Ghost Signals: Verifying Termination of
Busy Waiting
(Technical Report)
Tobias Reinhard and Bart Jacobs

imec-DistriNet Research Group, KU Leuven, Belgium
{tobias.reinhard,bart.jacobs}@kuleuven.be

May 20, 2021

Abstract

In this work we propose a separation logic to verify termination of
busy-waiting for arbitrary events through so-called ghost signals.

Contents

i

(L0 Hoare Triple Model Relation|

|

12

16

22

24

112 Verification Example| 32
[12.1 Minimal Example[. oo o000 o000 32

List of Figures

................................ 5
12 Example Program.| o000 5
13 single thread reduction rules.| 000 8
|4 Thread pool reduction rules.|. 9
O Assertion syntax.o Lo 10
6 Assertion model relation) L. 12
ird View shift rules]o 13
8 Proofrules (part 1).| oL 14
9 Proofrules (part 2).| oL 15
[I0 Derived proofrule] 15
11 Annotated single thread reduction rules (part 1) 17
12 Annotated single thread reduction rules (part 2). | 18
13 Ghost thread pool reduction rules (part 1) 19
14 Ghost thread pool reduction rules (part 2)|. 20
[I5 Non-ghost thread pool reduction rules) 20
16 Verification example (main thread).| 33
17 Verification example (busy-waiting thread).| 34
[I8 Fine-grained view shift rules for signal creation.. 35
119 Producer-consumer program with bounded FIFO.. 35
[20__ Verification example bounded FIFO,| 36
RPTTockinvariantl. 37
122 Verification example bounded FIFO, tforking & outer loop of pro- |
Cducer] . . . 37
23 Producer’s loop invariant.| 00000 38
[24 _ Verification example bounded FIFO, producer loop.| 39
[P5 Verification example bounded FIFO, producer thread's produc- |
| tlon step.| oL 40
126 Verification example bounded FIFO, producer’s wait step.| 41
27 Consumer’s loop invariant.|. 42
28 Verification example bounded FIFO, consumer loop.| 43
29 Verification example bounded FIFO, consumer thread’s consump- |
tion step.| L. 44

[30 Verification example bounded FIFO, consumer’s wait step]. . . . 45

1 Universe

Throughout this work we assume the existence of the following sets:

e X: An infinite set of program variables.

Locs: An infinite set of heap locations.

Locs®: An infinite set of ghost locations.

Levs, < : An infinite, well-founded partially ordered set of levels.

A, <a: An infinite, well-founded partially ordered set of degrees.

e 7D: An infinite set of IDs.

O: An infinite, totally ordered and well-founded set of thread IDs.

Values: A set of values which includes:

— A unit value tt € Values
— Booleans B = {True, False} C Values

— Heap locations Locs C Values
o Values®: A set of ghost values.

e Ops: A set of operations (i.e. partial functions) on values.

We denote program variables by x, heap locations by ¢, ghost locations by Z,
levels by L, degrees by 4, IDs by id, thread IDs by 6, values by v, ghost values
by v, boolean by b and operations by op.

2 General

Definition 2.1 (Projections). For any Cartesian product C = [];.; A; and any
index k € I, we denote the k' projection by 7< : [Lic; Ai = Ax. We define

ﬂg((ai)ig) = ak.
In case the domain C is clear from the context, we write m instead of 71',?,

In the following we define our notion of bags, in the literature also referred
to as multisets.

Definition 2.2 (Bags). For any set X we define the set of bags Bags(X) and
the set of finite bags Bagsg,(X) over X as

Bags(X) = X =N,
Bagsg,(X) = {B € Bags(X) | {x € B| B(x) > 0} finite}.

We define union and subtraction of bags as

(B W Bs)(x)
(B1\ Ba)()

Bi(z) + Ba(x),
max(0, By(z) — Ba(x)).

For finite bags where the domain is clear from the context, we define the following
set-like notation:

0 = =z
) - {

t_U).

0,

@HI

= 1
— 0 fory#u,

{z1,..., 2}

We define the following set-like notations for element and subset relationship:

x€B < B(z) >0,
B1C B, & Ve B. Bl(a:) < Bg(ﬂ?),
BiCB <« Hchlc#w/\Blng\C

For any bag B € Bags(X) and predicate P C X we define the following refine-

ment: B i P
{reB| Px)} = { i : 0) Zo];hegffgijse.

Definition 2.3 (Disjoint Union). Let A, B be sets. We define their disjoint
union as

AUB:=AUB
if AN B =0 and leave it undefined otherwise.

3 Syntax

Definition 3.1. We define the sets of commands Cmds and expressions Exps
according to the syntax presented in Figure [1]
We define c ; ¢’ as shorthand for let z:=c in ¢’ where x does not occur free

in ¢’ but let -;- bind stronger. Further, we define ¢ # €' as abbreviation for
—(e=¢).
4 Example

Figure [2] presents the example program we plan to verify. For this example we
let Values include natural numbers.
5 Resources

In this section we define physical resources. We will use the physical resources
to define the semantics of our programming language.

v € Values =€ X ope€ Ops

e€Exps == x| v | e=e | e | op(e

c€ COmds := whilecdoskip | fork ¢ |
let x:=cinc | if c then ¢ |
cons(e) | [e] | [e]:=e |

new_mutex | acquire e | release e |
e |

consumeltPerm intermediate representation

Figure 1: Syntax.

let x := cons(0) in

let m := new_mutex in

fork (while (acquire m;
lety ;= [x] in
release m;
y=0)

do skip);

acquire m;

X :=1;

release m

Figure 2: Example Program.

Definition 5.1 (Physical Resources). We define the set of physical resources
RPN syntactically as follows:

P € RPYS = (v | unlockedpres(f) | lockedpres(f)
€ Locs v € Values
Definition 5.2 (Physical Heaps). We define the set of physical heaps as
HeapsP™® = Pg,(RPY®)

and the function locspRres : Heaps®™* — Piin (Locs) mapping physical heaps to the
sets of allocated heap locations as

locspres(h) = {€ € Locs | unlockedpres(f) € h V lockedyres(¢) € b V
Jv € Values. £ — v € h}

We denote physical heaps by h.

6 Semantics

Definition 6.1 (Evaluation of Closed Expressions). We define a partial evalu-
ation function [-] : Ezps — Values on expressions by recursion on the structure
of expressions as follows:

[v] = if v € Values

[e=¢€] = True if [e]=1[e]#L

[e=¢€] := False if [e] #[e'] N [e] #L A [e] #L
[—e] := False if [e] = True

[—e] := True if [e] = False

le] = 1 otherwise

We identify closed expressions e with their ascribed value [e].

Definition 6.2 (Evaluation Context). We define the set of evaluation contexts
EvalCtxts as follows:

E € EvalCtzts == if Othenc | let z:=01in ¢
ceCmds zekX
For any ¢ € Cmds and E € EvalCtzts, we define E[c] := E[c/O].
Note that for every ¢ € Cmds, E € EvalCtzts, we have E[c] € Cmds.

Definition 6.3 (Single Thread Reduction Relation). We define a reduction
relation ~~¢ for single threads according to the rules presented in Figure [A
reduction step has the form

h,c~g b, ¢, T

for a set of forked threads T C Cmds with |T| < 1.
For simplicity of notation, we omit T if it is clear from the context that no
thread is forked and T = (.

Note that we do not provide a reduction rule for consumeltPerm, since
we only use it as an intermediate representation for the annotated reduction
relation presented in Section [9}

Definition 6.4 (Thread Pools). We define the set of thread pools TP as the set
of finite partial functions mapping thread IDs to threads:

TP = © —g, (Cmds U {term}).

The symbol term represents a terminated thread. We denote thread pools by P,
thread IDs by 6 and the empty thread pool by Oy, i.e.,

Dep : © —fin (Cmds U {term}),

dom((y,) = 0.
We define the operation 4+, : TP x {C' C Cmds | |C| < 1} — TP as follows:
P—l—tp@ = P7
P+wp{ct = Pllnew :=c] for 0Opey:=min(O© \ dom(P)).

Definition 6.5 (Thread Pool Reduction Relation). We define a thread pool
reduction relation ~+, according to the rules presented in Figure . A reduction
step has the form

h,P Y, b, P,

Definition 6.6 (Reduction Sequence). Let (h;)ien and (P;)ien be infinite se-
quences of physical heaps and thread pools, respectively.

We call (hi, P;)ien @ reduction sequence if there exists a sequence of thread
IDs (6;)ien such that

0;
hi, P ~tp hi+1,Pi+1
holds for every i € N.
Definition 6.7 (Fairness). We call a reduction sequence (h;, P;);en fair iff for

all i € N and 6 € dom(P;) with P;(0) # term there exists some k > i with

0
hig, P ~tp M1, Pryr.

7 Assertions

Definition 7.1 (Fractions). We define the set of fractions as

F o= {feQ | o0o<f<1}

Definition 7.2 (Thread Phase IDs). We define the set of thread phase literals
as

T := {Forker, Forkee}.

We call a finite sequence of thread phase literals a phase ID and denote it by
T €T*. We write 11 C o to express that 11 is a (non-strict) prefix of 2.

T- -E
S }}l{ ECDW Z%L/CCT/X% ST-RED-FORK
b S))

h, fork ¢~ b tt,
h, B[~ I, E[¢],T fork ¢ v Dyt {c}

(a) Basic Constructs.
ST-RED-WHILE
h, while ¢ do skip ~~¢ h,if ¢ then while ¢ do skip

ST-RED-IFTRUE

ST-RED-IFFALSE
h,if True then c ~~4 h,c

h,if False then c ~»¢ h,tt

ST-RED-LET
h,let z:=v in ¢ ~4 h, c[v/z]

(b) Control Structures.

ST-RED-CONS ST-RED-READHEAPLOC
£ & locspres(h) l—veh
h,cons(v) ~g h U {l — v}, ¢ h, [€] ~>et hyv

ST-RED-ASSIGN
hU{l— v} [l i=v ~g hU{l— v}, tt

(c) Heap Access.

ST-RED-NEWMUTEX
£ & locspres(h)
h,new_mutex ~+¢ h U {unlockedpres(¢)}, £

ST-RED-ACQUIRE
h U {unlockedpres()}, acquire £ ~» h L {lockedyres(£)}, tt

ST-RED-RELEASE
h U {lockedpres(€) }, release £ ~»¢ h U {unlockedpres(£)}, tt

(d) Mutexes.

Figure 3: Single thread reduction rules.

TP-RED-LIFT TP-RED-TERM
PO)=c hycwgh,d,T PO)=v

h, P weetp B, PO =+, T h, P ~9~>tp h, P[0 := term]

Figure 4: Thread pool reduction rules.

Definition 7.3. We define the sets of ghost signals S, obligations O, wait
permission {2 and iteration permissions A as follows:

S = ID x Lewvs,

O = (LocsUID) x Levs,
Q = T*xIDxA,

A = T"xA

We denote ghost signals by s, obligations by o, and bags of obligations by O.
For convenience of notation we define the selector function:

(id,L).id = L.

Definition 7.4 (Assertions). We define the set of assertions A according to the
syntax presented in Figure @E Further, we define implication and equivalence
as the usual abbreviations:

a; —ag = —aiVag,
ay < ay = (a1 — a2) A (a2 — ay).

Let (a(i))ier be a family of assertions indexed by some set I. We define quan-
tification over I as the following abbreviations:

Fel al@) = V{a@@)|iel},
Viel. a(i) := -—3iel —a(i).

We omit the index set I when its choice becomes clear from the context and
write 3i.a(i) and Vi.a(i) instead of 3i € I.a(i) and Vi € I.a(i), respectively.

Definition 7.5 (Logical Resources). We define the set of logical resources R'°8
syntactically as follows:

MeRPe = (v | LD | signalpe((id,L),b) |
uninitiges(¢) | mutexires((¢, L),a) | lockedres((¢, L), a, f) |
phaseIRes(T) | ObS|RE‘S(O) | WpermlRes(T7id76) |
itpermge (T, 9)

IThat is, we define A as the least fixpoint of F' where F(A) = {True,False} U {-a | a €
A}U{a1Naz | a1,a2 € A}U---U{\ A’ | A’ C A}U.... Since F is a monotonic function over a
complete lattice, it has a least fixpoint according to the Knaster-Tarski theorem |Tarski(1955)].

a€A = True | False | —a |
ahNa | aVa | axa | [fil—v | [fll—7 |
VA
[f]uninit(€) |
[fImutex((¢,L),a) | [fllocked((¢,L),a,f) |
[f]signal((id, L), b) |
phase(T) | obs(O) | wperm(r,id,d) | itperm(r,0)

feF wve Values v e Values® ¢ € Locs 1 € Locs®
LeLevs ideTID beB={TrueFalse} J€A

ACA Oe€ Bags(O) T7e€T*

Figure 5: Assertion syntax.

Further, we define the functions getHLocsges : R'°® — Locs and getGLocsge
R%¢ — Psn(Locs®) mapping logical resources to their respective (either empty
or singleton) set of involved heap locations and ghost locations, respectively, as

getHLocsge (£ — v) = {{},
getHLocs|ges (uninitires(¢) {¢},
getHLocs|ges (mutexires((4, L), a)) {¢},
((4
(—

getHLocs g (lockedires((¢, L), a, f)) {3,

getHLocsgeo () = (0 otherwise,
getGLocspes (£ — 1) = {0,
getGLocsges (—) = 0 otherwise.

Definition 7.6 (Mutexes). We define the set of mutexes as M := Locs X Levs
and denote mutexes by m. For convenience of notation we define the selector
Sfunction

(¢,L).loc := /.

Definition 7.7 (Logical Heaps). We define the set of logical heaps as
Heaps'® = R - {qeQ]|q¢>0}.
We define the empty logical heap Diog as the constant zero function
Dog : 7'+ 0.

We denote logical heaps by H, point-wise addition by + and multiplication with
non-negative rationals by -, i.e.,

(Hi + Ho)(r') = Hi(r") + Ha(r),
(q-H)(r) = q-(H(")

10

for ¢ € Q with g > 0. For convenience of notation we represent logical heaps
containing finitely many resources by sets of resources and define left-associative
functions 4+, —n : Heaps'®® — R8¢ —s Heaps'°® as follows

..} = { ool

H1> |7 n H[xl '?[(0|)Zf'§]¢ {Tll,...,’l"!n},
+h T = ri=H(r)+ 1],

H —:: 7 = H[r':=max(0, H(r') — 1)].

We give - a higher precedence than +, +n and —,.
Further, we define the function getGLocsy, : Heaps'*® — P(Locs®) mapping
logical heaps to their respective set of allocated ghost locations as

getGlocsy, (H) := U getGLocsge, ().

rler'es
H(r')>0

We call a logical heap H complete and write completey, (H) if it contains ex-
actly one obligations chunk and exactly one phase chunk, i.e., if there exist a bag
of obligations O and a phase ID T with H(0bsires(O)) = 1 and H(phase|res(T)) =
1 and if there do not exist any bag of obligations O' nor any phase ID 7' with
(1) O # O" and H(obsires(0')) > 0 or with (ii) T # 7 and H(phase|ge(7')) > 0.

We call a logical heap H finite and write finitey, (H) if it contains only finitely
many resources, i.e., if the set {r' € R1°6 | H(r') > 0} is finite.

We call a logical heap H consistent and write consistenty,(H) if (i) it contains
only full phase, obligations, wait and iteration permission chunks, i.e., if

H(phaseIRes(T)) € N>
H(ObS|ReS(O) S N,
H(wpermges(7,id,0)) € N,
H (itpermyge (7, 9)) € N

holds for all T € T*, O € Bags(O), id € ID and § € A and if (i) heap locations
and ghost locations are unique in H, i.e., if there are no r\,ry € R'°® with
vy #rh, H(r)) >0, H(rh) > 0 and with getHLocsge (1)) N getHLocs|pes (7h) # 0
or getGLocsge (1)) N getGLocs|pes () # 0.

To simplify the specification of logical heaps containing only a single obliga-
tions chunk with certain properties, we introduce the abbreviation

(H.obs=0) := (completey, (H) A H(obsres(O)) =1).

Definition 7.8 (Assertion Model Relation). We define a model relation Ep C
Heaps'®® x A for assertions by recursion on the structure of assertions according
to the rules presented in Figure[6, We write H Fa a to express that logical heap
H models assertion a and H #p a to express that H Fp a does not hold.

11

H Ep True
H Ha False
H ':A —a
HEA a1 Nas
H ':A aq vV as
HEA a1 *xas

HEp[fll— v
HEp[f]l—7
HEs VA

H Ep [f]uninit(¢)
H Ep [f]mutex(m,
H Ep [f]locked(m,

H Ep [flsignal(s, b)

H Ep phase(r)
H Ep obs(0)

H =5 wperm(T,id, 0)

H Ep itperm(T, 9)

if
if
if
if

H E[A a
HEjrar N HFEpas
HEprar V HFEpas
JH,, H, € Heaps'®.
H=H +H A
H EFaar N H FEpag
H{l—v)>f
H((—70) > f
Jda€ A. HEpa
uninitires(¢)) >
mutexres(
1ocked|Res(
SlgnallRes s b)) > f
1

H(

(

(

((
(phaselRes(

()
(

(

m
m

ObSIRes(
Wpermyges (7, id,
ltperInIRes(,5)) =1

EEEEEEE

Figure 6: Assertion model relation.

8 Proof Rules

Definition 8.1 (Level Ascriptions).

— 1))
We define a view shift relation = C A x A

Levs — Levs as

Definition 8.2 (View Shift).

We define a function lev :

= L.

according to the rules presented in Figure [T}

Definition 8.3 (Proof Relation).

We define a proof relation - C A x Cmds x

(Values — A) according to the rules presented in Figures@ and B

Note that our proof rules do not allow us to reason about the command
consumeltPerm, since we only use it as an intermediate representation during

reduction.

Lemma 8.4. We can derive the proof rule presented in Figure [I0

Proof. Trivial.

12

(ID U Locs) x

VS-SEMImMP VS-TRANS

VH. consistent,(H) N HEpa A= HEA B A= C C=1B
A= B A= B
VS-Or
A= B A= B
AiVA, = B

VS-NEWSIGNAL
L € Levs

obs(0) = Jid. obs(O W {(id, L)}}) * signal((id, L), False)

VS-SETSIGNAL
obs(O W {s}) « signal(s, —) = obs(O) * signal(s, True)

VS-WAITPERM
5 <ad

itperm(7’,6) = wperm(7’,id, ')

VS-Wart
Tanc T T Vo € O. lev(s) < lev(o)

phase(7) * obs(O) x wperm(Tanc, s.id, &) * signal(s, b)

= phase(7) * obs(O) * wperm(Tanc, s.id, §) * signal(s, b) * (—b <> itperm(r,d))

VS-SPECITPERM VS-SPECWAITPERM
Tanc & T Tanc & T
itperm(Tanc, 9) = itperm(7, J) wperm(Tanc, id, §) = wperm(, id, J)
VS-WEAKPERM VS-MurtINIT
3 <ad N eN L € Levs
itperm(7’,) = >l< itperm(7’,8") uninit(¢) * P = mutex((¢, L), P)
1,...,N
VS-NEWGCELL VS-SETGCELL
True= 3. 0= (=720 —7

Figure 7: View shift rules.

13

PR-FRAME
-{A} c{B}

I—{A*F}C{B*F}

PR-VIEWSHIFT
A= A'Aphase(r) F{A} c{B} V7' (B Aphase(r)ATC 7 5 B)

-{A} e {B}
PR-VS-Sivp PR-Exp
A= A F{A'} ¢ {B'} B' =B le] € Values
-{A} ¢ {B} F{True} e {\r.r = [e]}
PR-EXISTS
Va € A. {a} c {B}
~{V A} e {B}

PR-FORK
I {phase(7.Forkee) * obs(Oy) * A} ¢ {obs(0)}

- {phase(7) * obs(O,, W Of) * A} fork ¢ {\r. phase(r.Forker) * obs(Oy,) * r = tt}

(a) Basic proof rules.

PR-Ir
F{A} ¢ {\b.C(b) A (b= True v b= False) }
-{C(True)} ¢; {B} C(False) = B

+{A} if ¢, then ¢; {B}

PR-WHILE

/ ! !
37, Tanc- Tane T T3¢ * phase(7y;)

* (b = True V b = False)
Vi T E e = {phase(ri) < 1) } &0 4 A0 itperm (e,) % 1(7)

*(=b — B(ry,))

I {phase(7) * I(7)} while ¢, do skip {37'. 7 C 7/ % phase(7') * B(7') }

PR-LET
F{A} c{n.C(r)} vo. F{C(v)} d[v/x] {B}
H {A} let z:=cin ¢ {B}

(b) Control structures.

Figure 8: Proof rules (part 1).

14

PR-ACQUIRE
m.lev <. O
{obs(O) * [f]mutex(m, P)}
F acquire m.loc
{Ar. r = tt x obs(O & {ml]}) * locked(m, P, f) x P}

PR-RELEASE
obs(O) x A = obs(O) x P x B
{obs(O W {m}) locked(m, P, f) x A}
F release m.loc
{\r. r = tt x obs(O) * [f]mutex(m, P) * B}

PR-NEWMUTEX
- {True} new_mutex {\l. uninit(¢)}

(a) Mutexes.

PR-Cons PR-READHEAPLOC
F{True} cons(v) {\.0+s v} F{fle = v} [{rr=vx[flt v}

PR-AssSIGNTOHEAP
F{t— _} [i=v { M =ttxl v}

(b) Heap access.

Figure 9: Proof rules (part 2).

PR-WHILE-SIMP
Tanc & T F {phase(7) * A} ¢, {\b. phase(7) * (b — itperm(Tanc,d) * A) x (b — B)}

I {phase(r) * A} while ¢, do skip {phase(r) * B}

Figure 10: Derived proof rule.

15

9 Annotated Semantics

Definition 9.1 (Annotated Resources). We define the set of annotated re-
sources AnnoRes as follows:

r? € AnnoRes == {r— v | uninitsres(f) |
unlockedares((¢, L), a, H) | lockedares((¢, L), a, f) |
signal g.((id, L), b)

aRes

Definition 9.2 (Annotated Heaps). We define the set of annotated heaps as

Heaps®™™* = Pgn(AnnoRes),

annot

the function locsyy : Heaps — Prin(Locs) mapping annotated heaps to the
sets of allocated heap locations as

locsan(h®) = {€ € Locs | Fv € Values. AL € Levs. Ja € A.
JH € Heaps'®. 3f € F.
{— v €h® V uninityres(f) € 2 V
unlockedares((¢, L), a, H) € h® V
lockedares((4, L), a, f) € h?}

and the function idsy, : Heaps®™™*

of allocated signal IDs as

— P5in(ZD) mapping annotated heaps to sets

idsah(R?) = {ide€ID | 3L € Levs. 3b € B. signal g ((id, L),b) € h®}.

aRes

We denote annotated heaps by h?.
We call an annotated heap h? finite and write finitesn(h?) if there exists no
chunk unlockedares((¢, L), a, H) € h® for which finite,(H) does not hold.

Definition 9.3 (Annotated Single Thread Reduction Relation). We define a
reduction relation ~», for annotated threads according to the rules presented in
Figures[I1] and[I3 A reduction step has the form

a a’ o a
h’ 7H70Wasth ,H,C,T

for a set of annotated forked threads T® C Heaps'®® x Cmds with |72 < 1.

It indicates that given annotated heap h® and a logical heap H, command
¢ can be reduced to annotated heap h?', logical heap H' and command ¢’. The
either empty or singleton set T? represents whether a new thread is forked in
this step.

For simplicity of notation we omit T? if it is clear from the context that no
thread is forked and T° = ().

Definition 9.4 (Annotated Thread Pools). We define the set of annotated
thread pools TP? as the set of finite partial functions mapping thread IDs to
annotated threads:

TP? = © —y, Heaps'® x (Cmds U {term}).

16

AST-RED-EvALCTXT
haa H, C ~ast ha/’ Hla Cla T

h?, H, E[c] ~. h*', H',E[],T

AST-RED-FORK
h?, Hy, + {phaseges(7), 0bsires(On W Of) } + Hy, fork ¢ ~ 55
h?, Hy, + {phase|g(T.Forker), obsires(Om) }, tt, { ({ phase ges(T.Forkee), obsires(Of) } + Hy), ¢)}

(a) Basic constructs.

AST-RED-WHILE
h?, H,while ¢ do skip ~,s h?, H,if ¢ then (consumeltPerm; while ¢ do skip)

AST-RED-IFTRUE AST-RED-IFFALSE
h?, H,if True then ¢ ~. h?, H,c h?, H,if False then ¢ ~. h?, H, tt

AST-RED-LET
h?, H let x:=v in ¢ ~, h?, H, c[v/x]
(b) Control structures.

AST-RED-CONSUMEITPERM
H(phaselRes<T)) > 1 Tanc £ T

h?, H + {itpermge(Tanc, 9) }, consumeltPerm ~,¢ h?, H, tt

(c) Intermediate representation.

AST-RED-CONS AST-RED-READHEAPLOC
£ & locsan (h?) {—veh?

h?, H,cons(v) ~at P U{l — v}, H+{{ — v}, L h?, H, [f] ~ast B?, H,v

AST-RED-ASSIGN
hu{l v}, H+{l— v}, [l] =0~ hU{L =V}, H+ {00}t

(d) Heap access.

Figure 11: Annotated single thread reduction rules (part 1).

17

AST-RED-NEWMUTEX
£ & locsan(h?)

h?, H, new_mutex ~>,5 h* U {uninitares(¢) }, H + {uninitires(¢)}, ¢

AST-RED-ACQUIRE
feF m.lev < O

h? U {unlockedares(m, a, Hp)}, H + {obsires(O)} + f - {mutexiges(m, P)},

acquire m.loc

~ast h? U {lockedapres(m, P, f)}, H + {0obsires(O W {m}]}), lockedres(m, P, f)} + Hp,
tt

AST-RED-RELEASE
Hp Ep P consistent, (Hp)

JO. H(obsires(0)) > 1 7. H(phasege (7)) > 1
h? U {lockedares(m, P, f)}, H + {obsires(O W {m}}), lockedires(m, P, f)} + Hp,
release m.loc
~ast h? U {unlocked,res(m, P, Hp)}, H + {0bsires(O)} + f - {mutexiges(m, P)},
tt

(a) Mutexes.

Figure 12: Annotated single thread reduction rules (part 2).

We denote annotated thread pools by P? and the empty thread pool by Dap, i-e.,

Datp * © —fin Heaps'*® x (Cmds U {term}),
dom((,ep) = 0.

We define the modification operations +atp and —atp analogously to +, and —p,
respectively, cf. Definition [6.4)
For convenience of notation we define selector functions for annotated threads

as
(H,c).heap := H,
(H,c).emd = c.

Definition 9.5 (Ghost Reduction Relation). We define a thread pool reduction
relation ~ghost according to the rules presented in Figures and to express
ghost steps. A ghost reduction step has the form

ha7Pa &ghost ha/7Pa/_

We denote its reflexive transitive closure by ~=ghost-

Definition 9.6 (Non-ghost Thread Pool Reduction Relation). We define a
thread pool reduction relation ~~ea according to the rules presented in Figure[I5]

18

GTP-RED-NEWSIGNAL
P3(0) = (H + {obsjres(O)}, ¢) id & idsan(h?)
H' = H + {signaljg((id, L), False), obsires(O & {id, L]})}

h?, P s gose B2 U {signal g ((id, L), False)}, P?[0 = (H',)]

GTP-RED-SETSIGNAL
P2(0) = (H + {signalge(s, False), obsires(O W {s]})}, ¢)
H' = H + {signalge(s, False), obsires(O)}

h? U {signal g (s, False)}, P? vgeghost h? U {signal, e (s, True)}, P[0 := (H', c)]

GTP-RED-WAITPERM
8 <ad P?(0) = (H + {itpermge(7',9)}, ¢)

ha’ pe $ghost hav p? [0 = (H + {WpermlRes(T/aidv 5/)}7 C)]

GTP-RED-WAIT
signal g (s, False) € h? P3(0) = (H,c¢)
H (phasejpe(7)) > 1 H (wpermges (Tanc, s.id, 0)) > 1 H(obsires(0)) > 1
Tanc C T Yo € O.lev(s) < lev(O)

haa P2 Aighos‘i haa P2 [9 = (H + {itpermlRes(Tv 5)}5 C)]

GTP-RED-SPECITPERM
Tanc T 7 P?(0) = (H + {itperm(7anc,0)}, ¢)

W, P* Dogposs h?, P[0 = (H + {itperm(r, 0)}, c)]

GTP-RED-SPECWAITPERM
Tanc & T P?(0) = (H + {wperm(7anc,id, d)}, c)

W, P* Logpost h?, P[0 = (H + {wperm(r,id, 6)}, c)]

GTP-RED-WEAKITPERM
8 <ad NeN P0)=(H+ {itpermge(7',9)}, ¢)

haa pP? «ighost haa pe [0 = (H +N- {itpermlRes(T/a 6/)}a C)]

GTP-RED-MUTINIT
P?(0) = (H + {uninitires(¢) } + Hp, ¢) Hp Ea P consistenty, (Hp)
JO. H(obsires(0)) > 1 3r. H(phasejges(T)) > 1
H' = H + {mutexires((¢, L), Hp)}

h? U {uninit,res(¢)}, P? &ghost h? U {unlockedares((¢, L), a, Hp)}, P?[0 := (H',)]

Figure 13: Ghost thread pool reduction rules (part 1).

19

GTE—RED—NEWGHOSTCELL
¢ & getGlocs),(H) P(0) = (H,c)

12, P s gose B2, P[0 := (H + { > B}, ¢)]

gTP-RED-MUTATEGHOSTCELL N
£ & getGLocs,,(H) P3(0)=(H+{{—7}, ¢

2, P s gos B2, P[0 = (H + {0 — 7'},)]

Figure 14: Ghost thread pool reduction rules (part 2)

RTP-RED-LIFT
0y = min(© \ dom(P?)) P*(0) = (H,c) h® H,c~ag h*' H',c/, T?

W2, P? Lot B P10 = (H',)] +atp T°

RTP-RED-TERM
P(0) = (H,v) H.obs =10

havpa "g’real havpa _atpa

Figure 15: Non-ghost thread pool reduction rules.

to express real reduction steps. A reduction step has the form
ha’Pa “e"real ha/)Pa/.

Definition 9.7 (Annotated Thread Pool Reduction Relation). We define the
annotated thread pool reduction relation ~ap as

~atp ‘&= “7ghost U ~real -

Definition 9.8 (Annotated Reduction Sequence). Let (h?;);en and (P?;);en be
infinite sequences of annotated heaps and annotated thread pools, respectively.
Let sig : N — S be a partial function mapping indices to signals.

We call ((h2, P?);en,sig) an annotated reduction sequence if there exists a

sequence of thread IDs (0;):en such that the following holds for every i € N:

0;
o W3, PP ~arp iy, PPy

7

o If this reduction step results from an application of GTP-RED-WAIT to
some signal s, then sig(i) = s holds and otherwise sig(i) = L.

In case the signal annotation sig is clear from the context or not relevant, we
omit it and write (h, P?);en instead of ((h3, P?)ien, sig).

2 2

We call (h?, P?) an annotated machine configuration.

20

Lemma 9.9 (Preservation of Finiteness). Let (h?, P?);en be an annotated re-
duction sequence with finiteah (hY) and finitey, (P (0).heap) for all 6 € dom(Fp).
Then, finitey, (P2(6).heap) holds for all i € N and all 0 € dom(P?).

Proof. Proof by induction on 3. O

Lemma 9.10 (Preservation of Completeness). Let (h2, P?)ien be an anno-
tated reduction sequence with completey, (P3(6).heap) for all 6 € dom(P3). Fur-
thermore, let there be no chunk unlockedares(m, P, Hp) € hj such that

Hp (phasejges (7)) > 0 or Hp(obsires(O)) > 0 holds for any T, O.

Then, complete,, (P?(0).heap) holds for every i € N and every 6 € dom(P?).
Proof. Proof by induction on 3. O

Definition 9.11 (Fairness of Annotated Reduction Sequences). We call an
annotated reduction sequence (h2, P?);en fair iff for all i € N and 6 € dom(P?)

K2

with P?(0).cmd # term there exists some k > i with

a a 0 a a
ks Pk ~real hk+17 Pk+1-

Every thread of an annotated thread pool is annotated by a thread-local
logical heap that expresses which resources are owned by this thread. In the
following we define a function to extract the logical heap expressing which re-
sources are owned by threads of a thread pool (i.e. the sum of all thread-local
logical heaps).

Definition 9.12. We define the function ownedResHeap,,, : TP* — Heaps'°®
mapping annotated thread pools to logical heaps as follows:

P - Z P?(6).heap
0 € dom(P?)

Annotated resources representing unlocked locks, i.e., unlocked,gres(m, a, H),
contain a logical heap H, that expresses which resources are protected by this
lock. In the following, we define a function that extracts a logical heap from an
annotated heap h? expressing which resources are protected by unlocked locks
in h2.

Definition 9.13. We define the function protectedResHeap,, : Heaps®™* —
Heaps'°® mapping annotated heaps to logical heaps as follows:
For any annotated heap h? let

LockInvs(h?) := {Hp € Heaps'® | Im € Locs x Levs. IP € A.
unlocked,res(m, P, Hp) € h?]}

be the auziliary set aggregating all logical heaps corresponding to lock invariants
of unlocked locks stored in h®. We define protectedResHeap,;, as

h? Z Hp.

Hp € LockInvs(h?)

21

Definition 9.14 (Compatibility of Annotated and Logical Heaps). We induc-
tively define a relation ,~, C Heaps®™* x Heaps'® between annotated and
logical heaps such that the following holds

0 ah™Ih (Z)logv
hRu{l— v} A H A+ {0 v},
h? U {uninit,res(¢) } i H 4 {uninitires(€)},
h? U {unlockedares(m, P, Hp)} o~ H + {mutexires(m, P)} + Hp,
h? U {lockedares(m, P, f)} i H 4+ {lockedires(m, P, f)}
+ (1 = f) - {mutexires(m, P)},
h? U {SignalaRes(Sv b)} ah™lh H + {SignallRes(s7 b)}7
h? ~in H 4+ {phasege(7)},
h? ah™~ih H+ {ObSIRes(O)}v
he ah™Ih H + {WpermlRes(T’ ida 5)}7
h? ah™Ih H+ {iAtperIanes(Tv 5)}3
h? s~ H {00},

where h® € Heaps®™ and H € Heaps'® are annotated and logical heaps with
¢,m.loc & locsan (h?), s.id & idsan(h?) and h? .~ H.

We consider a machine configuration (h?, P?) to be consistent if it fulfils
three criteria: (i) Every thread-local logical heap is consistent, i.e., for all used
thread IDs 6, P?(#).heap only stores full phase, obligations, wait permission and
iteration permission chunks. (ii) Every logical heap protected by an unlocked
lock in h? is consistent. (iii) h? is compatible with the logical heap that repre-
sents (a) the resources owned by threads in P? and (b) the resources protected
by unlocked locks stored in hA?.

Definition 9.15 (Consistency of Annotated Machine Configurations). We call
an annotated machine configuration (h?, P?) consistent and write
consistentcons(h?, P?) if all of the following hold:

e consistenty,(P?(0).heap) for all 6 € dom(P?),
e Vm. VP. VHp. unlockedres(m, P, Hp) € h* — consistent, (Hp),
e h? ~, ownedResHeap,, (P?*) + protectedResHeap,(h?).

Lemma 9.16 (Preservation of Consistency). Let (h3, P?);en be an annotated
reduction sequence with consistenteons(hy, P¢). Then, consistenteons(h2, P?) holds
for every i € N.

Proof. Proof by induction on 3. O

10 Hoare Triple Model Relation

Definition 10.1 (Command Annotation). We define the predicate annotemg C
Cmds x Cmds such that annotemd(c’, ¢) holds iff ¢’ results from ¢ by removing
all occurrences of consumeltPerm.

22

Definition 10.2 (Thread Pool Annotation). We define a predicate annoty, C
TP? x TP such that:

annot, (P?, P)
—
dom(P?) = dom(P) A VO € dom(P). annotemd(P?(0).cmd, P(0))

Definition 10.3 (Compatibility of Annotated and Physical Heaps). We in-
ductively define a relation ,~ C Heaps®™ ™ x RPMS between annotated and
physical heaps such that the following holds:

@ ah™ph ®7

{—v U A ah~ph L v Uk,
uninitares(¢) U h? ah™ph unlockedpres(¢) U h,
unlockedares((4, L), P, Hp) U h? ah™ph unlockedpres(¢) U h,
lockedares((¢, L), P, f) U h? ah~ph lockedpres(€) U A,
SignalaRes(87b) U h? ah™ph h

where h® € Heaps®™™* and h € Heaps®™® are annotated and physical heaps with
B~ h.
ph

Definition 10.4 (Safety). We define the safety predicate safe C Heaps'® x
Cmds coinductively as the greatest solution (with respect to C) of the following
equation:

safe(H, c)
=
completey, (H) —
VP, P'.Y0 € dom(P).Yh, i.VP?.Vh?.
consistenteons(h?, P?) A h? ah™~ph B A
P(0)=c A P(0) = (H,c) A annoty(P?, P) A h,P %y b, P’ —
3PS, P 3h6, pA

0
h?, P? ~%hos hC, PS A WS, PS i h¥ P A annote,(PY, P') A
ha/athh hA
V(Hy,cy) € range(P?) \ range(P?). safe(Hy, cy).

Definition 10.5 (Hoare Triple Model Relation). We define the model relation
for Hoare triples Fy C A x Cmds x (Values — A) such that:

Fu {A} ¢ {\.B(r)}
<
VHF. VE. (V’U VHB HB ':A B(’U) — safe(HB + HF, E[U]))
— VHy. Hy Ea A — safe(Hs + Hp, El[c])

We can instantiate context E in above definition to let xz:=[in tt, which
yields the consequent safe(Hy + Hp,let z:=c in tt). Note that this implies
safe(Hs + Hp, ¢).

23

Lemma 10.6 (Hoare Triple Soundness). Let - {A} ¢ {B} hold, then also
Fu {A} ¢ {B} holds.

Proof. Proof by induction on the derivation of {A} c {B} O

Theorem 10.7 (Soundness). Let

i=1,..,N

I {phase(7) * obs(0)) * * itperm(7, ;) } ¢ {obs(0)}

hold. There exists no fair, infinite reduction sequence (hi, P;)ien with hg = 0
and Py = {(by,)} for any choice of 0.

11 Soundness

In this section, we prove the soundness theorem [10.7]

Lemma 11.1 (Construction of Annotated Reduction Sequences). Suppose we
can prove Fy {A} c {obs(@)}. Let Hy be a logical heap with Hy Eao A and
completey, (Ha) and hf an annotated heap with h 4~ Ha. Let (hi, P;)ien be
a fair plain reduction sequence with h .~ ho and Py = {(0o,c)} for some
thread ID 0y and command c.

Then, there exists a fair annotated reduction sequence (h2, P?);en with P? =
{(bo, (Ha,c))} and consistenteons(h2, P?) for all i € N.

Proof. We can construct the annotated reduction sequence inductively from the
plain reduction sequence. O

Definition 11.2 (Program Order Graph). Let ((h?, P?);en, sig) be an annotated
reduction sequence. Let N be the set of names referring to reduction rules
defining the relations ~real, ~ghost aNd ~ast. We define the set of annotated

reduction rule names N where GTP-RED-WAIT is annotated by signals as

N2 := (N"\ {GTP-RED-WAIT})
U ({GTP-RED-WAIT} x S).

We define the program order graph G(((h3, P?)ien,sig)) = (N, E) with root 0
where E C N x © x N® x N.

A node a € N corresponds to the sequence’s a™ reduction step, i.e., h?, P2 &atp
hi. 1, P2,y for some 6 € dom(P?). An edge from node a to node b expresses
that the b reduction step continues the control flow of step a. For any £ € N,
let 0, denote the ID of the thread reduced in step £. Furthermore, let nj denote
the name of the reduction rule applied in the (™" step, in the following sense:

o If h}, P} &atp hy, ., P}, results from an application of RTP-RED-LIFT
in combination with single-thread reduction rule n®*, then nj = n*.

24

o Ifh}, P; vg»atp hy, ., P}, results from an application of GTP-RED-WAIT,
then nj = (GTP-RED-WAIT, sig({)).

e Otherwise, n® denotes the applied (real or ghost) thread pool reduction
rule.

An edge (a,0,n?,b) € Nx O x N* x N is contained in E if n® = n2 and one
of the following conditions applies:

¢ 0=0,=0, andb=min({k >a | h3, P2 %, h2, P2 }).

In this case, the edge expresses that step b marks the first time that thread
0., is rescheduled for reduction (after step a).

e dom(PZ)\ dom(P2) = {0} and

b=min{k €N | h2, P2 Y b2, P2,).
In this case, 0 identifies the thread forked in step a. The edge expresses
that step b marks the first reduction of the forked thread.

In case the choice of reduction sequence ((h2, P?);en,sig) is clear from the

context, we write G instead of G(((h2, P?)ien, sig)).

Observation 11.3. Let (h2, P?);en be an annotated reduction sequence with
|dom(P3)| = 1. The sequence’s program order graph G((h2, P?);en) is a binary
tree.

For any reduction sequence (h2, P?);cn, the paths in its program order graph

G((h?, P?);cn) represent the sequence’s control flow paths. Hence, we are going
to use program order graphs to analyse reduction sequences’ control flows.

We refer to a program order graph’s edges by the kind of reduction step
they represent. For instance, we call edges of the form (a,, ST-RED-WHILE, b)
loop edges because they represent a loop backjump and edges of the form
(a,0, (GTP-RED-WAIT, s),b) wait edges. Wait edges of this form represent
applications of GTP-RED-WAIT to signal s.

In the following, we prove that any path in a program order graph that does
not involve a loop edge is finite. This follows from the fact that the size of the

command reduced along this path decreases with each non-ghost non-loop step.

Lemma 11.4. Let (h2, P?);en be a fair annotated reduction sequence. Let p =

(V,E) be a path in G((h?, P?);en). Let L = {e € E | m3(e) = AST-RED-WHILE}

be the set of loop edges contained in p. Then, p is infinite if and only if L is
infinite.

Proof. If L is infinite, p is obviously infinite as well. So, suppose L is finite.
For any command, we consider its size to be the number of nodes contained

in its abstract syntax tree. By structural induction over the set of commands, it

follows that the size of a command ¢ = P?(6).cmd decreases in every non-ghost

reduction step h?, P? «iatp h?', P?' that is not an application of RTP-RED-LIFT
in combination with AST-RED-WHILE.

25

Since L is finite, there exists a node = such that the suffix p>, starting at
node z does not contain any loop edges. By fairness of (h2, P?);cn, every non-
empty suffix of p>, contains an edge corresponding to a non-ghost reduction
step. For any edge e = (7,0, n, j) consider the command ¢, = P?(#).cmd reduced
in this edge. The size of these commands decreases along p>,. So, p>, must be
finite and thus p must be finite as well. O

Corollary 11.5. Let (h3, P?)ien be a fair annotated reduction sequence. Let

p= (V,E) be a path in G((h3, P?);en). Let

K2

C = {ec E | w3(e) = AST-RED-CONSUMEITPERM }

be the set of consume edges contained in p. Then, p is infinite if and only if C
1s infinite.

Proof. Follows from Lemma by the fact that the set {e € E | m3(e) =
AST-RED-WHILE} is infinite if and only if C' is infinite. O

Definition 11.6. Let G = (V, E) be a subgraph of some program order graph.
We define the function waitEdges. : S — P(E) mapping any signal s to the set
of wait edges in G concerning s as:

waitEdges-(s) = {(a,0,(GTP-RED-WAIT,s'),b) € E | s’ = s}.

Furthermore, we define the set S¢ C S of signals being waited for in G and its
subset S C Sa of signals waited-for infinitely often in G as follows:

Se¢ = {s€S8 | waitEdges,(s) # 0},

Sgp = {s*® eS¢ | waitEdgesg(s™) infinite}.
Definition 11.7. Let (h?, P?)ien be a fair annotated reduction sequence and
let G = (V,E) be a subgraph of the sequence’s program order graph. We define
the function itpermsg : E — Bagsg,(A) mapping any edge e to the (potentially
empty) finite bag of iteration permissions derived in the reduction step corre-
sponding to e as follows:

Let (i,0,n,j) € E be an edge.

o Ifn = (GTP-RED-WAIT, s) for some signal s € S, then the i reduction
step spawns a single iteration permission (7,0), i.e.,
PiaJrl = Pia [0 = (F)ia (Q)heap + {itpermlRes(Tv 5)}5 Pza(o)cmd)]
In this case, we define

itpermsg((i, 8, (GTP-RED-WAIT, 5), 7)) = {(,9)]}.

o If n = GTP-RED-WEAKITPERM, then the i'" reduction step consumes
an iteration permission (7',9) and produces N permissions (7/,4") of lower
degree, i.e., P7(6).heap = H +{itperm(7’,9)} for some heap H and P}, =
P20 :=(H', P?(f).cmd)] for

H' = H+ N - {itpermge(7',5")}.

26

In this case, we define

itpermsg ((i, 0, GTP-RED-WEAKITPERM, j)) = {(7',&),..., (7,8}

N times
o Otherwise, we define
itpermsg ((i,60,n,7)) = 0.

Definition 11.8 (Signal Capacity). Let (h2, P?)ien be a fair annotated reduc-
tion sequence and G = (V,E) be a subgraph of the sequence’s program order
graph. We define the function sigCapg : (S\ S&) x N — Bagsg,(A) mapping
signals and indices to bags of iteration permissions as follows:

sigCapq(s,i) = H—J itpermsg ((a,0,n,b)).
(a,0,n,b) € waitEdges (s)

We call sigCapg (s,) the capacity of signal s at indez .

Note that the signal capacity above is indeed finite. For every G and every
signal s € S\ S the set of wait edges waitEdges(s) is finite. Hence, the big
union above is a finite union over finite iteration permission bags.

Definition 11.9 (Partial Order on Permissions). We define the partial order
on iteration permissions <, C A x A induced by <a such that

(7'1,(51) <A (TQ,(SQ) <~ 61 <a 0o.
Lemma 11.10. The partial order <, is well-founded.
Proof. Follows directly from well-foundedness of <. O

Definition 11.11 (Partial Order on Finite Bags). Let X be a set and let
<x C X x X a partial order on X. We define the partial order <x C
Bagsg,(X) X Bagsg,(X) on finite bags over X as the Dershowitz-Manna or-
dering [Dershowitz and Manna(1979)] induced by <x:

A<x B <= 3C,D € Bags;,(X). 0 #C C B
NA=(B\C)WD
AVde D.deceC.d<x c.
We define <x C Bagsg,(X) x Bagsq,(X) such that
A=<x B < A=BV A<xB
holds.

Corollary 11.12. The partial order <p C Bagsg,(A) X Bagsg,(A) is well-
founded.

27

Proof. Follows from [Dershowitz and Manna(1979)] and Lemma [11.10 O

In the following, we view paths in a program order graph as single-branched
subgraphs. This allows us to apply above definitions on graphs to paths. In
particular, this allows us to refer to the capacity of a signal s on a path p by
referring to sigCap,,.

For the following definition, remember that a bag B € Bags(X) is a function
B : X — N while a logical heap H € Heaps'® is a function H : R'%¢ —
Q>0. Also remember the signatures ownedResHeap,,, : 7TP* — Heaps'® and
— Heaps'®.

annot

protectedResHeap,,, : Heaps

Definition 11.13. We define the functions itperms_g,¢ : Heaps®™* x TP?* —
Bags(A) and wperms ¢ : Heaps®™™* x TP? — Bags(Q) mapping annotated
machine configurations to bags of iteration and wait permissions, respectively,
as follows:

itperms o (h?, P?)(T,9)
= L(ownedResHeapatp(Pa) + protectedResHeapah(ha)) (itpermyge (T, 5)”,

wperms ¢ (h?, P?)(T,id,d)
:= | (ownedResHeap,,,(P?) + protectedResHeap,, (h?)) (wpermges(7, id, 9)) |.

Note that for consistent annotated machine configurations (h?, P?) the above
flooring is without any affect.

Corollary 11.14. Let (h3, P?);en be an annotated reduction sequence such that
finitean (b)) and finitey, (P3(0).heap) hold for every 6 € dom(FP3).
Then, itperms.,.¢(h2, P?) and wperms . ¢(h3, P?) are finite for every choice

of i € N.

Proof. Follows by preservation of finiteness, Lemma O

Lemma 11.15. Let G((h2, P?);en) be a program order graph and let p = (V, E)
be a path in G with Sp° = (). For every 0 € dom(F) let P§(6).heap be finite and
complete. Further, let hY be finite and contain no chunks unlocked,res(m, P, Hp)
where Hp contains any phase or obligations chunk.

Then, p is finite.

Proof. Assume p is infinite. We prove a contradiction by assigning a finite
capacity to every node along the path. Let 6; be the ID of the thread reduced
in step 7. For every § € dom(P?) the logical heap P} (6).heap is complete and
h{ contains no chunks unlockedares(m, P, Hp) where Hp contains any phase or
obligations chunk. By preservation of completeness, Lemma P?(6;).heap is
also complete and hence it contains exactly one phase chunk phasejge (7). That
is, for every step i, the phase ID 7; of the thread reduced in step i is uniquely
defined.

28

Consider the function nodeCap : V' — Bagsg,(A) defined as

nodeCap(i) := {(Tanc,d) € itperms_.¢(h | Tanc C 7}

» P7)
W L—H S|gCapp((d L),1).

id € waitlDs(7;)
(Tane id.3) € wperms one(h?, P?)
L€ Levs

where waitlDs(7;) := {id | I7anc. (Tanc, id, —) € wperms_o.¢(h2, P?) A Tanc E 73 }.

For every i € V, the capacity of node i, i.e., nodeCap(i), is the union of two fi-
nite iteration permission bags: (i) Above {[(Tanc,é) € itperms ope(h2, P?) | Tanc C
7;}} captures all iteration permissions contained in h? and P? that are qualified
by an ancestor 7., of phase ID 7; and are hence usable by the thread reduced
in node 4. This includes the permissions (Tanc,d) held by thread 6; as well as
such (temporarily) transferred to another thread via a lock invariant. (ii) Be-
low (4] sigCap,((id, L), i) captures all iteration permissions that will be created
along the suffix of p that starts at node 7 by waiting for signals for which thread
0; already holds a wait permission (Tanc,td,d) in step .

Note that for every i € V, the bag of iteration permissions returned by
nodeCap(i) is indeed finite. The initial annotated heap and all initial thread-
local logical heaps are finite. This allows us to apply Corollary [11.14] by which
we get that itperms.,.¢(h2, P?) and wperms_.¢(h2, P?) are finite.

Since signal IDs are unique, for every fixed choice of ¢ and id, there is at
most one level L, for which sigCap,,((id, L),) # (). By assumption, along p all
signals are waited for only finitely often, i.e., 5p° = (). Hence, also the big union
H—J sigCap, ((id, L), 1) is defined and finite.

Consider the sequence (nodeCap(%));cy. Since every element is a finite bag
of permissions, we can order it by <5. We are going to prove a contradiction
by proving that the sequence is an infinitely descending chain.

Consider any edge (i,0,n,j) € E. There are only three cases in which
nodeCap(i) # nodeCap(j) holds.

e n = GTP-RED-WAITPERM:
In this case, there are degrees §, 8’ with ¢’ <a J, a signal s and N € N for
which we get

nodeCap(j) = (nodeCap(i) \ {(7/,9)}) w {(v',8")]}.

N times
That is, nodeCap(j) < nodeCap(7).
e n = GTP-RED-WEAKITPERM: Same as above.

e n = AST-RED-CONSUMEITPERM:
In this case, we know that nodeCap(j) = nodeCap(é) \ {(Tanc,0)} <a
nodeCap(4) holds for some 7.y, and 0.

29

(Note that in case of n = GTP-RED-WAIT, we have nodeCap(i) = nodeCap(j)

since .
{(Tane, 6) € itperms ,¢(h3, P2) | Tanc C 75}

{(Tancy 5) € itpermsconf(hiﬂ ‘P'L'a) ‘ Tanc &= Ti]} @ {[(7—7 5)]}

and
[sigCan, ((d, 1)) = (|4 sigCam, (i, £),1) \ (7.0}

for some 4.) So, nodeCap is monotonically decreasing.

By assumption p is infinite. According to Corollary this implies that
the path contains infinitely many consume edges, i.e., edges with a labelling
n = AST-RED-CONSUMEITPERM. Hence, the sequence (nodeCap(i));cy forms
an infinitely descending chain. However, according to Corollary <A s
well-founded. A contradiction. O

Lemma 11.16. Let (h?, P?)ien be a fair annotated reduction sequence with
consistenteont (b3, P3), B¢ = {(0o, (Ho,c))}, completey, (Hy), finitey (Hy) and with
finitean (h3). Let Hy contain no signal or wait permission chunks. Further, let hY
contain no chunks unlockedres(m, P, Hp) where Hp contains any obligations,
phase or signal chunks. Let G be the program order graph of (h2, P?);en. Then,

S =10,

Proof. Suppose S # (. Since Levs is well-founded, the same holds for the set
{lev(s) | s € S=}. Hence, there is some spi, € S°° for which no z € S with
lev(z) <L lev(smin) exists.

Since neither the initial logical heap Hy nor any unlocked lock invariant
stored in h§ does contain any signals, smin must be created during the re-
duction sequence. The reduction step creating signal s;,;, is an application of
GTP-RED-NEWSIGNAL, which simultaneously creates an obligation to set Spiy.
By preservation of completeness, Lemma [9.10] every thread-local logical heap
P?(0).heap annotating some thread ¢ in some step ¢ is complete. According to re-
duction rule GTP-RED-WAIT, every wait edge (a, 6, (GTP-RED-WAIT, $in), b)
implies together with completeness that in step a (i) thread 6 does not hold any
obligation for sy, (i.e. P2(#).heap.obs = O for some bag of obligations O with
Smin & O) and (il) smin has not been set, yet (i.e. signal,ges(Smin, False) € h2).
Hence, in step a another thread 6,5, # 6 must hold the obligation for sp, (i.e.
P2(0,p).heap.obs = O for some bag of obligations O with sy, € O). Since there
are infinitely many wait edges concerning sp,i, in G, the signal is never set.

By fairness, for every wait edge as above, there must be a non-ghost reduction
Oob

step hi, Pf ~Satp i 1, Ppyq of the thread 6., holding the obligation for syin
with & > a. Hence, there exists an infinite path po, in G where each edge
(e,00b,n, f) € edges(pon) concerns some thread 6., holding the obligation for
Smin- (Note that this thread ID does not have to be constant along the path,
since the obligation can be passed on during fork steps.)

30

The path pop, does not contain wait edges (e, Oop, (GTP-RED-WAIT, s*°), f)
for any s> € S°°, since reduction rule GTP-RED-WAIT would (together with
completeness of P?(f,1,).heap) require s> to be of a lower level than all held
obligations. This restriction implies lev(s™) <| lev(Smin) and would hence con-
tradict the minimality of spi,. That is, Sy = 0.

By preservation of finiteness, Lemma we get that every logical heap
associated with the root of pgy, is finite. This allows us to apply Lemma [11.15]
by which we get that pop, is finite. A contradiction. O

Lemma 11.17. Let
i=1,...,.N

Fn {phase(7o) * obs(()) * >I< itperm (7o, 8;) } ¢ {obs(0)}

hold. There exists no fair, infinite annotated reduction sequence (h2, P?);en with

hs = @, Pg = {(907 (%70))} and
Hy = {phasejge(70),0bsires(!), itpermges(70,61), - - - , itpermges (70, o) }-

Proof. Suppose a reduction sequence as described above exists. We are going
to prove a contradiction by considering its infinite program order graph G.

According to Observation G is a binary tree with an infinite set of
vertices. By the Weak Konig’s Lemma [Simpson(1999)] G has an infinite branch,
i.e. an infinite path p starting at root O.

The initial logical heap Hy is complete and finite and the initial annotated
machine configuration (hQ, Pg) is consistent. By Lemma we know that
Sg = 0. Since Sp° C S, we get S° = (). This allows us to apply Lemma
by which we get that p is finite, which is a contradiction. U

Theorem 10.7 (Soundness). Let
i=1,..,N
I {phase(7) * obs(0)) * >l< itperm (7, 0;) } ¢ {obs(0)}
hold. There exists no fair, infinite reduction sequence (hi, P;);en with hg = 0
and Py = {(bo,¢)} for any choice of 8.
Proof. Suppose a reduction sequence as described above exists. Since we can

i=1,..., N
prove I { phase(7) * obs(f) * >l< itperm (7, 0;) } ¢ {obs(M)}, we can also conclude

.....

Lemma Consider the logical heap
Hy = {phaseges(7), 0bsires (1), itpermges (7, 1), - . . , itpermygeg (7, 0n) }

i=1,.,N
and the annotated heap h3 = (). It holds Hy Fa phase(7)xobs()x >l< itperm(7, 0;),
h an~n Ho and b 4~ ho. This allows us to apply Lemma by which
we can construct a corresponding fair annotated reduction sequence (h2, P?);en
that starts with A3 = 0 and P = {(6y, (Hy,c))}. By Lemma [11.17] (h2, P?);en
does not exist. A contradiction. O

31

12 Verification Example

12.1 Minimal Example

Figures and sketch the verification of the example program presented in
Figure For this verification we let the set of values Values include natural
numbers and choose Levs = A = N.

12.2 Bounded FIFO

For this section, we let the set of values Values include natural numbers and
finite sequences, aka lists, of natural numbers. Further, the set of operations
Ops includes the canonical operations on natural numbers and lists, i.e., (i) <,
<, — and (ii) list concatenation Iy - l2, prepending an element e :: I, getting the
head and tail of a list head(l) (defined for non-empty), tail(l) and getting the
size of a list size(l). We denote the empty list by nil. We use the abbreviation
a Ry b Ry ¢ for Ry,Ry € {<,<} to denote @ Ry b * b Ry c¢. Furthermore,
we choose Levs = A = N. Figure [19| presents an example program involving a
bounded FIFO.

To simplify its verification, we refine the process of creating a new ghost
signal, i.e., we split it in two steps: allocating a new signal ID and initializing
a signal. To implement this, we replace view shift rule VS-NEWSIGNAL by
the rules VS-ALLOCSIGID and VS-SIGINIT presented in Figure This way
we can fix the IDs of all the signals we need throughout the proof at its begin-
ning. This refinement does not affect the soundness of our verification approach.
Figures [20] - [30] sketch the program’s verification using fine-grained signals.

References

[Dershowitz and Manna(1979)] N. Dershowitz and Z. Manna. Proving termina-
tion with multiset orderings. In ICALP, 1979. d0i:10.1007 /3-540-09510-1_15.

[Simpson(1999)] S. Simpson. Subsystems of second order arithmetic. In Per-
spectives in mathematical logic, 1999. doi;10.1017/CB0O9780511581007.

[Tarski(1955)] A. Tarski. A lattice-theoretical fixpoint theorem and
its applications. Pacific Journal of Mathematics, 5:285-309, 1955.
doi:10.2307/2963937.

32

https://doi.org/10.1007/3-540-09510-1_15
https://doi.org/10.1017/CBO9780511581007
https://doi.org/10.2307/2963937

{phase(()) * obs(@) * itperm((), 1)}

let x :=
{ BTRGE] - phase(())
cons(0)
{M. £+ 0 xphase(()) * obs(() * itperm((),1)}
V.
{phase(()) * obs(0) * itperm((), 1) = -}

let m =

{FRE) + phase(())

new_mutex

{\L. uninit(¢) * phase(()) * obs(®) * itperm((),
in
V-

+ obs(0) itperm((), 1)}

* obs(0) * itperm((), 1) * £, — 0}

1) * £y — 0}

{phase(()) * obs(@) = itperm((), 1) * £x — 0 *
* phase(()) * obs({ -]}
witperm((), 1) x £x — 0 * uninit({,,)
Vids.

{- signal((ids, 1), False) * phase(()) * obs({(ids, 1)} }
witperm((), 1) * £x — 0 * uninit(£y,)
Avy. by — vy * signal((ids, 1), vy # 0) }
xobs({(ids, 1)]}) * itperm((), 1) * uninit(¢,)
{ P xphase(()) % obs({(ids, 1)]}) * itperm((), 1) * uninit({m)}
{phase(()) * obs({(ids, 1)}}) = itperm((), 1) * mutex((¢m,0),P) }
phase(()) * obs({(ids, 1)]}) * itperm((), 1)
* [$]mutex((£m,0), P) * [$]mutex((£m, 0), P)
fork
{phase(7.Forkee) x obs()) x itperm((), 1) * [3]mutex((¢m,0),P)}

{obs(0)}
{phas.e(7.Forker) x obs({(ids, 1)}) * [$]mutex((¢m,0),P)}
acquire m;

{phase(T.Forker)*obs({[(ids,l),-]})* locked((£m,0), P, 1) = [P}

YV

{ phase(r.Forker) * obs({(ids, 1), ({m, 0)]}) * locked((£m,0), P, 3)

[]* £y — vy x signal((ids, 1), vx # 0) }
x| :=1;

phase(7.Forker) * obs({(ids, 1), (£m, 0)]}) * locked((£m,0), P, 3)
{ x 0y — 1 xsignal((ids, 1), vy # 0) }

{ phase(7.Forker) obs({(ids, 1) -]}) * locked((£m,0), P, 3) }

* Uy — 1« signal((ids, 1), True)

{phase(7.Forker) obs({(¢m,0)}) * locked(({m,0),P, 3) * P}
release m

{phase(7.Forker) * obs -. [L]mutex((£m, 0),P) * BI}
{obs(®)}

PR-LET & PR-VS-SimMP & VS-SEMIMP

PR-Cons & PR-FRAME

l, represents value bound to x.
PR-LET & PR-VS-Sivp & VS-SEMmIMP

PR-NEWMUTEX & PR-FRAME

lm represents value bound to m.
PR-VS-Sivp & VS-NEWSIGNAL & PR-FRAME

PR-EXISTS

PR-VS-Sivmp & VS-SEMIMP

P :=3v,. £, — vy

x signal((ids, 1), vx # 0)
PR-VS-SimMP & VS-MUTINIT & PR-FRAME
PR-VS-Sivp & VS-SEMIMP

PR-FORK & PR-FRAME

Continued in Figure

PR-ACQUIRE
PR-EXISTS

PR-ASSIGNTOHEAP & PR-FRAME
PR-VS-SiMpP & VS-SETSIGNAL

PR-VS-Sivmp & VS-SEMIMP

PR-RELEASE & PR-FRAME
PR-VS-Sivp & VS-SEMIMP

Figure 16: Verification sketch of main thread of example program presented in
Figure 2] For readability we omit information about a command’s return value

if it is not relevant to the proof.

33

Ve, ids.

{phase(7.Forkee) x obs(0) itperm((), 1) * [5]mutex((¢m,0),P)}

T
while

{phase(.Forkee) x obs() x wperm((), ids, 0) * [5]mutex(({m, 0), P)}
acquire m;

{phase(7.Forkee) obs({[-}) x wperm((), ids, 0) * locked((£m, 0),
let y:=
phase(7.Forkee) * obs({({m,0)]}) * wperm((), ids, 0) * locked((/mm,0), P,
* v by 5 vy ok signal((ids, 1), vy # 0)

{phase(7.Forkee) * obs(()

1 «Bl

%)}

V.

{lx > vy}

x]

{Ar. k Uy > Vi }
{Ar. 7=V x by > Vi }

7) }
.
{ phase(7.Forkee) x obs({{(¢m,0)]}) * wperm((), ids, 0) * locked((¢m,0), P,

{ M. phase(7.Forkee) * obs({{(¢m, 0)}) * wperm((), ids, 0) x locked((¢m,0), P
* vy, Ly > vy x signal((ids, 1), vy # 0) * -
release m;

* Iy b > vy xsignal ((ids, 1), v # 0) « NN

2) }
phase(7.Forkee) x obs(.]}) xwperm((), ids, 0)
_ s vy, Ly = vy ok signal((ids, 1), vy 7# 0) % vy = vy

V.

phase(r.Forkee) * obs({0]}) * wperm((), ids, 0)
*- Ly = vy x signal ((ids, 1), v 7 0) vy = vy
phase(7.Forkee) * obs({lI}) * wperm((), ids, 0)
s Uy = vy x signal ((ids, 1), v 7 0) vy = vy *

phase(7.Forkee) * obs({l]}) * wperm((),ids, 0) * P
% (vy = 0 — itperm(7.Forker, 0))

phase(7.Forkee) obs({[-.]}) * wperm(()
-]

y=0
Ab.phase(7.Forkee) * obs()) * wperm((

),ids, 0) * [1]mutex((£m, 0), P)
* (vy = 0 — itperm(7.Forker, 0)) * _ }

Ab.phase(7.Forkee) x (—b — obs(())
% (b — obs(()) * wperm((), ids, 0) * [3]mutex((¢m,0), P) * itperm(7.Forker, 0))

do skip
{obs(0)}

,ids, 0) * [$]mutex((¢m, 0), P) }

Continuation of Figure
Uy, ids universally quantified below
P :=3v,. l— vy

x signal((ids, 1), v # 0)
PR-VS-SivMP & VS-WAITPERM
& PR-FRAME

PR-WHILE-SIMP

PR-ACQUIRE

PR-LET
PR-ExisTs & PR-FRAME
P

vy quantified in local scope.

PR-VS-Sivmp & VS-SEMIMP

P

vy represents value bound to y.

PR-RELEASE

Release view shift
PR-EXISTS

vy, quantified in local scope.

PR-VS-Simp & VS-WaIT
& PR-FRAME

PR-VS-Sivmp & VS-SEMIMP

PR-Expr & PR-FRAME

PR-VS-Simvp & VS-SEMIMP

Figure 17: Verification sketch of busy-waiting thread of example program pre-
sented in Figure 2] For readability we omit information about a command’s

return value if it is not relevant to the proof.

34

VS-SI1GINIT
obs(O) x uninitSig(id)
= obs(O W {(id, L)}) * signal((id, L), False)

VS-ALrocSicID
True = Fid. uninitSig(id)

Figure 18: Fine-grained view shift rules for signal creation.

let fifo;p := cons(nil) in
let m := new_mutex in
let ¢, := cons(100) in
let c. := cons(100) in
fork (
while (
acquire m;
let f := [fifoyo] in
if size(f) < 10 then (
let ¢ := [cp] in
[fifo1g] :="f -(c :: mil);
[cp]:=c—1
release m;
let ¢ := [cp] in
c#0
) do skip;
);
while (
acquire m;
let f := [fifoyp] in
if size(f) > 0 then (
let ¢ := [c] in
[fifo1o] := tail(f);
[cc]:=c—1
);
release m;
let ¢ := [c/] in
c#0
) do skip

Figure 19: Example program with two threads communicating via a shared
bounded FIFO with maximal size 10. Producer thread writes numbers 100, ...,
1 to shared FIFO and busy-waits until FIFO is not full and next element can
be pushed. Consumer thread pops 100 numbers from FIFO and busy-waits for
next number to arrive.

35

{phase(()) * obs(() = itperm((),2)}

let fifo;o := cons(nil) in let m:=new_mutex in
Vlifors €m-

{phase(()) * obs(() = itperm((_}
Vidl, .. id0 idh dl
Liop = 102—i, LI g = 101—7 for 1 < <100

(Later LEF0 < [. and Lpush < Lpop must hold, cf. Figuresand)

pop pus
= (id’ g, Lt), & (zd;OP,L;Op) for 1 <4 <100

push push’ iush pop

«0bs({ 5500, Spusn) *

{_

{ >l< |tg8(r)m) *

Later each thread uses

ush *

st

it[{ggm((), 1) to justify productive iterations.

let ¢, :=cons(100) in let o= cons(100) in
Ve, Le, .

phase(()) * obs({s10 100]}) [3]0, — 100 [5], +— 100 * uninit((y,)

push7 pop
« 3K, (wperm (). idyop, 0) + wperm((), iy, 0)) * 3K | itperm (), 1) « [

* >|< (unlnltSlg(ldpuSh) * unlnltSlg(zdep))

(Later lev(mut) < Lt and lev(mut) < Li must hold

for all 1 <14 <100, cf. Flgureb H and .

phase(()) x obs({s20,, s190 1) x [$]€c, + 100 x [1]{c, — 100 x * itgerm 1)

mut = ({m,0)

push’ pop
% *l:(\le?lrgS(() deop, 0) * wperm((), zdpush, 0)) * >l< (unlnltSlg(zdpush) * un|n|tS|g(zdpop))

* [3 Imutex(mut, Py) * [& |mutex(mut, Py,)

PR-LET (2x) & PR-CoNs

& PR-NEWMUTEX

PR-VS-SimP & VS-ALLOCSIGID
& PR-Ex1sTs (200x)

PR-VS-Simvp & VS-SI1GINIT

PR-VS-SiMP & VS-WEAKPERM

PR-VS-Sivp & VS-WaIT

PR-LET & PR-CoONS (2x)

PR-VS-Sivp & VS-SEMIMP

For definition of lock invariant P,
cf. Figure
PR-VS-Simp & VS-MuTINIT

PR-VS-Sivp & VS-SEMIMP

Continued in Figure

Figure 20: Verification example bounded FIFO, initialisation. To lighten the

notation, we do not show applications of the frame rule.

36

s
[5)le, = 00 * [5lle. = v * 0 < v <100 % 0 <ovf <100
* Lifory > Vflfoy, * Ucr = v + size(vfy,) * 0 < size(vf,) < 10
* Uit = (Ve +size(v]£‘l}ol%)) i .n.1. (v, +1) 2 mil
), False))
m">0 — 5|gna|((zclp°0p7 Lpsy), False))

* (>0 — S|gna|((zdpush, Rush

*
—
<

el

. — m / m
P o= 30, P (Vo)

Figure 21: Lock invariant

(()

~—

* obs({s190, , s100T) « [1]0, — 100 * [1]4c, — 100 * >|< | itperm((), 1)

push’ pop

perm(() Zd;opa)*Wperm(() deushv))

“’é‘

(unlmtSng(zdpuSh) * uninitSig(zd%op)) [2]mutex(mut, Pr) = [1]mutex(mut, Py)

phase((Forkee))

:{phase((Forkee)) * -}
{ obs(0)}

<io) RN - 31 - 107

);

;

phase(()) * obs({
* >l< 1’“i.'fﬁ)oeorm((), 1)
* >l< ‘=wperm((), id;ushv 0)

% >l< ur11|n|tS|g(ldpop)

.{phase((Forker)) * -}
{ obs(()}

Figure 22: Verification example bounded FIFO,

37

o, . D

Producer & consumer counters.
Bounded FIFO & its relationship
to counters.

Signal set by producer.

Signal set by consumer.

Continuation of Figure

PR-FORK

Resources transferred to
producer thread.
PR-VS-Simp & VS-SEMIMP

For definition of producer loop
invariant Ly(n, O) cf. Figure

Producer loop on Figure
PR-VS-Sivp & VS-SEMIMP

Resources remaining with
consumer thread.
PR-VS-Sivp & VS-SEMIMP

For definition of consumer loop
invariant L.(n, O) cf. Figure

Consumer loop on Fgure
PR-VS-SivMp & VS-SEMIMP

forking.

L,(n,0,) :

no:mutex

(10, = n x 0<n <100 * [§]mutex(mut, Py,)
* obs(Op) * (n>0 < Op={spml) * (n=0 & O0,=0)

x >|< itperm((), 1)

1,....n

>l< wperm

* >|< un|n|tS|g(zdpuSh)

yeeyn—1

0)

POP’

+ oo, D
:{[S;ush]}) * (n—O A O -)
pop,) * >l< uninitSig(deush)

on—1

* (>0 < O,

* * itperm((), 1) = >l< wperm((), ¢

,100

i=1,...

Ly (n, O p) = ﬂzdpush

BT IENERS] « [1]mutex(mut, Py) * obs(O,)
(n>0<—>Op—{[spush]})(n—0<—>O—[Z))
* >l< itperm((), 1) = >l< wperm((), zdpop, 0) = >l< un|n|tS|g(zdpuSh)

i=1,...n—1

Figure 23: Producer’s loop invariant.

38

Loop invariant of producer.

Iteration permissions consumed

by productive loop iterations, i.e.,

by iterations which decrease the
producer counter c,.

Used to generate iteration permissions
to justify unproductive loop iterations.

Remaining allocated signal IDs used to
initialize new signal after next push.

Shorthand for invariant with
acquired mutex.

Shorthand for invariant without
mutex chunk and

without obligations chunk.

vEl‘ifoloa éma ecp’ ecc .
Continuation of Figure

{phase((Forkee)) * Jvc,, Op. Ly(ve,,Op) * ve, # 0}

while (For definition of producer loop invariant L,(n,O), lock invariant Py, PR-WHILE-SIMP & PR-EXISTS (2x)
Voe,, Op- and variations cf. Figures [23[and & PR-VS-Smvp & VS-SEMIMP
{phase((Forkee)) * -Lp(vcp7 Op) * v, # 0% 1 0O, = {[szz’sh]} V O, =10
lev(mut) = 0 < 101 —v,, = L;;fjsh Justification for application of:
acquire m; PR-ACQUIRE
vvfifolo
let f:=[fifoo] in PR-LET & PR-READHEAPLOC

{phase((Forkee)) * Li>ked (v, Op) * Py (v,) * ve, 7 0}

if size(f) < 10 then (PR-Ir

* phase((Forkee)) * Liocked (v, Op) Pr, (vf,) * ve, 7 0}
Production step presented on Figure
* phase((Forkee))

Define Postlf,, such that:
phase((Forkee))

=4 *3vg,, Oy obs(O}, W {mut])
* locked (mut, P, 5) * Postlf),

) else (
{_ * phase((Forkee)) * Li>ked (v, Op) * Py, (vf,) * ve, 7 0} PR-VS-SivpP & VS-SEMIMP

* phase((Forkee))

);
phase((Forkee))
PR-EXISTS (2x)

Yol L OL.
re;;asg m: Wait step presented on Figure i.e., view shift performed PR-RELEASE & PR-EXISTS (2)
\panc 5 ’ after releasing mut but before consuming Pp,.

TANC 5.

oo PR-LET & PR-READHEAPLOC
let c:=[cp] inc# 0 & PR-Exp

{ T E (Forkee) + phase((Forkee)) Reestablished loop invariant.

*(vg, 70 = Jug,, Op. Lp(ve,, Op) * ve, # 0 itperm (757, 6,)) * (vg, =0 — obs()) }
) do skip

s orc) - RN)

Figure 24: Verification example bounded FIFO, producer loop.

Continued in Figure

39

ngifolg lm, gcpy gcca Vep Op7 v;?fom‘

no:mutex
For definition of P, P} (v), Lioked(n, O) and Ly s (n,) cf. Figures [21f and
{size(vf},) < 10 * phase((Forkee)) * Lioed (v, Oyp) * P (v,) * Ve, 7 0

let c:=[c,] in
[fiforo] :=f -(c :: mil); [cp]:=c—1
{Lfifor, Vfiforo (Ve, = mil) *le, = v, =1 x...}

mutl}) * signal(s;i‘l’sh, True) * ...}

case: v, —1=0 Last iteration, nothing left to do.
phase((Forkee)) * Jv , O,,. obs(O,, W {mut}) locked(mut, P, D) kv, #0

no:mutex
* (size(vff,) <10 — L,"0bs (v, 0,) * P * itperm((), 1))
no:mutex

* (size(vg‘folo) =10 — L,noobs (ve,, Op) * Py, (v{ﬂcolo) * O; = Op)

case: v, —1>0 Must create signal for next iteration.
) * *izlygivgit_szig(id;ush)

{phase((Forkee)) * 3u_ , O,,. obs(O;, & {mut]) * locked(mut, P, 5) * Postlf, }

{phase((Forkee)) + Juv; , Oy,. obs(O;, & {mut}) + locked (mut, P, 1) * Postlf, }

Continuation of Figure

PR-VS-Sivp & VS-SEMIMP

PR-LET & PR-READHEAPLOC
PR-ASSIGNTOHEAP (2x)

PR-VS-Sivp & VS-SETSIGNAL
PR-VS-Sivp & VS-SEMIMP
PR-VS-Simp & VS-ORr

PR-VS-Sivp & VS-SEMIMP
phase((Forkee))
= *3vg, Oy obs(Oy, W {mut})
« locked (mut, P, %) * Postlf),
For definition of Postlf, cf. Figure

PR-VS-Sivp & VS-SIGINIT

PR-VS-Sivmp & VS-SEMIMP

Continued in Figure

Figure 25: Verification example bounded FIFO, producer thread’s production

step.

40

vgﬁfom) fm’ gcpa gcca vcpa Opv ’UH}OW U(:p, 01/3
no:mutex
For definition of Py, P} (v), Lio¢ked(n, O), L, (n,0), Postlf,
cf. F1gures 2 3 and ?
{phase((Forkee % obs(O], W {mut]}) locked(mut, P, 3) * Postlf,,}
PR- RELEASE allows view shift to happen after mutex mut
was released but before lock invariant P, is consumed.

{phase((Forkee)) * obs(O, -) * Postlf , }

case: size(vf},) < 10

{

release m

Production step already performed, nothing left to do.
* phase((Forkee)) * obs(O,,) * Postlf,, }

obs(O,,) * P % 3737, 0,. 7,7 C (Forkee) * phase((Forkee)) }

no:mutex

& Lnoobs (Uépv O,,) * itperm(757¢, 6,

case: size(vf,) = 10 No production step performed.
Must wait to generate permission.

* phase((Forkee)) * obs(O,,) * Postlf,, }

* obs({[s;fsh]}) * e, # 0 x phase((Forkee))

c?cc

Yol
QC‘ = v, + 10

Wperm((), id;op, 0) * obs({szﬁsh]}) * phase((Forkee)) *

i=1,...,1
|ev(s§z§p) Lp;;pv: Lietto = 102 (v, +10)
< 101 — = L7, = lev(s pubh)

{obs(0},) * Py * PostReleaseVS, }

e 1 Sty) <10 = 0
h o, |

{obs(0;,) * PostReleaseVS, } Lock invariant Py, consumed by PR-RELEASE.
3¢, 0p. 757¢ £ (Forkee) * phase((Forkee))
(v, 70 = Fug,, Op. Ly(ve,, Op) x ve, # 0 itperm(7,7¢,6,)) * (v, =0 — obs(D))

Continuation of Figure [24]

PR-VS-SivpP & VS-SEMIMP
PR-VS-Sivp & VS-Or

PR-VS-Simp & VS-SEMIMP

Define PostReleaseVS, such that:
= {obs(0},) * P * PostReleaseVS,, }

PR-VS-SivmpP & VS-SEMIMP

PR-EXISTs (2x)
& PR-VS-Simvp & VS-SEMIMP

PR-VS-SimMP & VS-WaIT

Justification for application
of VS-WAIT.

PR-VS-Simp & VS-SEMIMP

Conclusion of VS-OR application.

PR-VS-Sivp & VS-SEMIMP

Reestablished loop invariant.

Continued in Figure 24]

Figure 26: Verification example bounded FIFO, producer’s wait step.

41

Lc(na Oc)
le.—mn x 0<n <100 * [%]mutex(mut,Pm)
obs(O;) * (n>0 < Oc={sp,,}) * (n=0 « O.=0)

2l
*

* >|< itperm((), 1)

1,...,n
% >l< wperm((), id;ush, 0)
i=1,...,100

+ 3K uninitSig(id},,)

i=1,...,n—1

) =
e, —n x 0<n <100
W (1] mutex(mut, Py) * obs(O, -)
x (n>0 < O, ={s”

pop]}) * (TL:O <_)‘ OC:Q))
* * itperm((),1) = >l< wperm((), id},,q,,0) * >l< uninitSig(idy,,,

100 i=1,...;n—1

Llcocked(n7 10)
[

NS

1,...,n i=1,...,

no:r’pugex o
L% (0, 0p) 1= Jidy,,-
BT IENEEES] « [mutex(mut, Pn) * obs(O,)
x n>0 < O.={s" . }) * (n=0 < O0.=0)

pop

* >|< itperm((),1) = >l< Wperm((),id;ush,O) * >l< uninitSig(idli)Op

i=1,...,100

1,....,n i=1,...,n—1

Figure 27: Consumer’s loop invariant.

42

)

)

Loop invariant of consumer.

Iteration permissions consumed

by productive loop iterations, i.e.,

by iterations which decrease the
consumer counter cc.

Used to generate iteration permissions
to justify unproductive loop iterations.

Remaining allocated signal IDs used to
initialize new signal after next pop.

Shorthand for invariant with
acquired mutex.

Shorthand for invariant without
mutex chunk and

without obligations chunk.

Veﬁfom) ema écpa écc-
e Continuation of Figure
{phase((Forker)) % Juc_, Oc. Lc(ve,, Oc) * ve, # 0}

while (For definition of consumer loop invariant L, (n, O), lock invariant P, | PR-WHILE-SIMP & PR-EXISTS (2x)
Yo, Oe. and variations cf. Figures |27] and & PR-VS-SivmpP & VS-SEMIMP
{phase((Forker)) * -Lc(vcc, O.) xve, #0 *h} Oc = {spspl V O, =0
lev(mut) = 0 < 102 —ve, = Lpsp Justification for application of:
acquire m PR-ACQUIRE
VUfifom
let f:=[fifo1o] in PR-LET & PR-READHEAPLOC

{phase((Forker)) « Leed(ve,, Oc) * Py (vfo,,) * v, # 0}

if size(f) > 0 then (PR-IF

* phase((Forker)) * Llocked (v , O..) * Pr(vff,) * ve, 7 0}
Consumption step presented on Figure
* phase((Forker))

Define Postlf,. such that:
phase((Forker))

= *3v, 0. obs(O, & {mutl)
« locked (mut, P, %) * Postlf,

) else (
* phase((Forker)) * Llocked (v, O..) * Pr(vff,) * ve, 7 0} PR-VS-SivP & VS-SEMIMP

* phase((Forker))

phase((Forker))

b

PR-EXISTS (2x)

Yol , OL.
reﬁe’asg m: Wait step presented on Figure i.e., view shift performed PR-RELEASE & PR-EXISTS (2X)
yrane § ’ after releasing mut but before consuming F,.

T e

PR-LET & PR-READHEAPLOC
& PR-Exp

Reestablished loop invariant.

let c:=[c] in c # 0

72"¢ C (Forker) phase((Forker))
(vl #0 = Fue,,Oc. Le(ve,, Oc) * v, # 0% itperm(727¢,6.)) * (v, =0 — obs(0))
) do skip

st vorce))

Figure 28: Verification example bounded FIFO, consumer loop.

Continued in Figure

43

m
vgfifolg) £m7 KCP7 gcca Ve, Oa Uﬁfolo .

no:mutex
For definition of Py, Pl (v), Ll°%ked(n, O) and L “°'°b5(n O) cf. Figures and
{31ze Vfity,) > 0% phase ((Forker)) s Llocked(y) * P (vt) % ve, # 0

let c:=[c] in
[fifo1g] :=tail(f); [c]:=c—1
{lifor, — tall(vﬁfolo) kle. > U, — 1 %...}

{

obs(mut}) * signal(spsp, True) * ...}

case: v, —1=0 Last iteration, nothing left to do.
phase((Forker)) 3u, , O. obs(O. & {mut];) * locked(mut, P, 3) * ve, # 0

no:mutex
* (size(vg}olo) >0 — Lm0 (v) & O!) x Py, x itperm((), 1))
no:mutex

* (Size(vg}om) = 0 - LCnO:ObS (UCc7 OC) * Prln (’Um’om) * Olc = OC)

case: -1>0 Must create signal for next iteration.

obs {I- mutl) * - ummtSng(zdPop)

{phase((Forker)) * Ju]_, OL. obs(O, W {mut}) * locked(mut, Py, 3) * Postlf.}

{phase((Forker)) x 3v._, OL. obs(O. & {mut]}) * locked(mut, Py, 3) * Postlf .}

Continuation of Figure

PR-EXISTS
PR-VS-Simvp & VS-SEMIMP

PR-LET & PR-READHEAPLOC
PR-AsSIGNTOHEAP (2x)

PR-VS-SiMP & VS-SETSIGNAL

PR-VS-Sivp & VS-SEMIMP
PR-VS-Simp & VS-ORr

PR-VS-Sivp & VS-SEMIMP
phase((Forker))
=4 *3v, 0. obs(O, W {mutl)
« locked(mut, Pry, %) * Postlf,
For definition of Postlf. cf. Figure

PR-VS-Sivmp & VS-SIGINIT

PR-VS-Sivmp & VS-SEMIMP

Continued in Figure

Figure 29: Verification example bounded FIFO, consumer thread’s consumption

step.

44

! /
vEfifolo 5 Ema écc 5 gccv Ve s OCa 1}2}010, vccy Oc'

no:mutex

For deﬁnltlon of P, PL(v), Llocked(n_O), L. (n, O), Postlf.

cf. Flgures dnd 2
{phase((Forker *ob . {mutl}) * locked(mut, Py, §) * Postlf.}

PR- RELEASE allows view shift to happen after mutex mut
was released but before lock invariant P, is consumed.

{phase((Forker)) x obs(O, -) _ * Postlf..}
() >0V =) |

release m

case: size(vf},

* phase((Forker)) * obs(O) x Postlf.}
obs(OL) % Py % 3727, .. 72"¢ C (Forker) phase((Forker)) }

no:mutex

Leno0% (v, Op) + itperm((), 1)

case: Size(vﬁ"}olo) =0 No production step performed.
Must wait to generate permission.

* phase((Forker)) * obs(O.) * Postlf.}

% 0bs({spepl}) * ve, # 0 * phase((Forker))

[%]écc = Vg, * [%]Ecc vl -

. Ve

« K \1/vper(|)n(() id e, 0) * obs({spsplt) * phase((Forker)) «
lev(s.2,) = L%, = L%, = 101 —v, < 102— v = Lis = lev(sisy)

{obs(O%) * Py, * PostReleaseVS,}

i ol) <10) =10
#Pr PostReleaseVS,.

{obs(O) - * PostReleaseVS,} Lock invariant P, consumed by PR-RELEASE.
12" §.. T2 C (Forker) * phase((Forker))
(vl #0 — Fue, Oc. Le(ve,, Oc) * v, # 0% itperm(737¢,6.)) * (v, =0 — obs(0))

Consumption step already performed, nothing left to do.

Continuation of Figure [28]

PR-VS-SivmpP & VS-SEMIMP
PR-VS-Simp & VS-ORr

PR-VS-Sivp & VS-SEMIMP

Define PostReleaseVS,. such that:
= {obs(O.) x P, * PostReleaseVS, }

PR-VS-Sivp & VS-SEMIMP

PR-EXIsTS (2x)
& PR-VS-SimMP & VS-SEMIMP

PR-VS-SivP & VS-WAIT

Justification for application
of VS-WAIT.

PR-VS-SivmpP & VS-SEMIMP

Conclusion of VS-OR application.

PR-VS-Sivp & VS-SEMmIMP
Reestablished loop invariant.

Continued in Figure

Figure 30: Verification example bounded FIFO, consumer’s wait step.

45

	Universe
	General
	Syntax
	Example
	Resources
	Semantics
	Assertions
	Proof Rules
	Annotated Semantics
	Hoare Triple Model Relation
	Soundness
	Verification Example
	Minimal Example
	Bounded FIFO

