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The results of improving ore crushing in a high- 
pressure roller-press are presented. Application of  
a roller-press enables higher crushing efficiency due 
to both power saving and reduction of sizes of ore 
crush products to release mineral aggregates. Ore 
disintegration by compressive strain prevails among 
currently applied crushing methods. Disintegration 
occurs not only due to the compressive, but also to 
the shear strain. Considering smaller power con­
sumption of the shear strain than that of the com­
pressive strain, it is concluded that roller-press 
application is quite efficient.

Simulation of crushing by using the Bond law 
frequently applied in practice is under consider­
ation. It is essential to consider the stochasticity of 
the ore flow to be crushed. Presentation of this flow 
as a random figure by transforming it by the Bond 
crushing law results in a probabilistic characteristic 
of the crushing result. This characteristic enables 
finding properties of the crush product and proba­
bilistic formulation of the problem of improving the 
crushing process by setting a relevant functional.  
To apply the results obtained to practical uses, 
the crushing process is simulated. The theoreti­
cal results are confirmed by setting the stochastic 
properties of the input ore flow by means of Rosen-
Rammler’s law followed by statistical substantia­
tion of the conducted calculations in Mathcad. After 
stimulation and considering stochastic properties 
of the feed ore flow, the solution of the optimal 
stabilization problem reveals that stabilization is 
achieved, while dispersion in relation to the stabili­
zation goal reduces sharply almost five-fold
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1. Introduction

Modern requirements to the end quality of beneficiated 
ore indicate the necessity to apply innovative methods to 
its treatment. This results in considering peculiarities of ore 
treatment on each of beneficiation stages. The efficiency of 
ore beneficiation depends on the degree of minerals release in 
ore treatment with their simultaneous minimal crushing [1]. 
In spite of great achievements in the field of ore treatment, 
very few technological solutions meet one of the principal 
requirements of optimal beneficiation – no extra crushing. 
It is conditioned by poor understanding of the selective 
disintegration mechanism, uninvestigated connections of ore 
properties, minerals, disintegration conditions and grinding 
indices. At initial disintegration stages, textual characteris-
tics of ores and microscopic physical and mechanical proper-
ties of rocks play a major role in forming structural elements 
of mineral release. While reducing a lump size, the role of 
structural characteristics of ore and properties of individual 
minerals and aggregates is becoming more important. This 
assumes the increased number of marketable flows and «fine» 

adjustment of relevant stages of ore treatment including both 
disintegration and separation.

Analysis of ore treatment as the initial stage of bene-
ficiation indicates that crushing should be paid particular 
attention to. It is associated with reduced specific energy 
consumption as compared with grinding as well as with 
finer crushing products in modern roller presses, enabling 
greater efficiency of subsequent stages of beneficiation. For 
this reason, to improve the efficiency of ore treatment, most 
of disintegration operations should be focused on crushing.

It is evident that researches and practical uses are of 
particular topicality here in current conditions of ore benefi-
ciation as requirements to characteristics of end products of 
processing are rising.

2. Literature review and problem statement

[2] investigates the issues of developing determined
models of crushing. It is revealed that after considering the 
physical essence and analyzing the suggested theories, it is  
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possible to build systems of controlling crushing cycles. At 
the same time, the issues of assessing the efficiency of these 
control systems remain unsolved. It can be explained by the 
absence of reliable tools for collecting and processing the 
data on crushing processes [3] investigates the issues of iden-
tifying specific power expenses for fixed-bed crushing in cone 
crushers considering regularities of particle disintegration. 
The algorithm of calculating specific power consumption 
for fixed-bed crushing in cone crushers is developed. With 
that, the research results are tested in cone crushers only to 
obtain cubical crushed stone. The authors of [4] deal with the 
stochastic simulation of disintegrating polycrystalline par-
ticles resulted from ore destruction in crushing operations. 
They indicate that introduction of stochastic functions of 
size reduction and classification of particles into the kinetic 
equation of disintegration and release enables forecasting 
technological indices of ore material treatment. Meanwhile, 
the described simulation method requires a greater volume of 
a priori information followed up by its processing.

Scientific papers describing ore fixed-bed treatment in 
roller-presses are of particular interest. It is stated that this 
method enables accomplishing several crushing and grinding 
stages in a single apparatus and reducing power consumption 
simultaneously. Besides, control over the disintegration pro-
cess in this technology will increase the release of valuable 
components due to reducing their overgrinding. All the re-
searchers of these issues indicate that the granulometric com-
position of the crushing process is the basic characteristic of 
a roller-press functioning. Yet, there is no single opinion as to 
simulating this very characteristic [5] considers simulation 
of curves of granulometric composition of crush products 
and notes that crushing results can be controlled by select-
ing a particular value of pressure on the ore bed. [6] applies 
the distribution function of disintegration of ore lumps that 
is associated with the characteristic of the initial material 
to assessing ore sizes [7] also indicates that besides the ore 
disintegration distribution, the clearance between rollers 
has a great impact on the size of crush products. The authors 
of [8] note that the granulometric composition of products 
is influenced by the location of rollers. [9] demonstrates that 
the models based on the structure similar to the work index 
should depend on the same size to represent the distribution 
of sizes as a whole. Thus, these models require more empirical 
coefficients introduced.

[10] mentions the main problem hindering effective 
implementation of control over fixed-bed disintegration in 
compression which involves understudied mechanisms of its 
course. Thus, because of the absence of reliable theoretical 
and empirical methods, it is suggested to use computer tech-
nologies of engineering analysis based on matrix mathemati-
cal methods of numerical solution. In particular, the method 
of finite elements applied to determining the stress-strain 
state of ores is of great efficiency here. It should be accen-
tuated that the given way of studying the stress-strain state 
aimed at breaking ore is both costly and time-consuming.

[11] applies a mathematical model with finite contact 
elements of ore interaction to assessing the energy state of 
ore under fixed-bed disintegration, allowing determining 
the granulometric composition of crushed ore. The experi-
ments conducted in industrial conditions confirm the effi-
ciency of the synthesized mathematical model. Meanwhile, 
analysis of the above work indicates the complex character 
of implementing the described methods [12] discusses the 
issues of the causes of reduced power consumption in ore 

disintegration in roller-presses. This is mainly caused by the 
insufficient rate of investigation of causes of reduced power 
consumption in ore disintegration in roller-presses. Mathe
matical simulation by finite element analysis reveals that 
power is saved when ore is disintegrated. The data presented 
in [13] dealing with selective disintegration of mineral and 
technological raw materials are essential. In particular, the 
role of stress factors in selective disintegration is illustrated 
by ores of ferrous metals. New results of experimental and 
theoretical researches enable the expansion of the concept 
of ore selective disintegration [14, 15]. Yet, the issues of ap-
plying mathematical simulation to selective disintegration of 
ores remain under-investigated.

The mentioned literature sources enable concluding that 
currently a solution to the problem of ore selective disinte-
gration by high-pressure roller-presses is essential. Mathe-
matical simulation of crushing processes in roller presses will 
allow improving ore selective disintegration avoiding the 
trial-error method.

3. The aim and objectives of the study

The research aims to simulate the ore crushing process 
in a high-pressure roller-press under stochastic properties of 
feed materials.

This will enable synthesizing an algorithm of controlling 
the crushing process to achieve optimal stabilization of 
modes as for the set diameter of crush products under sto-
chastic properties of feed materials.

To achieve the aim set, there are the following objectives 
to be accomplished:

– developing a mathematical model of ore crushing con-
sidering stochastic properties of feed materials;

– synthesizing the algorithm of controlling the crushing 
process to stabilize the mode as for the set average diameter of 
crush products under stochastic properties of feed materials.

4. Materials and methods of researching ore  
fixed-bed crushing

Crushing experiments were conducted in the HPGR 
500/15-1000 roller-press using 40-0 mm oxidized iron ore 
from the Kryvyi Rih iron ore basin. The feed ore and the 
crush product were subject to sieve analysis for narrow size 
classes with 2 mm-intervals. Each size class was weighted 
and its yield was calculated considering the total mass of the 
material, enabling the determination of granulometric char-
acteristics of the product.

5. Development of the mathematical model of ore  
fixed-bed crushing considering stochastic properties  

of feed materials

Simulation of the crushing process is based on the known 
laws of crushing. Mechanical properties of ore due to their 
ambiguity cannot be used for obtaining strict calculation 
equations that determine crushing. Therefore, the current 
practice is based on the ratios resulted from a great amount 
of empirical experience canonized as laws of crushing [15].

The laws of crushing are interpreted as a dependency 
between the power spent on crushing and the size of a crush  
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product. The most applicable expression of empirical depen-
dency characterizing power consumption for size reduction 
is presented in the differential form as Bond’s crushing law:

d
d

E k
x

x
= − 1 5. , 	 (1)

where Е is the specific energy conveyed to a unit of the disin-
tegrated body and required to increase the energy of the new-
ly created surface, J/m3; k is the proportionality coefficient;  
х is the average diameter of grains, mm.

To find work in ore crushing in the set range of product 
sizes, one should solve the Cauchy problem [17], which in-
cludes the differential equation (1) and the initial condition 
determining the size of the feed ore lump at the beginning of 
crushing:

E x d| ,= =
0

0 	 (2)

where d0 is the diameter of the feed ore lump, mm. 
The general solution of differential equation (10) as the 

one with separable variables looks like:

E
k

x
C= + , 	 (3)

where C is a constant.
Considering condition (2), we find the value of the constant:

C
k

d
= −

0

. 	 (4)

Substituting (4) into (3), we find the solution of the  
Cauchy problem (1), (2):
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Equation (5) allows assessing energy consumption for 
reducing the averaged diameter of the crushed ore lump from 
the original diameter to the reduced one. After finishing the 
crushing process, the average energy consumption will make:
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where d1 is the diameter of the crush product, mm.
It is worth mentioning that the averaged diameter of 

a  feed ore lump and energy consumption are input variables 
while the averaged diameter of the crush product is the out-
put variable of the crushing process model. Considering the 
above, equation (6) should be reduced to:
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Analysis of equation (7) reveals that it contains a single 
parameter k.

It should be underlined that the mathematical model of 
the crushing process (7) is noted for the impact of the input 
variable – the size of the feed ore. Input impact (sizes of ore 
lumps) is a random value with some distribution law. That is 
why, after crushing the output variable in the form of crushed 
lumps of the same ore is also a random variable, yet with 

another distribution law. It is natural to wonder what the 
characteristic of the crush product as a random value is like.

Let the size of the feed ore as a continuous random value 
be set by a differential distribution function. It is necessary to 
find a differential distribution function of the crush product 
sizes, which is a random value determined by formula (7). As 
function (7) is monotonically increasing and differential, the 
inverse function exists and is also monotonically increasing 
and differential. At that, the formula determining this inverse 
function according to (6) looks like:
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If, on the axis of the output variable, we set an interval 
and reflect it by function (8) onto the axis of the input vari-
able, we obtain some interval as well.

Events of hitting these intervals are causally determined 
as they are functionally connected and equal, i. e.:

P d D d d P d D d d1 1 1 1 0 0 0 0< < +( ) = < < +( ),Δ Δ 	 (9)

where (d0<D0<d0+∆d0), (d1<D1<d1+∆d1) are input and 
output intervals.

According to the definition of a differential distribution 
function, we have:
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Considering (9), formula (10) can be presented as:
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Taking into account the fact that (8) is a monotonically 
increasing and differential, we can write down the expression 
to increase it:
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formula (12) looks like:
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Substituting (13) into (11), we find:
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According to the definition of a differential distribution 
function of the feed ore sizes as a random value, we have the 
equation:
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Considering continuity of function (8), formula (14) 
considering (15) looks like:
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Finally, using formula (8), we obtain the final expression for 
the differential distribution function of the crush product sizes:
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Knowing the differential distribution function of the feed 
ore size, the integral distribution function is written as:
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In its turn, the integral distribution function of the crush 
product size will look like:
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Considering (17), formula (19) is written as:
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By transforming integral (20), we can show that the inte-
gral distribution function of the crush product size is associa
ted with the integral distribution function of the feed ore size 
by the equation:
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According to (21), the problem of identifying parameters of 
the crushing model k is solved by reducing the functional [18]:
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where G* (d1i, E1j) is the value of the sieve analysis correspond-
ing to the i-th size of the sieve for the j-th value of energy 
consumption for crushing; N is the number of sieves; M is the 
number of values of energy consumption for crushing.

Calculated differential distribution functions of the feed ore 
and crush product sizes allow calculating numerical characteris-
tics of these variables. Mathematical expectation and dispersion 
of sizes of the feed ore are found by the corresponding formulae:
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where d0, d0 is the smallest and the largest average diameters  
of the feed ore lumps.

Similarly, the mathematical expectation and dispersion of 
sizes of the crush product are found:
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where d1, d1 is the smallest and the largest average diameters 
of the crushing product lump.

Thus, formulae (23) and (24) allow expressing the most 
essential peculiarities of the studied distributions in a concise 
form. The first formula of (24) determines the average value 
around which probable values of sizes of the crush product as 
a random value are grouped. In its turn, the second formula 
of (24) determines the degree of dispersion of values of the 
crush product sizes with regard to its average value.

Mathematical description of crushing the layer of par-
ticles under pressure is obligatory for building the system 
controlling this process as a complex object.

At the same time, it is necessary to accentuate the role of 
the model in the system controlling the technological process 
of crushing the layer of ore particles.

First of all, it is important to indicate the aim of con-
trolling this process when using a roller-press. While con-
trolling the technological process of crushing, there appears 
a situation characterized by a triplet:

D D d0 1 1, , ,* 	 (25)

where d1
*  is the optimal average diameter of the crush pro

duct lump.
In the case under consideration, the optimal average dia

meter of the crush product lump is the control aim.

6. Synthesis of the algorithm of controlling the  
crushing process to stabilize the mode as for the set 
average diameter of crush products under stochastic 

properties of feed materials

In mathematical model (7), the energy impact is a con-
trolling input variable. Thus, the problem of optimal stabili-
zation can be formulated as an extreme problem [19]:
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where El, Еu are the lower and the upper boundaries of the 
controlling impact.

The quality of optimal stabilization of crushing is as-
sessed through the value of deviation of the input variable 
from the set optimal value and calculated by:
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where k* is the optimal value of the identification parameter; 
E1

* is the optimal value of the controlling impact.
By analyzing the mean-square value of deviation of the 

output variable from the set value calculated by (27), we 
can say whether the control aim is accessible, enabling the 
conclusion about further actions.

When studying the distribution of sizes of original ore, 
researchers often use Rosin-Rammler’s distribution [20], the 
integral function of which looks like:
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where ∆ and n are parameters.
The differential function of this distribution will be a de-

rivative of the integral distribution function (28):
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The mathematical expectation of the feed ore 
sizes obtained through integration (29) is writ-
ten as the integral:
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where Г(1+1/n) is the Euler gamma-function [21].
Dispersion of the feed ore sizes of this distri-

bution is also expressed through the Euler gam-
ma-function:
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It should be noted that ∆ characterizes the average size of 
feed ore lumps, while the value n determines the high density 
of distribution compared with the average size.

In this case, according to (16) and (21), the integral and 
differential distribution functions of the crush product sizes 
are written as:
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To identify a parameter included in the crushing model, it 
is necessary to solve the problem of reducing the functional:
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where G d Ei j
* ,1 1( )  are the values of sieve analysis correspond-

ing to the i-th sieve size; for the j-th value of energy consump-
tion for crushing; I is the number of sieves; M is the number 
of values of energy consumption for crushing.

The mathematical expectation of the crush product sizes 
considering (33) is found by integration:
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where d k E1 1

2
= ( )*  is the maximum size of the crush product.

Dispersion of the crush product sizes considering (33) is 
found by partial integration:
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For Rosen-Rammler’s distribution, the differential distri-
bution function of which is set by (29), the optimal stabiliza-
tion problem (26) is written as:

According to (27), the quality of improving the crushing 
process is determined by the formula:

Analysis of the value of deviation of the input variable 
from the set optimal value calculated by (38) enables assess-
ing the control aim achievement.

According to the initial data, oxidized iron ore with the 
fractional composition presented in Fig. 1 and Table 1 accord-
ing to [22] is fed to the roller-press.
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Fig. 1. Granulometric composition of the feed ore

Analysis of the granulometric composition of the feed ore 
enables a suggestion that the feed ore sizes are distributed ac-
cording to Rosen-Rammler described by formula (28). To find  
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the parameters from this formula, we apply the least-square 
method (LSM) [23]. To use the standard LSM program as 
the Regression function of the Excel software complex, we 
transform formula (28) to obtain a linear expression.

To do this, we apply the following actions:

1 0

0

− ( ) =
−



F d e

d n

Δ ,  ln ,1 0
0− ( )( ) = −



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F d
d

n

Δ

ln ln ln ln .− − ( )( )( ) = − +1 0 0F d n n dΔ 	 (39)

Introducing the symbols into (39):

y F d= − − ( )( )( )ln ln ,1 0  a n= − ln ,Δ  x n d= ln ,0 	 (40)

we obtain a linear function:

y a n x= + ⋅ . 	 (41)

Table 1 presents the results of calculations by formulae (40).

Table 1

Input data to analyze the distribution 	
function of ore sizes

No.

Frac-
tions 
(d0), 
mm

Empirical 
distribution 

function 
Fn(d0)

x y

Theoretical 
distribution 

function 
F(d0)

Fn(d0)–F(d0)|

1 2 0.04 0.69 –3.20 0.055 0.015

2 4 0.14 1.39 –1.89 0.147 0.007

3 6 0.3 1.79 –1.03 0.251 0.049

4 8 0.4 2.08 –0.67 0.359 0.041

5 10 0.5 2.30 –0.37 0.461 0.039

6 12 0.6 2.48 –0.09 0.555 0.045

7 14 0.73 2.64 0.27 0.639 0.091

8 16 0.75 2.77 0.33 0.711 0.039

9 18 0.8 2.89 0.48 0.772 0.028

10 20 0.82 3.00 0.54 0.823 0.003

11 22 0.85 3.09 0.64 0.864 0.014

12 24 0.88 3.18 0.75 0.897 0.017

13 26 0.9 3.26 0.83 0.922 0.022

14 28 0.92 3.33 0.93 0.942 0.022

15 30 0.95 3.40 1.10 0.958 0.008

16 32 0.96 3.47 1.17 0.969 0.009

17 34 0.97 3.53 1.25 0.978 0.008

18 36 0.98 3.58 1.36 0.984 0.004

19 38 0.99 3.64 1.53 0.989 0.001

20 40 1.00 3.66 1.54 0.992 0.008

Assessment of the parameters included in (41) provides 
the following results according to the MSL in Table 1.

a = −3 9. ,  n = 1 485. . 	 (42)

According to (40) and considering (42), we find:

Δ = =
−

e
a
n 13 82. . 	 (43)

Substituting (42) and (43) into formula (28), we obtain 
the analytical form of recording Rosen-Rammler’s law of 
distributing the feed ore sizes:

F d e
d
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0
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.

. 	 (44)

Table 1 and Fig. 1 provide the calculation results by for-
mula (44).

It seems reasonable to check the hypothesis about the 
type of the distribution law chosen as theoretical by applying 
the goodness-of fit test, which is the simplest way to verify 
the hypothesis in our case [24]. The test is the maximum 
value of the absolute difference between the empirical dis-
tribution function and the relevant theoretical distribution 
function, in other words:

D F d F d
d n= ( ) − ( )max .

0
0 0 	 (45)

[25] proves that for any type of continuous distribution 
function with an unlimited increase of the number of inde-
pendent observations the probability of the inequation:

D n ≥ l, 	 (46)

for tends to limit:

P e
k

k kl l( ) = − −( )
=−∞

∞
−å1 1 2 2 2

. 	 (47)

For probability (47), there is a table presented in [25]. 
Using this table, we find the probability value (47) that 
corresponds to the fact that due to random reasons the maxi
mum absolute deviation (45) will be no less than the actual 
observed one. If the probability value (47) is large enough, 
we can consider that the hypothesis about the distribution 
law is compatible with the experimental results.

According to the data presented in the last column of 
Table 1, the value (45) equals 0.091. Then, according to (46), 
we obtain:

l0 0 091 20 0 406= = =D n . . .

Using the table in [24], we find:

P l0 0 995( ) = . . 	 (48)

As the obtained probability (48) is large enough, we can 
conclude that the deviation between the empirical and theo-
retical distribution functions is insufficient. Thus, this diffe
rence can be explained by a random factor, i. e. the experimen-
tal data agree with the hypothesis about the ore fraction size 
being a random value with Rosen-Rammler’s distribution.

According to (37), the differential function of this distri-
bution is as follows:

f d d e d
0 0

0 485 0 0720 02985 0
1 485( ) = −( ). .. .

.

	 (49)

The diagram of the differential distribution function (49) 
is in Fig. 2. Considering (30), the mathematical expectation 
of the feed ore sizes is written as:
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Fig. 2. Differential distribution function of the feed ore sizes

According to (31), dispersion of the feed ore sizes will be 
written as:
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According to (32) and (33), the integral and differential 
functions of the crush product sizes will be as follows:
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Formulae (52) and (53) result from the structural syn-
thesis of the crushing model. To identify the parameter of the 
model k, one should solve the problem of finding functional 
extremum (34). The initial data on identifying the parameter 
of the model k is in Table 2. The parameter k is found by re-
ducing the functional:
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In functional (54), a single energy impact is accepted to 
correspond to the condition under which the data on the em-
pirical distribution function of the crush product is collected. 
Application of the root function from Mathcad enables the 
optimal value of the parameter:

k* . .= 41 773 	 (55)

Application of the goodness-of-fit test to the data of  
Table 2 results in the following:

l = = ( ) − ( ) = ⋅ =D n G d G d n
d

max . . .*

1
1 1 0 139 18 0 589

According to the table from [24], the probability value 
equals:

P 0 589 0 877. . .( ) = 	 (56)

As probability (56) is quite high, we can consider that 
the hypothesis about the distribution law complies with the 
experimental results.

Table 2

Data on identification of the model parameter

No.

Frac-
tions 
(d1), 
mm

Empirical 
distribution 
function G* 

(d1)

Results of 
identifying the 

model parameters 
G (d1)

|G* (d1)–G (d1)|

1 0 0 0 0

2 2 0.2 0.061 0.139

3 4 0.3 0.167 0.133

4 6 0.4 0.292 0.108

5 8 0.5 0.419 0.081

6 10 0.6 0.54 0.06

7 12 0.65 0.647 0.003

8 14 0.7 0.737 0.037

9 16 0.78 0.81 0.03

10 18 0.82 0.867 0.047

11 20 0.85 0.909 0.059

12 22 0.9 0.94 0.04

13 24 0.95 0.961 0.011

14 26 0.96 0.976 0.016

15 28 0.98 0.985 0.005

16 30 0.98 0.991 0.011

17 32 0.99 0.995 0.005

18 34 1 0.997 0.003

Fig. 3 presents the granulometric composition of the 
crush product calculated on the basis of the empirical dis-
tribution function and as a result of identifying the model 
parameter. Comparison of the diagrams of granulometric 
composition of the crush product from Fig. 3 reveals a good 
coincidence of the empirical distribution function and the 
results of identifying the model, being confirmed by the 
goodness-of-fit test.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Fr
ac

tio
n 

ye
ild

 

Fraction, mm
the result of identifying the model parameters
the empirical distribution function

Fig. 3. Granulometric composition of the crush product

According to (52) and (53), the integral and differential 
distribution functions are as follows:
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The solution of the optimal stabilization problem involves 
the reduction of functional (45) in accordance with (58):

where d1 4* = mm. Application of the root function from Math-
cad enables the optimal value of the controlling impact:

E1 10 495* . .= 	 (60)

The quality of optimization determined by (38) makes:

σ* . .= 1 495 	 (61)

The differential distribution function of the crush pro
duct sizes at the optimal controlling impact (60) is written as:
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Fig. 4 provides the diagrams of the differential functions 
of the crush product sizes of initial distribution set by formu-
la (58) and the optimal distribution set by (62). Analysis of 
the diagrams in Fig. 4 reveals that with the optimal stabiliza-
tion of the crush product sizes, the diagram of the differential 
distribution function of the crush product sizes «compresses» 
around the set stabilization value.

If numerical characteristics for initial distribution are equal:

M D1 10 454[ ] = . ,  D D1 43 717[ ] = . , 	 (63)

the following is true for optimal distribution:

M D* . ,1 3 28[ ] =  D D* . .1 1 717[ ] = 	 (64)
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Fig. 4. Differential distribution functions of the crush 	
product sizes

Comparison of (63) and (64) reveals that the stabiliza-
tion aim is actually achieved. Dispersion that characterizes 
the average diameter of the crush product lumps, according 
to (63) and (64), reduces by a factor of 25.46.

7. Discussion of results of mathematical simulation of 
roller-press ore crushing

The synthesized mathema
tical model of ore crushing in 
the roller-press enables con-
sidering stochastic properties 
of the feed material set by the 
differential distribution func-

tion (15). Presentation of the simulation result by means of 
the differential distribution function (16) allows formulating 
the problem of optimal stabilization as for the set average dia
meter of the crush product lump as an extreme problem in the 
stochastic form (26). The statistics-based results of simulation 
of oxidized iron ores crushing presented in Tables 1, 2 confirm 
the relevancy of the developments to be implemented. 

Meanwhile, there are some complications associated with 
the assessment of the stochasticity of the ore flow feeding the 
roller-press as it can be dynamic. The Bond’s crushing law 
applied to describing roller-press crushing causes some con-
straints. Consideration of all these aspects requires involving 
particular conditions of ore mining and crushing.

The drawback of the suggested method is the absence of 
any chance to optimize roller-press functioning in engineer-
ing conditions. That is why, further research should include 
the obtained results into the automated control system of  
a concentration plant as its real-time functioning subsystem. 

8. Conclusions

1. The mathematical model of roller-press crushing is 
developed, its peculiarity being the description of ore dis-
integration by means of Bond’s crushing law. Unlike the 
determined approaches, it considers the stochasticity of the 
ore flow feeding the roller-press to describe sizes of the crush 
product lumps as a random value. On the basis of the crush-
ing results, it reveals how to identify the model parameters. 
The synthesized model is noted for the possibility to find the 
probabilistic law of distributing sizes of the crush product 
lump in the roller-press. This distribution law enables both 
assessing numerical characteristics of the product lump size 
and formulating probabilistically the problem of optimal 
stabilization of the crushing process. A simulation that con-
siders the stochasticity of the feed ore flow distributed ac-
cording to Rosen-Rammler’s law enables analytical formulae 
describing the crushing process in the roller-press followed 
up by formulating the optimal stabilization problem.

2. The optimal stabilization problem of roller-press crush-
ing formulated probabilistically, i. e. considering stochastic 
properties of the feed materials, is solved. Statistics-based 
simulation of oxidized iron ores crushing both reveals the fea-
sibility of the developed approach and confirms optimization 
results by the goodness-of-fit test statistically. Thus, optimal 
stabilization allows achieving the control aim. The crushed 
ore size makes 3.28 mm against the expected 4 mm, while 
dispersion characterizing the average diameter of the crush 
product lumps reduces by a factor of 25.46.
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