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EEW parameters are now discussed in section 6. Section 5.2.3 discusses potential bias in the PPP data.
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07-17

1 Overview

The filter owes its name to R. E. Kalman at the Institute for Advanced Studies in Baltimore (Kalman,
1960), developed well before the start of the digital age. It has since found numerous applications in
control, signal estimation and general filtering problems. Although similar proposals have been made
before (c.f. Mayhew, 1999) in a different context, the proposal to apply a Kalman filter to the problem of
combining observations from the Global Navigation Satellite Systems (GNSS) with data from a three axis
accelerometer was initially proposed by Smyth and Wu, 2007. The general idea of the Kalman filter is to
predict a system’s behaviour from incomplete observations. The problem here is to predict high resolution
displacement and velocity from acceleration and Precise Point Position (PPP) data which are available at
different times and different rates from the accelerometer and corrected GNSS data respectively. The idea
to apply this to real-time seismology and earthquake early warning (EEW) goes back to Bock, Melgar,
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and Crowell, 2011 and has been validated in several studies (Melgar et al., 2013; Li, 2015; Niu and Xu,
2014) where various data-sets from large earthquakes were processed off-line, after the event.

2 The Basic Kalman Equations

Given acceleration time-series, the task is to generate velocity and displacement estimates, which is in
general a two-step integration process. However, each integration would require that bias and the very
low-frequency components of the acceleration and velocity signal are removed prior to each integration
step. Bias would let the integrated signal grow out of bounds over time and small errors in the very
low-frequency components would be disproportionally amplified. The goal is to force the bias and low-
frequency components in the combined displacement time-series to largely follow the PPP data while
retaining the high-frequency components derived from double integration of the acceleration time-series.
The resulting unbiased displacement time-series should thus have the characteristics from the best of
each of the two worlds.

2.1 The Estimation Problem

In the Kalman approach the problem is cast as a recursive estimation problem, values of displacement
and velocity from one step back in time (d;_1, v;_1) are used to estimate the state of the system in terms
of displacement and velocity at the current time (d;, v;), given a measured acceleration value (a,,), a
sample from a single channel of the accelerometer, and an estimation error term (7,).

This is cast as linear problem, in explicit matrix notation:
2 2
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where 0t, is the sampling time interval of the acceleration time series, and its appearance in the ma-
trix and vector terms performs the respective single and double integrations over one time interval.

A second equation describes the measured displacement d,,, from the GNSS PPP derived data

dy = | 10][%;:1}—1—6(1 (2.2)

in terms of the estimates d;_; and v;_; and an estimation error ¢,.

The key problem then is to synchronize and combine those two equations in a way which will mini-
mize the estimation errors in the velocity and displacement time series over time.

In compact form, as used in Smyth and Wu, 2007, equations 2.1 and 2.2 are written as:
X = Ax¢_1 +Ba,, +w (2.3)

dy = Hx¢_1 + €4 2.4)

In equation 2.3 X; is seen as an a-priori estimate and equation 2.4 is used to formulate an a-posteriori
estimation error d,, — Hx¢_; which is used to improve the initial estimate X
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Xy — )A(t + Kt<dm — HXt,]_). (25)

Here K is the so-called Kalman gain, Ky = [g } which needs additional quantities to be computed.

The first quantity is the covariance matrix estimate using the accelerometer noise variance, according to
Smyth and Wu, 2007:

500t 590t.°
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where ¢ stands for the variance of the accelerometer time series. This version of the matrix () is

according to Bar-Shalom, Li, and Kirubarajan, 2001 (their equation 6.3.2-4, p.273) not correct. It should
be
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However, the difference is most likely without consequences for the algorithm’s performance and is
briefly discussed in section 3.1.

The second quantity is a covariance estimate of the errors in equations 2.1 (or 2.3) which comes in an
a-priori and an a-posteriori version.
The a-priori version is:
P, = AP, ;AT +Q (2.8)

and the a-posteriori version becomes:

P, = (I- K.H)P,, (2.9)
where I is the 2 x 2 identity matrix.
The Kalman gain vector then becomes:
~ ~ -1
K, =P:H" HP.H" +rq| |, (2.10)

where rq = (;‘—;l, oy is the variance and 6t is the sampling time interval of the PPP data.

3 Multi-rate Algorithm

Obviously equations 2.3 to 2.10 have to be executed in proper order and acceleration data and GNSS de-
rived PPP data are available with different sampling rates. Therefore equation 2.5, giving the a-posteriori
estimate of displacement and velocity can only be executed when a new PPP sample is available. The
same applies to equation 2.9 where the a-posteriori covariance matrix is updated.

The final algorithm can be stated as follows:



For every acceleration sample a,,, execute:

X = Ax¢_1 + Ba,, 3.1)

P, = AP, ;AT +Q (3.2)

If a PPP sample d,, is available execute instead:

}A(t = AXt,]_ -+ Bam (33)
P, = AP, ;AT +Q (3.4)
. . -1
K¢ = P.H" [HP:H" + 14 (3.5)
x¢ = X¢ + Ke(dy, — Hxg_q) (3.6)
P, = (I - K.H)P, (3.7)
The vector x¢ = | %] then holds the current samples of the unbiased displacement and velocity time-
series.
Initialization

The constant matrices A and B are as in equation 2.1, H is the constant row-vector from equation 2.2.
The algorithm is initialized with Q as in equation 2.7 and

Pe 1 =[o7]
X¢-1 = [ o]
Ot
rq = —
d (Std’

where 0t is the sampling time interval of the PPP time-series and oy is the estimated variance of the
PPP data.

3.1 Variances of accelerometer and PPP data

So far the variances in the accelerometer and the PPP data have been treated as constant values which can
be estimated as measurements of the noise from the respective time-series in the absence of a signal. This
not a very realistic assumption since for example the accelerometer may get rotated or tilted in a strong
earthquake which would change the variance as a measure of the accuracy of the data. Additionally, as
indicated before, the correct version of the matrix () according to Bar-Shalom, Li, and Kirubarajan, 2001
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should be equation 2.7. As long as the variance of the accelerometer data ¢ is seen as a free parameter,
all that matters here is that () is symmetric and positive.

The variance o, of the PPP data will vary over time, depending on the satellite constellation for
example.

In the Kalman algorithm the assigned variances are measures of the (un-)reliability of the respective
data. Saunders et al., 2016, for example treat the accelerometer variance values ¢ in 2.6 or 2.7 simply
as Kalman filter weights and assign “variance multipliers”, factors of 10, 100, 1000 to the accelerometer
variance in order to “optimize” the impact of noisy accelerometer values on the final displacement time
series. In essence the accelerometer variance (and in consequence () becomes a fudge factor which
may have to be determined on a site-by-site basis. Additionally the variance of the GNSS PPP data
can be estimated with the available corrections data stream used by the PPP engine and the variance oy
is reported with each sample of the respective PPP channel. Thus rg4 in equation 2.10 will have to be
updated on a sample by sample basis for each reported o;.
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Figure 1: Unbiased vertical displacement (blue line) from the IWTH?22 Kik-Net accelerometer and GNSS
station MITSU-070 (red dots). Data are from the 2011-03-09 Tohoku earthquake.

4 Implementation

Little 1s known about the long term numerical stability of the computations for this particular Kalman
algorithm in a true on-line, real-time application. However, most calculations are relatively simple and
the inverse term in equation 2.10 actually evaluates to a scalar.

Implicit in the formulation of the joint on-line processing of acceleration and PPP data is, that both
data streams are perfectly synchronized, they cannot be off-set in time against one another. Assuming
that this cannot be guaranteed a-priori, a possible time-offset PPP versus acceleration data would have
to be determined experimentally and compensated for, delaying the earlier data stream before submitting
the data to the Kalman algorithm.

The accelerometer data will invariably exhibit a small bias and it is suggested to apply a digital high-
pass filter with a cut-off frequency of 0.075H z (1" = 13s) to all three channels before they are passed to
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the Kalman algorithm. The combination with the PPP data will reconstruct the low frequencies (and bias
from co-seismic displacement). This should, however, be verified in an experiment.

The un-biased displacement and velocity time-series will have the same sampling rate as the ac-
celeration data. It is suggested (see Crowell et al., 2013) to calculate the P-wave peak displacement
amplitude P, as described in Rosenberger, 2014, directly from the un-biased displacements since their
low-frequency spectrum should be intact and thus help to avoid the saturation effect in magnitude esti-
mates for large earthquakes. It is also suggested that the resulting un-biased velocity and displacement
data from the P-wave can be used in a more stable way (Lior, Ziv, and Madariaga, 2016) to calculate the
predominant period parameter 7, (I would have to look into that).

From the P-wave detection time on, peak ground acceleration (PGA), peak ground velocity (PGV)
and peak ground displacement (PGD) should be reported down-stream once a second (possibly even
faster). Future down-stream applications (re-construction of the earthquake source mechanism, for ex-
ample) may require additional parameters to be generated.

4.1 Configurable Parameters

e Accelerometer variance fudge factor (eq. 2.7, parameter q)

q 1s regarded as a constant value within the Kalman context, however, it does not actually relate
to the physical/statistical noise in the accelerometer data (Saunders et al., 2016). We may need to
adjust this value on a site by site basis. It is suggested to introduce a multiplier, a single factor « for
each of the accelerometer channels so that ¢ = ac?, where o is the assumed accelerometer noise
standard deviation.

e Time interval for monitoring PPP standard deviation (section 6 egs. 6.1, 6.2)
The time interval from which standard deviation is computed, suggested is an initial value of 1
minute (or 60 samples), should also be configurable. One may have to increase this value to
possibly several minutes.

4.1.1 Monitoring of long-term numerical stability

It has been suggested that monitoring the symmetry of matrix P; (eqgs. 2.8, 2.9) is a means to assess po-
tential numerical stability issues. Thus checking P;(1,2) == F;(2, 1) (with a small numerical tolerance)
could signal problems we would have to address.

4.1.2 Convergence

Convergence of the Kalman algorithm can be estimated by monitoring the value P;(1,1). Convergence
is established when P;(1, 1) has decreased to a small value that remains more or less constant.

Proposed Processing Scheme

An overview of the envisioned processing scheme is given in figure 2.



( Kalman Filter

Kalman Update

1 - 20 smpls/s

200 smpls/s

un-biased
displacement record

un-biased
velocity record

PGA, PGD, PGV reporting } 1- 10 smpls/s
To ShakeMap
P_d, PGD reporting }
T 1 - 10 smpls/s To Associator

Figure 2: Kalman processing and the WARN P-wave detection



5 On-site Monitoring of Data Quality in Accelerometer and PPP
Data

5.1 Accelerometer/Digitizer, on-site Computer System

The accelerometer installations are either TitanSMA, including a digitizer or TitanEA instruments con-
nected to a Centaur digitizer. In both cases digital data are pre-processed by John Dorocizc’ software
which also applies a 0.075Hz high-pass filter which should remove bias from the acceleration time se-
ries. The same software also provides P- and S-wave detections which are signalled to the Kalman
algorithms. By default the Titans or Centaurs synchronize to Universal Time Coordinated (UTC) with
their own independent GPS receivers.

The on-site computer hosting all processing software is synchronizing to UTC by means of the net-
work time protocol (NTP).

5.1.1 Possible error conditions

In normal operations the most likely error to occur is a missed P-wave detection, the instrument may just
be too far from the epicenter, the Kalman algorithms would then be unable to report P, from the unbiased
displacement time series (eq. 6.3). The S-wave, due to its larger amplitude, may still be detected and
should trigger the computation of Ppgp (eq. 6.5).

The discrimination of P- and S-waves however can fail, assigning the wrong wave type to a detection.
This type of error would be detected in the associator/correlator and the reported displacement values
would be dismissed.

5.1.2 Time synchronization

The Titan accelerometers could loose time synchronization, due to a failure of the Titan’s or Centaur’s
independent GPS. Apparently a pending firm-ware upgrade for the Titan-SMA will use network time
protocol (NTP) servers as a back-up.

It still needs to be confirmed that a Nanometrics Centaur digitizer can do the same and that reliable
NTP-servers are pre-configured and are reachable via the Internet connections.

The PPP-Engine transmits three data streams from different sets of corrections to the Kalman algo-
rithms, based on broadcast orbits (BO), floating point ambiguity resolution (FpAR) and integer ambiguity
resolution (IntAR). The PPP-Engine is synchronized to GPS time and thus offset from UTC by a number
of leap-seconds (currently GPS time leads UTC by 18 seconds). This number will change over time. Leap
seconds are added to UTC about every 18 months, normally added either on December 31 or on June
30 but any other last day of the month would also be possible. UTC becomes discontinuous whenever a
leap-second is added which poses a problem since a UTC synchronized accelerometer would nominally
produce excess data with invalid time-stamps whenever the UTC clock is halted for one second.

A future version of the PPP-engine will provide data with UTC time-stamps also to accommodate
timing standards used in seismology. In consequence, whenever a leap-second is added to UTC in the
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future, there will be two one second data sets with identical time stamps. This would also affect potential
heart-beat reporting and downstream data and quality management needs to be prepared to handle those.

5.1.3 Missing Segments of Acceleration Data

A hopefully rare condition could be a missing segment of acceleration data, be it due to a brief breakdown
in transmission from the digitizer or a power failure which only affects the accelerometer. An experiment
with the data from the 2011-03-09 Tohoku earthquake (as in figure 1) suggests that updating the Kalman
equations 3.1 to 3.7 with a,, (eqgs. 3.1 and 3.3) set to zero is a valid strategy as long as PPP samples are
still are being supplied regularly. This will keep matrix Py in a state of convergence and once acceleration
data become available again the unbiased displacement time-series recovers relatively fast. Figures 1, 3,
4 and 5 were generated driving the Kalman algorithm with a PPP variance of 1¢m? and an acceleration
variance of 0.01em?/s*. Surprisingly, increasing the acceleration variance ten-fold during the data-gap
has little influence on the general outcome.
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Figure 3: IWTH22 Kik-Net vertical accelerometer with data-gap from 90 to 120 seconds
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Figure 4: GPS PPP data and unbiased displacements, based on acceleration with data gap, the result with
continuous data is shown in figure 1.
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Figure 5: Difference of unbiased displacement with and without acceleration data gap

10



5.2 PPP-data streams
5.2.1 Latencies in the PPP-data

Normally PPP-data from all three sets of corrections will have latencies in the order of a few seconds.
Latencies should be monitored and if they grow to values over ten seconds, this condition should be
reported to ONC’s data management system.

If latencies exceed the maximum life time of buffered accelerometer data, suggested is a buffer hold-
ing 15 seconds of accelerometer data, the respective Kalman algorithm needs to be suspended and re-set
to initial conditions (see section 3). When the PPP data resume, re-convergence can be monitored as
described in section 4.1.2. When regular latencies of several seconds occur in the PPP data, data delivery
may resume initially at a much higher rate than one sample per second.

5.2.2 Limited availability of PPP data

All three PPP streams may degrade with unfavourable satellite constellations and FpAR-PPP and IntAR-
PPP may become un-available if inbound communications break down. The Kalman algorithm would
then have to fall back on BO-PPP, the corresponding unbiased displacement time-series will have larger
Sigmas (eq. 2.10).

If FpAR-PPP and/or IntAR-PPP data streams resume after an interruption, the associated Kalman
filters would have to be re-set to initial conditions (see section 3). Re-convergence can be monitored as
described in section 4.1.2.

The respective unbiased displacement data become valid only after re-convergence , no P, or Ppgp
values should be reported before (assuming that an earthquake is detected during convergence).

5.2.3 Bias in the PPP data

The output PPP data will be periodically re-calibrated to the GNSS receiver nominal position. However,
there will be a small bias in the relative position data which will vary slowly over time (with tidal fre-
quencies and below). Any significant bias would transfer through the Kalman filter and potentially up-set
the parameter computations needed for earthquake magnitude estimates (see sections 6.4 and 6.5).

It is therefore suggested to remove any bias from the PPP data before they are submitted to the Kalman
filter.

This can be accomplished by computing a moving average as the mean value of the data over a
nominal time interval. The moving average of a signal d(¢) at time ¢ is approximated as

) = %( S d() +d(t)> 5.1)

i=t—N+1
N—-1- 1
N ——d(t—1)+ —d(t 5.2
N =)+ ) 5.2
= ad(t—1)+ (1 —a)d(t), (5.3)
with a = %, where N = AT/t is the window size in samples, AT the corresponding window

lenght in seconds and ¢t is the sampling time interval. The moving average is updated whenever a new
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PPP sample d(¢) becomes available.

To capture the slowly varying bias in the 1Hz PPP data of each channel a time-window of 600 seconds
would be a starting point. The time window should be a configurable value.

The value d(t) then represents the current bias of each channel and can be subtracted from the data
before they enter the Kalman computations.

Updating d(t) should be suspended as soon as the accelerometer detects an
event. We are interested in the conditions immediately before the event.

5.2.4 Quality Indicators in the PPP Data Structures

1. Field 28 : nsat_use, normally nsat_use > 4, nsat_use = ( indicates no solution

2. Fields 13, 14, 15: sN, sE, sh, normally sN and sE < 0.02m and sh < 0.03m would indicate that
the solution has formally converged and should be precise enough to use. However those values
will vary with the current satellite constellation and may also be site specific.

3. Integer Ambiguity Resolution only, Field 34: ffix_amb, a change from ffix_.amb < 4 to ffix_amb
> 4 may introduce a spike in the position time-series and a change in the mean positions. If the
Kalman filter(s) work as intended, a transient in the PPP time-series should have only a small effect
on the unbiased displacement time series.
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6 EEW Parameters from the unbiased displacement time-series

6.1 Overview

There are still only a few seismo-geodetic networks in operation. In consequence there are only few
suitable accelerometer and GNSS data-sets from medium to large earthquakes available today and this in
turn limits the number of studies which have been carried out to investigate their theoretical performance
in the context of Earthquake Early Warning (EEW). Even in Japan the accelerometers of KiK-net and K-
NET (Aoi, Kunugi, and Fujiwara, 2004) are not directly collocated with the GNSS antennas of GEONET
(www.gsi.go.jp, Sagiya, 2004). Due to the high station density of KiK-net and K-NET an accelerometer
can be found though in a few kilometres distance from a GEONET site.

Most studies investigating the joint processing of GNSS and accelerometer data have appeared after
the M 9.0 Tohoku-Oki event in 2011. Earlier studies (Crowell, Bock, and Squibb, 2009) investigated just
the use of high-rate GNSS data alone for EEW. Emore et al., 2007 is often cited as one of the earliest
publications proposing the joint processing of GNSS and strong-motion accelerometer data in the more
general context of seismology. A Kalman filter (Section 1) is used to fuse high-rate GNSS Precise Point
Positioning (PPP) data and acceleration time-series into what is called the unbiased displacement time-
series.

Crowell et al., 2013 developed magnitude scaling relationships for observed P-wave peak displace-
ments from five large earthquakes with magnitudes between M 5.4 and M 9.0 where GNSS-PPP and
accelerometer data from “collocated” sites (accelerometer and GNSS within 4km distance) were avail-
able. They also developed scaling relationships for peak displacements over the whole duration of the
earthquake which can be used to update magnitude estimates periodically until earthquake motions fi-
nally subside and a final static displacement is reached. A follow-up study (Crowell et al., 2016) used
real and synthetic data to investigate scaling relationships for the 28 February 2001, M,,6.8 Nisqually
earthquake.

6.2 Unbiased Displacement Time Series

Currently the PPP engine will supply three different time-series of 1/ z PPP data (in increasing order of
accuracy):

1. based on broadcast orbits (BO PPP)
2. based on floating point ambiguity resolution (floatAR PPP)

3. based on integer ambiguity resolution (intAR PPP)

All three solutions will have different latencies and the only PPP time-series which is independent of
correction streams coming in over the Internet is the broadcast orbits time-series since the associated cor-
rections are transmitted with the GNSS signal. Not all three PPP time-series will always be available,
integer-AR PPP being the most desirable due to its high accuracy.

Each of the three components, (north, east, vertical) of accelerometer and the respective PPP data has
to be processed by one instance of the Kalman filter algorithm.
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6.3 Quantifying Error in the Unbiased Displacements

The output of the Kalman filter will be affected from noise in the accelerometer data as well as in the PPP
displacement data. The accelerometer noise contributions are difficult (if not impossible) to quantify, in
particular during strong ground motions. It is therefore suggested to use the noise, usually quantified as
standard deviation from the PPP displacement data, in the absence of ground shaking, as a proxy since
they are not expected to change dramatically during an earthquake.

However, the standard deviations reported with the respective PPP displacements are not intended or
suited to quantify the uncertainty of the actual PPP displacements. Their standard deviations will vary

over time and have to be estimated directly from the discrete PPP displacement data d(t).

Formally standard deviation is computed as

1 & . RY
o=y ; (d(i - 5t) — d(t)) (6.1)
with
d(t) = % Z d(i - 6t) (6.2)

being the mean value of the displacements d(i - 6t),7 = 1,.., N.

A stable mean value would already be available from the computation of d(t) as in equation 5.3.

The question remains which value of N would be suitable to generate statistically robust and mean-
ingful values for o;. It is strongly recommended to design the buffer size N as a configurable parameter.
With current PPP sampling frequencies of 1 Hz a buffer of 600 seconds worth of data (N = 600) would
be a starting point for experiments.

Standard deviations have to be updated periodically. An update time interval of 1 second is suggested.
This would apply also with higher PPP sampling rates.

Updating o; should be suspended as soon as the accelerometer detects an
event. We are interested in the conditions immediately before the event.

6.4 P-wave Processing

Following Crowell et al., 2013, from the P-wave detection time on, one computes

Py = mazt=% [\/ (dn(D)? + dp(t)?) (6.3)
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over 5 seconds from the P-wave trigger time from the two horizontal components of unbiased dis-
placement d (¢) and dg(t) from each of the available PPP solutions.

The last pre-event, os (eq. 6.1), immediately before the P-wave detection time ¢ p, are reported as

Saltp) = \/ (2, +0t,) (6.4)
The resulting three value pairs
o P7O,2i%(tp)
o P C{loatAR, > Zl‘loatAR (tp)
o PIntAR yintAR(y )
are reported to the associator module with the time-stamp of the initial detection.

A possible extension would be to also report the maximum of the internal Kalman variances P¢(1,1)
(eqn. 3.7, first row, first column element of P¢). We should determine experimentally if those are useful
in combination with the PPP standard deviations in order to quantify the reliability of the P, values.

6.5 Updates over the full Duration of the Earthquake

Large earthquakes can have rupture durations of several hundred seconds. The dynamic displacement
over the full duration was also used by Crowell et al., 2013 to develop a scaling relation based on obser-
vations of the peak ground displacement (PGD) computed from all three components as

Ppap(T) = mazl_, [\/(alN(zf)2 +dp(t)? + dz(t)Q)] (6.5)

It is suggested to compute (update) Ppgp(t) over 200 seconds from the P-wave or S-wave detec-
tion time ¢ = 0 (a station in greater distance may have missed the P-wave) and report its current value
Ppip(T) at 1 second time intervals together with the standard deviations of the PPP samples from equa-
tion 6.1 from immediately before the P-wave detection time ¢ p

Spap(te) = \/ (asz + o3, + afpz) 6.6)
As before reported are the three value pairs
o Prgp(T), X2ep(tr)
o PLER(T), ShE tr)
o PRE(T). SEA 1)
with the associated time-stamps 7.
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6.6 Heartbeat

The standard deviations associated with the PGD values from equation 6.6 could also serve as a heart-
beat message. They are an indicator for the reliability of the different PPP solutions and would also show
which of the three PPP solutions are available at the current instance in time.

7 Possible Extensions

Seismo-geodesy is a rapidly developing field of active research. It is recommended to design the reporting
module so that it can be easily extended to report additional parameters. There is, for example, an
indication (Lior, Ziv, and Madariaga, 2016) that reporting values from the displacement and velocity
time-series, as it is computed by the Kalman filter, can be used in a scheme to estimate the P-wave
predominant period as in Lockman and Allen, 2007, possibly without the saturation problems normally
associated with large magnitude earthquakes. The final co-seismic displacements, after dynamic motions
have stopped, can be used to model fault orientation and slip. Those can be used to derive Tsunami
forecasts (Dragert et al., 2007; Hoechner, Babeyko, and Sobolev, 2008; Hoechner, Babeyko, and Sobolev,
2013; Melgar, Bock, and Crowell, 2012; Melgar and Bock, 2013; Hoshiba and Ozaki, 2014).

8 Earthquake Magnitude Scaling Relationships

8.1 Pd Magnitude Scaling and Error Propagation

The associator module then needs to apply the scaling relationships given in Crowell et al., 2013 to com-
pute and update the magnitude and magnitude error estimates for the respective earthquake.

For each P,
 log(Py) + A+ C log(R)

B

M, (8.1)

with
A=0.893,B=0.562,C" =1.731

P, is displacement in cm, R hypocentral distance in km and log() the base 10 logarithm.

The reported standard deviations, >, (eq. 6.4), are propagated through the corresponding error prop-
agation law to quantify the uncertainty in the magnitude estimate:

d 1
= " M(P) Sy=— 3% 2
ouir, = gp, M) -2 = g pp, B 82)
here In() is the natural logarithm.
8.2 PGD Magnitude Scaling and Error Propagation
For each reported PGD
log( P, D
Mpgp = 2&Pran) + (83)

E — F log(R)
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with
D =5.013,F =1.219, F = 0.178

Here also the reported standard deviations (eq. 6.6) are used to quantify magnitude uncertainty:

- _ dM(Ppgp) I YpGp
Mrrap dPpcp PP ™ Ppep -n(10) - (E — F log(R))

(8.4)

For both scaling relationships P; and PG D displacements are in units of centimeters, distance from
the hypocenter R? is in units of kilometers. Figures 6 and 7 show the respective relationships and may
also be used to determine the respective lower limits of the seismo-geodetic system, assuming a resolu-
tion in the order of 1em. Crowell et al., 2016 modify the PGD relationship with data for the Nisqually
earthquake, mainly to enable a depth-estimate to establish the earthquake hypocenter. This is currently
beyond the scope of our project.

The implementation of magnitude updates within the associator/correlator will be discussed in a
different context.

PPP Pd-Scaling, Crowell et al., 2013

107 102 10°
R [km]

Figure 6: Seismo-geodetic P, scaling relationships for mid-size to large earthquake magnitudes (after
Crowell et al., 2013). Note, that for an M,,5 earthquake the limits of resolution of the seismo-geodetic
system (= lcm, thick black line) are reached at a hypo-central distance of about 10 km.
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PPP PGD-Scaling, Crowell et al., 2013
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Figure 7: Seismo-geodetic PG D scaling relationships for mid-size to large earthquake magnitudes (aft.
Crowell et al., 2013). The limits of resolution for the seismo-geodetic system (= lcm, thick black line)
are reached for M,,5 at a hypo-central distance of about 10 km, for M,,6 at about 100 km.

18



References

Aoi, S., T. Kunugi, and H. Fujiwara (2004). “Strong-motion seismograph network operated by NIED:
K-NET and KiK-net”. In: Journal of Japan Association for Earthquake Engineering 4.3, pp. 65-74.

Bar-Shalom, Yaakov, X. Rong Li, and Thiagalingam Kirubarajan (2001). Estimation with Application to
Tracking and Navigation. Ed. by Yaakov Bar-Shalom. John Wiley & Sons, Ltd. Chap. 6, 271 ff.

Bock, Y., D. Melgar, and B. W. Crowell (2011). “Real-Time Strong-Motion Broadband Displacements
from Collocated GPS and Accelerometers”. In: Bull. Seism. Soc. Am. 101.6, pp. 2904-2925. DOI:
10.1785/0120110007.

Crowell, B. W., Y. Bock, and M. B. Squibb (Dec. 2009). “Demonstration of Earthquake Early Warning
Using Total Displacement Waveforms from Real-time GPS Networks”. In: Seismol. Res. Lett. 80.5,
pp. 772-782.DOI: 10.1785/gssrl.80.5.772.

Crowell, Brendan W. et al. (2013). “Earthquake magnitude scaling using seismogeodetic data”. In: GRL
40, 60896094. DO1: 10.1002/2013GL058391.

Crowell, Brendan W. et al. (2016). “Demonstration of the Cascadia G-FAST Geodetic Earthquake Early
Warning System for the Nisqually, Washington, Earthquake”. In: SRL 87, pp. 930-943. poI: 10 .
1785/0220150255.

Dragert, H. et al. (Dec. 2007). “Towards Real-time Recognition of Near-Field Tsunamigenic Earth-
quakes”. In: AGU Fall Meeting Abstracts, Al.

Emore, G. L. et al. (2007). “Recovering seismic displacements through combined use of 1-Hz GPS and
strong-motion accelerometers,” in: BSSA 97.2, pp. 357-378. DOI1: 10.1785/0120060153.

Hoechner, A., A. Y. Babeyko, and S. V. Sobolev (2013). “Instant tsunami early warning based on real-
time GPS — Tohoku 2011 case study”. In: Nat. Hazards Earth Syst. Sci. 13, pp. 1285-1292. DoOI:
10.5194/nhess-13-1285-2013.

Hoechner, Andreas, Andrey Y. Babeyko, and Stephan V. Sobolev (2008). “Enhanced GPS inversion tech-
nique applied to the 2004 Sumatra earthquake and tsunami”. In: Geophys. Res. Lett. 35.L.08310,
pp. 1-5.DOI1: 10.1029/2007GL033133.

Hoshiba, M. and T. Ozaki (2014). “Earthquake Early Warning and Tsunami Warning of the Japan Me-
teorological Agency, and Their Performance in the 2011 off the Pacific Coast of Tohoku Earthquake
(Mw 9.0)”. In: Early Warning for Geological Disasters. Ed. by F. Wenzel and J. Zschau. Advanced
Technologies in Earth Sciences. Springer-Verlag Berlin Heidelberg, pp. 1-28. DO1: 10.1007/978~
3-642-12233-0_1.

Kalman, R. E. (1960). “A New Approach to Linear Filtering and Prediction Problems”. In: Transactions
of the ASME, Journal of Basic Engineering 1, pp. 35-45.D01: 10.1115/1.3662552.

Li, Xingxing (2015). “Real-time high-rate GNSS techniques for earthquake monitoring and early warn-
ing”. PhD thesis. Technische Universitit Berlin.

Lior, Itzhak, Alon Ziv, and Raul Madariaga (2016). “P-Wave Attenuation with Implications for Earth-
quake Early Warning”. In: BSSA 106, pp. 13-22. DOI: 10.1785/0120150087.

Lockman, Andrew B. and Richard M. Allen (2007). “Magnitude-Period scaling relations for Japan and
the Pacific Northwest: Implications for Earthquake Early Warning”. In: BSSA 97.1B, pp. 140-150.
DOI: 10.1785/0120040091.

Mayhew, David McNeil (1999). “Multi-rate Sensor Fusion for GPS Navigation Using Kalman Filtering”.
MA thesis. Virginia Polytechnic Institute and State University.

Melgar, D., Y. Bock, and B. W. Crowell (2012). “Real-time centroid moment tensor determination for
large earthquakes from local and regional displacement records”. In: Geophys. J. Int. 188,703 —718.
DOI: 10.1111/5.1365-246X.2011.05297.x.

19


http://dx.doi.org/10.1785/0120110007
http://dx.doi.org/10.1785/gssrl.80.5.772
http://dx.doi.org/10.1002/2013GL058391
http://dx.doi.org/10.1785/0220150255
http://dx.doi.org/10.1785/0220150255
http://dx.doi.org/10.1785/0120060153
http://dx.doi.org/10.5194/nhess-13-1285-2013
http://dx.doi.org/10.1029/2007GL033133
http://dx.doi.org/10.1007/978-3-642-12233-0_1
http://dx.doi.org/10.1007/978-3-642-12233-0_1
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1785/0120150087
http://dx.doi.org/10.1785/0120040091
http://dx.doi.org/10.1111/j.1365-246X.2011.05297.x

Melgar, Diego and Yehuda Bock (2013). “Near-field tsunami models with rapid earthquake source inver-
sions from land- and ocean-based observations: The potential for forecast and warning”. In: Journal
of Geophysical Research: Solid Earth 118.11, pp. 5939-5955. 1SSN: 2169-9356. DOI: 10.1002/
2013JB010506. URL: http://dx.doi.org/10.1002/2013JB010506.

Melgar, Diego et al. (2013). “On robust and reliable automated baseline corrections for strong motion
seismology”. In: JGR 118, 11771187. DOI: 10.1002/jgrb.50135.

Niu, Jieming and Caijun Xu (2014). “Real-Time Assessment of the Broadband Coseismic Deformation
of the 2011 Tohoku-Oki Earthquake Using an Adaptive Kalman Filter”. In: SRL 85.4, pp. 836-843.
DOI: 10.1785/0220130178.

Rosenberger, Andreas (2014). Three component accelerometer signal processing for WARN. Tech. rep.
Ocean Networks Canada, University of Victoria.

Sagiya, T. (2004). “A Decade of GEONET: 1994-2003 - The continous GPS observation in Japan and its
impact on eathquake studies”. In: Earth Planets Space 56. DO1: 10.1186/BF03353077.

Saunders, Jessie K. et al. (2016). “Seismogeodesy Using GPS and Low-Cost MEMS Accelerometers:
Perspectives for Earthquake Early Warning and Rapid Response”. In: BSSA 106, pp. 1-21. DOI:
10.1785/0120160062.

Smyth, Andrew and Meiliang Wu (2007). “Multi-rate Kalman filtering for the data fusion of displacement
and acceleration response measurements in dynamic system monitoring”. In: Mechanical Systems and
Signal Processing 21, 706723. DO1: 10.1016/j.ymssp.2006.03.005.

20


http://dx.doi.org/10.1002/2013JB010506
http://dx.doi.org/10.1002/2013JB010506
http://dx.doi.org/10.1002/2013JB010506
http://dx.doi.org/10.1002/jgrb.50135
http://dx.doi.org/10.1785/0220130178
http://dx.doi.org/10.1186/BF03353077
http://dx.doi.org/10.1785/0120160062
http://dx.doi.org/10.1016/j.ymssp.2006.03.005

	Overview
	The Basic Kalman Equations
	The Estimation Problem

	Multi-rate Algorithm
	Variances of accelerometer and PPP data

	Implementation
	Configurable Parameters
	Monitoring of long-term numerical stability
	Convergence


	On-site Monitoring of Data Quality in Accelerometer and PPP Data
	Accelerometer/Digitizer, on-site Computer System
	Possible error conditions
	Time synchronization
	Missing Segments of Acceleration Data

	PPP-data streams
	Latencies in the PPP-data
	Limited availability of PPP data
	Bias in the PPP data
	Quality Indicators in the PPP Data Structures


	EEW Parameters from the unbiased displacement time-series
	Overview
	Unbiased Displacement Time Series
	Quantifying Error in the Unbiased Displacements
	P-wave Processing
	Updates over the full Duration of the Earthquake
	Heartbeat

	Possible Extensions
	Earthquake Magnitude Scaling Relationships
	Pd Magnitude Scaling and Error Propagation
	PGD Magnitude Scaling and Error Propagation


