′m(v), Llocked
p (n,O) and L

no:mutex
no:obs
p (n,O) cf. Figures 21 and 23.

{size(vm
fifo10

) < 10 ∗ phase((Forkee)) ∗ Llocked
p (vcp , Op) ∗ P ′m(vm

fifo10
) ∗ vcp 6= 0} PR-VS-Simp & VS-SemImp

[1
2]`cp 7→ vcp ∗ [1

2]`cp 7→ vm
cp

`cp 7→ vcp ∗ vcp = vm
cp

∗ (vcp > 0 → signal(s
vcp

push,False)) signal(s
vcp

push,False)

∗ (vcp > 0 ↔ Op = {[svcp

push]}) ∗ (vcp = 0 ↔ Op = ∅) Op = {[svcp

push]} ∗ . . .

let c :=[cp] in PR-Let & PR-ReadHeapLoc
[fifo10] := f ·(c :: nil); [cp] := c− 1 PR-AssignToHeap (2x)

{`fifo10 7→ vm
fifo10
·(vcp :: nil) ∗ `cp 7→ vcp − 1 ∗ . . .} PR-VS-Simp & VS-SetSignal

{obs({[svcp

push, mut]}) ∗ signal(s
vcp

push, True) ∗ . . .} PR-VS-Simp & VS-SemImp

{ (vcp − 1 = 0 ∨ vcp > 0) ∗ . . .} PR-VS-Simp & VS-Or

case: vcp − 1 = 0 PR-VS-Simp & VS-SemImpLast iteration, nothing left to do.
phase((Forkee)) ∗ ∃v′cp

, O′p. obs(O′p] {[mut]}) ∗ locked(mut, Pm,
1
2) ∗ vcp 6= 0

∗
(
size(vm

fifo10
) < 10 → L

no:mutex
no:obs
p (v′cp

, O′p) ∗ Pm ∗ itperm((), 1)
)

∗
(
size(vm

fifo10
) = 10 → L

no:mutex
no:obs
p (vcp , Op) ∗ P ′m(vm

fifo10
) ∗O′p = Op

)
 =

phase((Forkee))
∗ ∃v′cp

, O′p. obs(O′p] {[mut]})
∗ locked(mut, Pm,

1
2) ∗ PostIfp

For definition of PostIfp cf. Figure 24.

case: vcp − 1 > 0 PR-VS-Simp & VS-SigInitMust create signal for next iteration.
obs({[idvcp−1

push ,mut]}) ∗∗i=1,...,vcp−2
uninitSig(idipush)

∗ uninitSig(id
vcp−1

push) signal(s
vcp−1

push ,False) ∗ . . .

 PR-VS-Simp & VS-SemImp

{phase((Forkee)) ∗ ∃v′cp
, O′p. obs(O′p] {[mut]}) ∗ locked(mut, Pm,

1
2) ∗ PostIfp}

{phase((Forkee)) ∗ ∃v′cp
, O′p. obs(O′p] {[mut]}) ∗ locked(mut, Pm,

1
2) ∗ PostIfp}

. . . Continued in Figure 24.

Figure 25: Verification example bounded FIFO, producer thread’s production
step.

40

∀`fifo10 , `m, `cp , `cc , vcp , Op, v
m
fifo10

, v′cp
, O′p.

. . . Continuation of Figure 24.

For definition of Pm, P ′m(v), Llocked
p (n,O), L

no:mutex
no:obs
p (n,O), PostIfp

cf. Figures 21, 23 and 24.
{phase((Forkee)) ∗ obs(O′p] {[mut]}) ∗ locked(mut, Pm,

1
2) ∗ PostIfp}

release m
PR-Release allows view shift to happen after mutex mut
was released but before lock invariant Pm is consumed.

{phase((Forkee)) ∗ obs(O′p]{[mut]}) ∗ locked(mut, Pm,
1
2) ∗ PostIfp} PR-VS-Simp & VS-SemImp

{ (size(vm
fifo10

) < 10 ∨ size(vm
fifo10

) = 10) ∗ . . .} PR-VS-Simp & VS-Or

case: size(vm
fifo10

) < 10 Production step already performed, nothing left to do.

{ size(vm
fifo10

) < 10 ∗ phase((Forkee)) ∗ obs(O′p) ∗ PostIfp} PR-VS-Simp & VS-SemImp{
obs(O′p) ∗ Pm ∗ ∃τanc

p , δp. τ
anc
p v (Forkee) ∗ phase((Forkee))

∗L
no:mutex
no:obs
p (v′cp

, O′p) ∗ itperm(τanc
p , δp)

}
Define PostReleaseVSp such that:
= {obs(O′p) ∗ Pm ∗ PostReleaseVSp}

case: size(vm
fifo10

) = 10 No production step performed.
Must wait to generate permission.

{ size(vm
fifo10

) = 10 ∗ phase((Forkee)) ∗ obs(O′p) ∗ PostIfp} PR-VS-Simp & VS-SemImp PostIfp L
no:mutex
no:obs
p (vcp , Op) ∗ P ′m(vm

fifo10
) ∗O′p = Op = {[svcp

push]}

∗ obs({[svcp

push]}) ∗ vcp 6= 0 ∗ phase((Forkee))

 PR-Exists (2x)
& PR-VS-Simp & VS-SemImp

∀vm
cp
, vm

cc
.

∃vm
cp
. [1

2]`cp 7→ vcp ∗ [1
2]`cp 7→ vm

cp
∗ vcp = vm

cp
∗ vm

cc
= vcp + 10

∃vm
cc
. (vm

cc
> 0 → signal(s

vm
cc

pop,False)) signal(s
vm

cc
pop,False)

∗∗i=1,...,100
wperm((), idipop, 0) ∗ obs({[svcp

push]}) ∗ phase((Forkee)) ∗ . . .

 PR-VS-Simp & VS-Wait

lev(s
vm

cc
pop) = L

vm
cc

pop = L
vcp +10
pop = 102− (vcp + 10)

< 101− vcp = L
vcp

push = lev(s
vcp

push)

Justification for application
of VS-Wait.

{ itperm((Forkee), 0) ∗ . . .} PR-VS-Simp & VS-SemImp

{obs(O′p) ∗ Pm ∗ PostReleaseVSp}{
phase((Forkee))∗ obs(O′p) ∗PostIfp ∗ (size(vm

fifo10
) < 10 ∨ size(vm

fifo10
) = 10)

∗Pm ∗ PostReleaseVSp

}
Conclusion of VS-Or application.

{obs(O′p) ∗Pm ∗ PostReleaseVSp} Lock invariant Pm consumed by PR-Release. PR-VS-Simp & VS-SemImp{
∃τanc
p , δp. τ

anc
p v (Forkee) ∗ phase((Forkee))

∗ (v′cp
6= 0 → ∃vcp , Op. Lp(vcp , Op) ∗ vcp 6= 0 ∗ itperm(τanc

p , δp)) ∗ (v′cp
= 0 → obs(∅))

}
Reestablished loop invariant.

. . . Continued in Figure 24.

Figure 26: Verification example bounded FIFO, producer’s wait step.

41

Lc(n,Oc) := Loop invariant of consumer.
[1
2]`cc 7→ n ∗ 0 ≤ n ≤ 100 ∗ [1

2]mutex(mut, Pm)
∗ obs(Oc) ∗ (n > 0 ↔ Oc = {[snpop]}) ∗ (n = 0 ↔ Oc = ∅)

∗ ∗
1,...,n

itperm((), 1)

Iteration permissions consumed
by productive loop iterations, i.e.,
by iterations which decrease the
consumer counter cc.

∗ ∗
i=1,...,100

wperm((), idipush, 0)
Used to generate iteration permissions
to justify unproductive loop iterations.

∗ ∗
i=1,...,n−1

uninitSig(idipop)
Remaining allocated signal IDs used to
initialize new signal after next pop.

Llocked
c (n,Op) := Shorthand for invariant with

[1
2]`cc 7→ n ∗ 0 ≤ n ≤ 100 acquired mutex.

∗ [1
2]mutex(mut, Pm) locked(mut, Pm,

1
2) ∗ obs(Oc]{[mut]})

∗ (n > 0 ↔ Oc = {[snpop]}) ∗ (n = 0 ↔ Oc = ∅)
∗ ∗

1,...,n

itperm((), 1) ∗ ∗
i=1,...,100

wperm((), idipush, 0) ∗ ∗
i=1,...,n−1

uninitSig(idipop)

L
no:mutex
no:obs
c (n,Op) := ∃idnpop. Shorthand for invariant without

[1
2]`cc 7→ n ∗ 0 ≤ n ≤ 100 ∗ [1

2]mutex(mut, Pm) ∗ obs(Oc) mutex chunk and

∗ (n > 0 ↔ Oc = {[snpop]}) ∗ (n = 0 ↔ Oc = ∅) without obligations chunk.

∗ ∗
1,...,n

itperm((), 1) ∗ ∗
i=1,...,100

wperm((), idipush, 0) ∗ ∗
i=1,...,n−1

uninitSig(idipop)

Figure 27: Consumer’s loop invariant.

42

∀`fifo10 , `m, `cp , `cc .
. . . Continuation of Figure 22.
{phase((Forker)) ∗ ∃vcc , Oc. Lc(vcc , Oc) ∗ vcc 6= 0}
while (PR-While-Simp & PR-Exists (2x)For definition of consumer loop invariant Lp(n,O), lock invariant Pm

∀vcc , Oc. & PR-VS-Simp & VS-SemImpand variations cf. Figures 27 and 21.

{phase((Forker)) ∗ ∃vcp , Oc. Lc(vcc , Oc) ∗ vcc 6= 0 ∗ ∀o ∈ Oc. lev(o) = L
vcc
pop } Oc = {[svcc

pop]} ∨ Oc = ∅
lev(mut) = 0 < 102− vcc = L

vcc
pop Justification for application of:

acquire m PR-Acquire

{phase((Forker)) ∗ Lc(vcc , Oc) Llocked
c (vcc , Oc) ∗ Pm ∗ vcc 6= 0 ∗ ∀o ∈ Oc. lev(o) = . . . } PR-Exists

∀vm
fifo10

.

{ Pm P ′m(vm
fifo10

) ∗ . . .}
let f :=[fifo10] in PR-Let & PR-ReadHeapLoc
{phase((Forker)) ∗ Llocked

c (vcc , Oc) ∗ P ′m(vm
fifo10

) ∗ vcc 6= 0}
if size(f) > 0 then (PR-If

{ size(vm
fifo10

) > 0 ∗ phase((Forker)) ∗ Llocked
c (vcc , Oc) ∗ P ′m(vm

fifo10
) ∗ vcc 6= 0}

. . . 29 . . . Consumption step presented on Figure 29.

size(vm
fifo10

) > 0 ∗ phase((Forker)) ∗Llocked
c (vcc , Oc) ∗ P ′m(vm

fifo10
) ∗

∃v′cc
, O′c. obs(O′c] {[mut]}) ∗ locked(mut, Pm,

1
2) ∗ ∗ vcc 6= 0

∗
(
size(vm

fifo10
) > 0 → L

no:mutex
no:obs
c (v′cc

, O′c) ∗ Pm ∗ itperm((), 1)
)

∗
(
size(vm

fifo10
) = 0 → L

no:mutex
no:obs
c (vcc , Oc) ∗ P ′m(vm

fifo10
) ∗O′c = Oc

)

Define PostIfc such that:

=

 phase((Forker))
∗ ∃v′cc

, O′c. obs(O′c] {[mut]})
∗ locked(mut, Pm,

1
2) ∗ PostIfc

) else (

{ size(vm
fifo10

) = 0 ∗ phase((Forker)) ∗ Llocked
c (vcc , Oc) ∗ P ′m(vm

fifo10
) ∗ vcc 6= 0} PR-VS-Simp & VS-SemImp size(vm

fifo10
) = 0 ∗ phase((Forker)) ∗Llocked

c (vcc , Oc) ∗ P ′m(vm
fifo10

) ∗

vcc 6= 0 ∃v′cc
, O′c. obs(O′c] {[mut]}) ∗ locked(mut, Pm,

1
2) ∗ PostIfc

); phase((Forker)) ∗ Llocked

c (vcc , Oc) ∗ P ′m(vm
fifo10

) ∗ vcc 6= 0

∃v′cc
, O′c. obs(O′c] {[mut]}) ∗ locked(mut, Pm,

1
2) ∗ PostIfc

 PR-Exists (2x)

∀v′cc
, O′c.

release m;
Wait step presented on Figure 30, i.e., view shift performed
after releasing mut but before consuming Pm.

PR-Release & PR-Exists (2x)

∀τanc
c , δc.

let c :=[cc] in c 6= 0
PR-Let & PR-ReadHeapLoc
& PR-Exp{

τanc
c v (Forker) ∗ phase((Forker))
∗ (v′cc

6= 0 → ∃vcp , Oc. Lc(vcc , Oc) ∗ vcc 6= 0 ∗ itperm(τanc
c , δc)) ∗ (v′cc

= 0 → obs(∅))

}
Reestablished loop invariant.

) do skip

{phase((Forker)) ∗ ∃vcp . Lc(vcp) ∗ vcc 6= 0 obs(∅) }
. . . Continued in Figure 22.

Figure 28: Verification example bounded FIFO, consumer loop.

43

∀`fifo10 , `m, `cp , `cc , vcc , Oc, v
m
fifo10

.
. . . Continuation of Figure 28.

For definition of Pm, P ′m(v), Llocked
c (n,O) and L

no:mutex
no:obs
c (n,O) cf. Figures 21 and 27.

{size(vm
fifo10

) > 0 ∗ phase((Forker)) ∗ Llocked
c (vcc , Oc) ∗ P ′m(vm

fifo10
) ∗ vcc 6= 0} PR-Exists

∀vm
cc
. PR-VS-Simp & VS-SemImp

[1
2]`cc 7→ vcc ∗ [1

2]`cc 7→ vm
cc

`cc 7→ vcc ∗ vcc = vm
cc

∗ (vm
cc
> 0 → signal(s

vm
cc

pop,False)) signal(s
vcc
pop,False)

∗ (vcc > 0 ↔ Oc = {[svcc
pop]}) ∗ (vcc = 0 ↔ Oc = ∅) Oc = {[svcc

pop]} ∗ . . .

let c :=[cc] in PR-Let & PR-ReadHeapLoc
[fifo10] := tail(f); [cc] := c− 1 PR-AssignToHeap (2x)

{`fifo10 7→ tail(vm
fifo10

) ∗ `cc 7→ vcc − 1 ∗ . . .} PR-VS-Simp & VS-SetSignal

{obs({[svcc
pop, mut]}) ∗ signal(s

vcc
pop, True) ∗ . . .} PR-VS-Simp & VS-SemImp

{ (vcc − 1 = 0 ∨ vcc > 0) ∗ . . .} PR-VS-Simp & VS-Or

case: vcc − 1 = 0 PR-VS-Simp & VS-SemImpLast iteration, nothing left to do.
phase((Forker)) ∗ ∃v′cp

, O′c. obs(O′c] {[mut]}) ∗ locked(mut, Pm,
1
2) ∗ vcc 6= 0

∗
(
size(vm

fifo10
) > 0 → L

no:mutex
no:obs
c (v′cp

, O′c) ∗ Pm ∗ itperm((), 1)
)

∗
(
size(vm

fifo10
) = 0 → L

no:mutex
no:obs
c (vcc , Oc) ∗ P ′m(vm

fifo10
) ∗O′c = Oc

)
 =

 phase((Forker))
∗ ∃v′cc

, O′c. obs(O′c] {[mut]})
∗ locked(mut, Pm,

1
2) ∗ PostIfc

For definition of PostIfc cf. Figure 28.

case: vcc − 1 > 0 PR-VS-Simp & VS-SigInitMust create signal for next iteration. obs({[idvcc−1
pop ,mut]}) ∗∗i=1,...,vcc−1

uninitSig(idipop)

∗ uninitSig(idvcc−1
pop) signal(s

vcc−1
pop ,False) ∗ . . .

 PR-VS-Simp & VS-SemImp

{phase((Forker)) ∗ ∃v′cc
, O′c. obs(O′c] {[mut]}) ∗ locked(mut, Pm,

1
2) ∗ PostIfc}

{phase((Forker)) ∗ ∃v′cc
, O′c. obs(O′c] {[mut]}) ∗ locked(mut, Pm,

1
2) ∗ PostIfc}

. . . Continued in Figure 28.

Figure 29: Verification example bounded FIFO, consumer thread’s consumption
step.

44

∀`fifo10 , `m, `cc , `cc , vcc , Oc, v
m
fifo10

, v′cc
, O′c.

. . . Continuation of Figure 28.

For definition of Pm, P ′m(v), Llocked
c (n,O), L

no:mutex
no:obs
c (n,O), PostIfc

cf. Figures 21, 27 and 28.
{phase((Forker)) ∗ obs(O′c] {[mut]}) ∗ locked(mut, Pm,

1
2) ∗ PostIfc}

release m
PR-Release allows view shift to happen after mutex mut
was released but before lock invariant Pm is consumed.

{phase((Forker)) ∗ obs(O′c]{[mut]}) ∗ locked(mut, Pm,
1
2) ∗ PostIfc} PR-VS-Simp & VS-SemImp

{ (size(vm
fifo10

) > 0 ∨ size(vm
fifo10

) = 0) ∗ . . .} PR-VS-Simp & VS-Or

case: size(vm
fifo10

) > 0 Consumption step already performed, nothing left to do.

{ size(vm
fifo10

) > 0 ∗ phase((Forker)) ∗ obs(O′c) ∗ PostIfc} PR-VS-Simp & VS-SemImp{
obs(O′c) ∗ Pm ∗ ∃τanc

c , δc. τ
anc
c v (Forker) ∗ phase((Forker))

∗L
no:mutex
no:obs
c (v′cc

, O′c) ∗ itperm((), 1)

}
Define PostReleaseVSc such that:
= {obs(O′c) ∗ Pm ∗ PostReleaseVSc}

case: size(vm
fifo10

) = 0 No production step performed.
Must wait to generate permission.

{ size(vm
fifo10

) = 0 ∗ phase((Forker)) ∗ obs(O′c) ∗ PostIfc} PR-VS-Simp & VS-SemImp PostIfc L
no:mutex
no:obs
c (vcc , Oc) ∗ P ′m(vm

fifo10
) ∗O′c = Oc = {[svcp

pop]}

∗ obs({[svcp
pop]}) ∗ vcc 6= 0 ∗ phase((Forker))

 PR-Exists (2x)
& PR-VS-Simp & VS-SemImp

∀vm
cc
, vm

cp
.

∃vm
cc
, vm

cp
. [1

2]`cc 7→ vcc ∗ [1
2]`cc 7→ vm

cc
∗ vcc = vm

cc
∗ vcc = vm

cp
+ 0

(vm
cp
> 0 → signal(s

vm
cp

push,False)) signal(s
vm

cp

push,False)

∗∗i=1,...,100
wperm((), idipush, 0) ∗ obs({[svcc

pop]}) ∗ phase((Forker)) ∗ . . .

 PR-VS-Simp & VS-Wait

lev(s
vm

cp

push) = L
vm

cp

push = L
vcc

push = 101− vcc < 102− vcc = L
vcc
pop = lev(s

vcc
pop)

Justification for application
of VS-Wait.

{ itperm((Forker), 0) ∗ . . .} PR-VS-Simp & VS-SemImp

{obs(O′c) ∗ Pm ∗ PostReleaseVSc}{
phase((Forker))∗ obs(O′c) ∗PostIfc ∗ (size(vm

fifo10
) < 10 ∨ size(vm

fifo10
) = 10)

∗Pm ∗ PostReleaseVSc

}
Conclusion of VS-Or application.

{obs(O′c) ∗Pm ∗ PostReleaseVSc} Lock invariant Pm consumed by PR-Release. PR-VS-Simp & VS-SemImp{
∃τanc
c , δc. τ

anc
c v (Forker) ∗ phase((Forker))

∗ (v′cc
6= 0 → ∃vcc , Oc. Lc(vcc , Oc) ∗ vcc 6= 0 ∗ itperm(τanc

c , δc)) ∗ (v′cc
= 0 → obs(∅))

}
Reestablished loop invariant.

. . . Continued in Figure 28.

Figure 30: Verification example bounded FIFO, consumer’s wait step.

45

	Universe
	General
	Syntax
	Example
	Resources
	Semantics
	Assertions
	Proof Rules
	Annotated Semantics
	Hoare Triple Model Relation
	Soundness
	Verification Example
	Minimal Example
	Bounded FIFO

