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ABSTRACT 

Advances in standardization of observational healthcare data have enabled methodological 
breakthroughs, rapid global collaboration, and generation of real-world evidence to improve patient 
outcomes.  Standardizations in data structure, such as use of Common Data Models (CDM), need to be 
coupled with standardized approaches for data quality assessment.  To ensure confidence in real-world 
evidence generated from the analysis of real-world data, one must first have confidence in the data 
itself. The Data Quality Dashboard is an open-source R package that reports potential quality issues in an 
OMOP CDM instance through the systematic execution and summarization of over 3,300 configurable 
data quality checks.  We describe the implementation of check types across a data quality framework of 
conformance, completeness, plausibility, with both verification and validation.  We illustrate how data 
quality checks, paired with decision thresholds, can be configured to customize data quality reporting 
across a range of observational health data sources.  We discuss how data quality reporting can become 
part of the overall real-world evidence generation and dissemination process to promote transparency 
and build confidence in the resulting output. Transparently communicating how well CDM standardized 
databases adhere to a set of quality measures adds a crucial piece that is currently missing from 
observational research. Assessing and improving the quality of our data will inherently improve the 
quality of the evidence we generate. 
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INTRODUCTION 

As the amount of observational health data available to researchers continues to grow, 
regulatory agencies like the U.S. Food and Drug Administration (FDA)[1] and the European Medicines 
Agency (EMA)[2] have seen the value of using real-world evidence but there is still some concern and 
lack of trust in real-world data. Use of standardized data structures like the OMOP Common Data Model 
(CDM)[3] have allayed some of these fears but standardization alone is not enough. Rigorous data 
quality assessments are needed to evaluate the quality of data with which evidence is generated. 

The use of the OMOP CDM has lain the groundwork for impressive methodological and clinical 
breakthroughs in the areas of population-level effect estimation, patient-level prediction, and clinical 
characterization.[4–6] The recent Large-Scale Evidence Generation and Evaluation across a Network of 
Databases (LEGEND) study published in the Lancet is an exemplar of these ideas as the authors not only 
delivered relevant information about first-line antihypertensive drugs but also a novel approach to 
generating evidence using a systematic framework.[7] However, in order for regulatory agencies and 
clinicians to make decisions using such evidence, there needs to be trust not only in the methodologies 
employed but the underlying data itself.  

 The pitfalls of the secondary use of observational data to support research are well 
documented.[8–13] Typically these data are collected either for billing or diagnostic purposes and not 
with research endpoints in mind. Von Lucadou, et al. notes that information in the electronic health 
record may not be as granular as data captured during the course of a clinical trial and time stamps of 
clinical events should be examined prior to inferring temporal relationships.[9] Additionally, it is often 
the case that clinical ideas are captured in free-text fields, as described by Varela, et al.[11] It can be 
easy to overlook the multiple ways a white blood cell count is recorded, for example. One physician 
might use “WBC” while another uses “White Blood Cell” and yet another “White BC”. These types of 
inconsistencies can lead to misclassification and measurement error.  

 Such issues are concerning but not unknown to clinical research networks (CRNs). The Sentinel 
Initiative,[14,15] the National Patient-Centered Clinical Research Network (PCORnet®),[16,17] and the 
Pediatric Learning Health System (PEDSnet),[18,19] among others, have all built processes and tools 
meant to identify data quality problems well in advance of any analytics that might be performed using 
the data. Historically, OHDSI promoted a tool known as the Automated Characterization of Health 
Information at Large-scale Longitudinal Evidence System (ACHILLES) to assess the quality of data in the 
OMOP CDM format.[20] ACHILLES is primarily used for database characterization. It computes a set of 
aggregate summary statistics such as gender and age stratifications of persons included, average follow-
up time, and distribution of diagnosis codes, among others. These statistics are then assessed for quality 
by running the ACHILLES Heel rules against the aggregated summaries rather than on the database 
itself. These rules include looking for patients with an age less than zero and prescription dispensing 
records with implausible drug quantities.  

A comparison of the data quality assessment (DQA) programs across six different CRNs in 2017 
revealed that OHDSI had the fewest data quality checks in place (172) while the other networks ranged 
from 875 up to 3,434 checks.[21] The reason for this difference is that OHDSI as an open collaborative 
has traditionally left DQA to the individual data owners. Lead protocol investigators are responsible for 
making a “fitness-for-use” decision and independently determine if a dataset is suitable to answer a 
clinical question. As OHDSI continues to move in the direction of large-scale network research[22–24] a 
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more robust data quality tool is needed to ensure that a participant’s data comply with community 
defined standards.  

It is our goal to address the need for better data quality processes with the development of the 
Data Quality Dashboard (DQD). In this paper we describe the methods used to design the tool through 
community engagement. Next, we describe the inner workings of the DQD and run it against a US claims 
database as a proof-of-concept to show utility in practice. Finally, we discuss future enhancements and 
the potential for this tool to change the way observational data is utilized within OHDSI and beyond. 

 

 

BACKGROUND 

To take advantage of the tools and methodologies[4,25] available to the OHDSI community, 
collaborators must first convert their data to the OMOP CDM. Data owners, clinicians, and OMOP 
experts all come together to standardize a source database by putting it in the structure of the model 
and applying agreed upon conventions through a process known as extract, transform, load (ETL). This is 
the expected function of any standard data model but where OMOP differs is that not only the structure 
but also the content of the data is standardized, harmonizing on the SNOMED vocabulary[26] for 
conditions and RxNorm vocabulary[27] for drugs, for example. It is this semantic standardization that 
facilitates international adoption and fosters rapid collaboration. 

Once a database is converted to the CDM ideally it should be assessed for quality prior to using 
it for generating evidence. Some collaborators, like PEDSNet, designed their own data quality tools to 
keep track of metrics they were most interested in.[19] For many collaborators, the ACHILLES Heel 
report served this function up until now. The tool ran a set of checks against a CDM instance and 
reported them back to the user as an available option in the Achilles characterization package1. The Heel 
report gave an overview of potential data quality issues, but it did not allow the user to change how a 
pass or fail for a given check was determined, did not share the SQL query that was run to produce the 
result, nor did it give the option to capture any metadata about why a perceived quality issue might be 
occurring. There is also no process for extending the tool either by adding features or new data quality 
checks.  

We therefore developed the DQD as a stand-alone R package to improve upon prior work and to 
fill in the gaps left by the Achilles Heel report. By focusing our attention to assessing data after the 
conversion to the OMOP CDM, the standardized structure and content directly enabled the creation of a 
standardized quality control framework with the DQD at the center (figure 1).  

 
1 https://github.com/ohdsi/achilles 
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Figure 1: The standard quality control framework 

 

MATERIALS AND METHODS 

To lead this initiative a few interested OHDSI collaborators formed a committee to identify high-
level data quality issues important to the community. We aligned with the framework described by 
Kahn, et. al.[28] as a way to organize our approach. Kahn and his colleagues identified the categories of 
conformance, completeness, and plausibility into which most, if not all, data quality checks can be 
grouped.  

Conformance checks measure how well a database conforms to specified formats and relational 
constraints. The committee applied this idea to the OMOP CDM, describing issues such as whether a 
CDM instance contains all required fields, if fields that are defined as primary keys contain unique 
values, and if a foreign key value is present in its corresponding primary key field.  

Completeness checks look at the frequency of values in a given dataset without examination of the 
values themselves. In terms of the CDM the idea of completeness can likewise be used to understand 
the quality of vocabulary mapping. The committee identified this as an area of importance for an OMOP 
data quality solution, including checks to evaluate the proportion of source values (ICD10CM, CPT4, 
Read, etc.) that were not mapped to standard concepts.  

Plausibility checks are meant to gauge the believability of values in a dataset. This can take many 
forms like making sure a person’s health care encounters all occur on or after their birthdate or looking 
to see that no one has a weight of zero kilograms recorded.  

After deciding on the data quality checks to implement in a new data quality tool the committee 
turned their sights to the features they would like included. These were chosen based on discussions 
with key stakeholders from both academia and industry about their needs in this space. Considering the 
myriad of infrastructure constraints present in the community it should be a stand-alone application 
that any user can run out-of-the box. It should be easily scalable to allow inclusion of additional checks 
over time. It should also be flexible to allow adjustment of the checks and failure thresholds based on 
apriori knowledge of a database. The results of the data quality assessment should be easily shareable, 
in some form or fashion that is not a burden to the data owner.  
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With these requirements in mind, we devised a framework that would allow us to use the structure 
of the data model to our advantage. Since we already know the schema of every database that will run 
this tool, we didn’t have to focus on how to write and execute individual data quality checks; instead, we 
were able to abstract a layer and define data quality ideas. For example, what if it is important to assess 
the number of persons in the PERSON table that don’t have a record in the VISIT_OCCURRENCE table? 
That check can be assessed using a simple SQL statement against an OMOP CDM instance: 

SELECT COUNT (DISTINCT P.person_id)  

  FROM PERSON as P 

  LEFT JOIN VISIT_OCCURRENCE as V 

  ON P.person_id = V.person_id 

  WHERE V.person_id IS NULL 

As a data quality idea we are simply evaluating the degree to which persons in the PERSON table are 
represented in a fact table (VISIT_OCCURRENCE in this example). In the OMOP CDM the field 
PERSON.person_id is a primary key with corresponding foreign keys in all clinical fact tables. Using that 
constraint as our guide, the abstraction of this data quality check to a data quality idea results in a SQL 
statement like this: 

SELECT COUNT (DISTINCT P.person_id)  

  FROM PERSON as P 

  LEFT JOIN @cdmTable 

  ON P.person_id = @cdmTable.person_id 

  WHERE @cdmTable.person_id IS NULL 

 Where @cdmTable represents the universe of clinical fact tables that have a foreign key to the 
PERSON table. Each of them can be rotated into the SQL statement to take the place of the parameter. If 
there are 15 of such tables then the above SQL would automatically generate 15 data quality checks 
from one data quality idea.  

Using the process described above as our foundation we developed the Data Quality Dashboard 
(DQD) R package that systematically runs and evaluates data quality checks based on the structure of 
the Common Data Model and pre-specified failure thresholds.  

To test it, the DQD was run on the IBM Marketscan® Multi-State Medicaid (MDCD) database. This 
database contains adjudicated US health insurance claims for Medicaid enrollees from multiple states 
and includes hospital discharge diagnoses, outpatient diagnoses and procedures, and outpatient 
pharmacy claims as well as ethnicity and Medicare eligibility.  The major data elements contained within 
this database are outpatient pharmacy dispensing claims, inpatient, and outpatient medical claims. The 
data does not contain laboratory results. 
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RESULTS 

In total, 20 high-level data quality ideas were identified: 5 completeness, 8 conformance, and 7 
plausibility, the complete list of which is included in appendix 1. The example given above to assess the 
extent to which persons in the PERSON table are represented in the clinical fact tables became the data 
quality idea, or check type, measurePersonCompleteness. In terms of OMOP, completeness means not 
only missingness but vocabulary mapping completeness. The results of two check types, 
standardConceptRecordCompleteness (SCRC) and sourceValueCompleteness (SVC), work together to 
show how well the diagnostic, procedural, and drug codes, etc. (source values) in a database have been 
mapped to the standard terminology as defined by OMOP. SCRC counts the number of records for a 
given table that have been mapped to a CONCEPT_ID of zero where a Standard Concept is expected. If 
applied to the CONDITION_OCCURRENCE table, for example, it would count the number of records with 
a CONDITION_CONCEPT_ID of zero. In a situation where a source value in a database cannot be mapped 
to a Standard Concept, a zero is used to denote “No matching concept”. Therefore, if a large number of 
records in a table have a Standard Concept of zero, those records cannot be used in an analysis as 
standardized analytics rely on standardized vocabularies.  

The SVC check type, on the other hand, quantifies the number of distinct source values in a 
database that have been mapped to zero.  Using the example from earlier, the values “WBC”, “White 
Blood Cell”, and “White BC” are all ways in which the clinical idea of a white blood cell count 
measurement might be represented. These values are all free text and as such do not have an automatic 
mapping to a Standard Concept. Thus, records with these values would be given a Standard Concept Id 
of zero during the ETL conversion process. If database A has 5,000 records in the resulting 
MEASUREMENT table with these source values, then the SCRC check type applied to the 
MEASUREMENT_CONCEPT_ID field in the MEASUREMENT table would return 5,000 records mapped to 
zero while the SVC check type applied to the same field would return 3 distinct values mapped to zero. 
This can be interpreted to mean there are 5,000 records representing 3 distinct values that are missing a 
mapping to a Standard Concept in the MEASUREMENT_CONCEPT_ID field of database A. The 
relationship between these two checks will signal different vocabulary or ETL changes to be made. A 
high SCRC and high SVC might indicate that the database has a proprietary coding system not 
represented in the OMOP vocabulary. In such case either the coding system is added to the vocabulary 
or the source codes are manually mapped to standard concepts. A high SCRC and low SVC is often due 
to a small number of catch-all values like “unknown” or “UNK”. These do not have any real meaningful 
analytic use so the records are either ignored (by increasing the failure threshold) or they are removed. 
A low SCRC and high SVC usually means that the source values representing the highest number of 
records were mapped to standard concepts and the rest were mapped to zero. This is an accepted ETL 
practice as the records mapped to zero are retained for later use if necessary. A low SCRC and low SVC 
means that a large number of source codes representing a large number of records were mapped to 
standard concepts. This is the ideal scenario for an ETL though it is important to monitor these values 
over time in the event the source coding practices change.      

The plausibleTemporalAfter check type is used to evaluate the temporal relationships between 
date values. Applied to the VISIT_OCCURRENCE table this check quantifies the number of visits with a 
visit end date prior to the visit start date. If such visits are found, the ETL must make a choice how to 
handle them. The most common practice is to choose either the start or end date as listed in the source 
data and use that value for both fields (VISIT_START_DATE, VISIT_END_DATE) in the standardized 
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dataset. This allows for the information from the visit to be retained while eliminating the temporal 
inconsistency.  

When the plausibleTemporalAfter check type is applied to the CONDITION_OCCURRENCE table it 
becomes a way to measure the number of condition records that occur prior to a person’s birth. There 
can be many reasons for records to be written with incorrect dates but usually these are patient history 
records where no date was given by the patient and, instead, a default date is assigned by the electronic 
health record. As it impossible to discern the correct date for these records the typical recourse is to 
remove them.  

These check types were all written as parameterized SQL statements. To resolve and then run these 
SQL statements the DQD reads a set of included control files that detail each table and field in the CDM, 
their constraints, and their relationships to one another. These files also indicate which data quality 
check types should be run on which fields and what thresholds should be applied to the results to 
determine a pass or fail, all of which can be edited by the user. The tool then takes these files and swaps 
out the parameters in the SQL statements for the values indicated in the control files using the 
SqlRender R package.[29] 

With this approach the 20 checks types are resolved to over 3,300 individual quality checks: 396 
completeness, 779 conformance, and 2126 plausibility. The DQD then compiles all results into a JSON 
file as the default output, though the user can also specify the option to write the results back to a table 
in the database. The resulting JSON (or table) contains all information produced by the tool and is read 
by the package to render an interactive Rshiny[30] user interface (figure 1).  

 The first screen that greets the user is the overview tab, shown in figure 2 displaying the result 
of running the DQD on the MDCD database. The tables NOTE, NOTE_NLP, and SPECIMEN are not 
populated for MDCD, resulting in a lower total number of checks at 3,124 instead of 3,300.  

 

Figure 2: The overview tab of the DQD showing data quality check pass percentages by category in 
MDCD. 

 The overview tab gives a high-level summary of the total number of passes and failures by Kahn 
category. In figure 2, the database examined has 13 conformance failures, or instances where it does 
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not conform to the specifications of the OMOP CDM. It has 5 completeness failures related to 
potentially missing data and 12 plausibility failures which could be a myriad of issues including incorrect 
dates or implausible measurement values. To explore each of these failures the results tab (figure 3) 
shows one line per check run. Across the top is the option to filter by pass/fail status, CDM table, and 
Kahn context. The plus sign on each line expands to show the exact SQL query that was run to achieve 
that result, allowing the user to pinpoint the identified failing records in their dataset. A publicly 
available instance of these data quality results can be found at 
https://data.ohdsi.org/DataQualityDashboardMDCD/ and the JSON file with the full result set is 
available in supplementary materials. 

 

 

Figure 3: DQD results page with all data quality checks run and their outcomes. 

 One of the major findings from this exercise showed a high SCRC (19.20%) and high SVC 
(23.34%) for the PROCEDURE_CONCEPT_ID field of the PROCEDURE_OCCURRENCE table. Further 
investigation found the problem was due to a previously unaccounted for source vocabulary. Unlike 
most commercial health insurance plans, state Medicaid coverage usually includes routine dental care. 
These procedures are coded using Current Dental Terminology (CDT). This had not been documented in 
the ETL so all dental records were being mapped to a PROCEDURE_CONCEPT_ID of zero. To fix this issue 
the CDT vocabulary was added to the ETL and the ETL was re-run.  

 The DQD is available on GitHub[31] as a fully executable R[32] package, supporting OMOP CDM 
versions 5.2.2 and 5.3.1. It works with multiple database management systems including PostgreSQL, 
Microsoft SQL Server, and Redshift. All documentation can be found at 
https://ohdsi.github.io/DataQualityDashboard/.  
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Discussion 
  As use of observational health data continues to increase, two of the largest regulatory 

agencies in the world have established plans for how these data can be used to support data-driven, 
regulatory decision-making. The U.S. Food and Drug Administration (FDA) published the Framework for 
FDA's Real-World Evidence Program in 2018 which details how and in what capacity real world evidence 
generated from real world data might be evaluated for its potential use to support approvals of new 
drug indications or to satisfy post-marketing safety studies.[1] Similarly, the Heads of Medicines Agency 
(HMA) and the European Medicines Agency (EMA) in 2017 initiated a joint Big Data Task Force. A 
summary report from 2019 describes a strategy to understand observational data such that they might 
be ready to make use of it in a regulatory capacity.[2] These reports are robust, especially when 
discussing how real-world evidence supporting drug safety and effectiveness research should be 
conducted. Both groups agree that data quality is important and should be considered when 
determining whether a set of data is suitable to answer specific questions. This especially timely given 
the COVID-19 pandemic and rush to publish any information that may further understanding of the 
natural history and clinical treatment of the disease.[33]  

The Data Quality Dashboard is well-poised to answer the call for higher quality data. It is at the 
center of the standard quality control framework (figure 1), providing critical insights to data owners 
that then feed back into the ETL process, ultimately resulting in research-ready data. There is evidence 
of broad adoption of the DQD at the network level as the European Health Data and Evidence Network 
(EHDEN)[34] and the National COVID Cohort Collaborative (N3C)[35] both leverage the framework to 
ensure that participating databases pass critical quality control measures. As these networks conduct 
research and learn from their data, any quality issues identified during analysis will be incorporated back 
into the tool. Continuous iteration on the set of data quality checks in coordination with research 
creates a living system that improves as we advance our understanding. The DQD will also continue to 
add features and expand the check types it covers. Initial roadmaps include enabling it to be run on a 
cohort rather than the entire database, extending the check types to include the OMOP vocabulary, 
incorporating prevalence measures, and evaluating temporal stability.  

Other CRNs have built tools and processes for evaluating and managing the quality of data at the 
network level. The PEDSNet DQ Workflow [36] utilizes a similar software architecture in that it relies 
heavily on R, is designed to be applied to databases on the OMOP CDM standard (modified slightly for 
pediatric use) and can be run on multiple different database management systems (PostgreSQL, Oracle, 
MySQL, SQLite, or SQL Server). PEDSnet is supported by the Patient Centered Outcomes Research 
Institute (PCORI) and brings together data from various hospitals into one large, pediatric database. This 
structure is reflected in the DQ Workflow as the coordinating center has more control over how data 
quality issues are reported and tracked across the network. Sites run the quality assessment, the results 
of which are then sent to the coordinating center. Results are reviewed by a data scientist who discusses 
any issues and corrections needed with the site. The Sentinel Initiative [14,15] has a similar system 
where Data Partners run a data quality study package, results are sent to the Sentinel Operations 
Center, and the Operations Center reviews and recommends changes to the ETL. [37] Sentinel data 
quality checks are divided into different levels and each Data Partner must pass all level 1 checks before 
moving on to level 2, etc. PCORNet has a five-step data curation process that also involves review of the 
data quality results by a Coordinating Center. This review is done in cycles whereby network partners 
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are expected to correct any model conformance issues before running completeness checks, for 
example.  

OHDSI, in contrast, is a distributed data network with no central coordination of data. Each member 
is responsible for their own data and ETL processes. This is a decided choice that allows for faster, 
broader reaching collaboration. The OMOP CDM could of course be used in a distributed network but 
sharing protocols and analytic code rather than data eliminates the need to take data beyond the 
firewall of the data holder. Such a system allows far more sites around the world to contribute as there 
is no longer an issue of data governance.  Therefore, to ensure the quality of the OHDSI network, the 
DQD had to both assess and communicate the quality of a database while taking differences at the 
source into account. This led to a tool built using a dynamic framework that expands 20 check types into 
over 3,300 individual checks. Data owners have full control over which checks are run and how they are 
assessed for failure while the resulting report details every single check, pass or fail, in an easy-to-share 
way. It is our vision that this becomes the way data quality is shared among networks, with reviewers, 
and with regulators. The most recent papers published using the PEDSnet, PCORNet, and Sentinel 
networks [38–40] either do not mention how the data used were assessed for quality or they touch on it 
very briefly. Instead, with a tool like the DQD, a JSON file(s) can be shared as additional material to a 
publication detailing all data quality checks that were run on the database in which the study was 
executed. This level of transparency is unprecedented in current literature but is necessary in an era 
where we are asked to trust evidence generated by the scientific community with little to no insight into 
the data used.   

 The Data Quality Dashboard has established a new way to garner trust in real-world data. 
Transparently communicating how well CDM standardized databases adhere to a set of quality 
measures adds a crucial piece that is currently missing from observational research. Assessing and 
improving the quality of our data will inherently improve the quality of the evidence we generate.  
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APPENDIX 

Table 1: Data quality check types (ideas) by context and category, also available here: 
https://ohdsi.github.io/DataQualityDashboard/articles/CheckTypeDescriptions.html 

Check Name  Check Description  Kahn Category  

measurePerson 

Completeness  

The number and percent of persons in the CDM that do not have 
at least one record in the @cdmTableName table  

Completeness  

cdmField  A yes or no value indicating if all fields are present in the 
@cdmTableName table as expected based on the specification.   

Conformance  

isRequired  The number and percent of records with a NULL value in the 
@cdmFieldName of the @cdmTableName that is considered not 
nullable.  

Conformance  

cdmDatatype  A yes or no value indicating if the @cdmFieldName in the 
@cdmTableName is the expected data type based on the 
specification.  

Conformance  

isPrimaryKey  The number and percent of records that have a duplicate value in 
the @cdmFieldName field of the @cdmTableName.  

Conformance  

isForeignKey  The number and percent of records that have a value in the 
@cdmFieldName field in the @cdmTableName table that does 
not exist in the @fkTableName table.  

Conformance  
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fkDomain  The number and percent of records that have a value in the 
@cdmFieldName field in the @cdmTableName table that do not 
conform to the @fkDomain domain.  

Conformance  

fkClass  The number and percent of records that have a value in the 
@cdmFieldName field in the @cdmTableName table that do not 
conform to the @fkClass class.  

Conformance  

isStandardValid 

Concept  

The number and percent of records that do not have a standard, 
valid concept in the @cdmFieldName field in the 
@cdmTableName table.   

Conformance  

measureValue 

Completeness  

The number and percent of records with a NULL value in the 
@cdmFieldName of the @cdmTableName.  

Completeness  

standardConcept 

RecordCompleteness  

The number and percent of records with a value of 0 in the 
standard concept field @cdmFieldName in the 
@cdmTableName table.  

Completeness  

sourceConcept 

RecordCompleteness  

The number and percent of records with a value of 0 in the source 
concept field @cdmFieldName in the @cdmTableName table.  

Completeness  

sourceValue 

Completeness  

The number and percent of distinct source values in the 
@cdmFieldName field of the @cdmTableName table mapped to 
0.  

Completeness  

plausibleValueLow  The number and percent of records with a value in the 
@cdmFieldName field of the @cdmTableName table less than 
@plausibleValueLow.  

Plausibility  

plausibleValueHigh  The number and percent of records with a value in the 
@cdmFieldName field of the @cdmTableName table greater than 
@plausibleValueHigh.  

Plausibility  

Plausible  

TemporalAfter  

The number and percent of records with a value in the 
@cdmFieldName field of the @cdmTableName that occurs prior 
to the date in the @plausibleTemporalAfterFieldName field of the 
@plausibleTemporalAfterTableName table.  

Plausibility  

Plausible  

DuringLife  

If yes, the number and percent of records with a date value in the 
@cdmFieldName field of the @cdmTableName table that occurs 
after death.  

Plausibility  

plausibleValueLow  For the combination of CONCEPT_ID 
@conceptId (@conceptName) and UNIT_CONCEPT_ID 
@unitConceptId (@unitConceptName), the number and percent 
of records that have a value less than @plausibleValueLow.  

Plausibility  
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plausibleValueHigh  For the combination of CONCEPT_ID 
@conceptId (@conceptName) and UNIT_CONCEPT_ID 
@unitConceptId (@unitConceptName), the number and percent 
of records that have a value higher than @plausibleValueHigh.  

Plausibility  

plausibleGender  For a CONCEPT_ID @conceptId (@conceptName), the number 
and percent of records associated with patients with an 
implausible gender (correct gender = @plausibleGender).  

Plausibility  

 

SUPPLEMENTARY MATERIAL 

The file results_cdm_mdcd.json has the full data quality results for IBM Marketscan® Multi-State 
Medicaid. 
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