Ore crushing in the high-pressure roller-press as a modelling object under stochastic properties of feed materials
- 1. Kryvyi Rih National University
Description
The results of improving ore crushing in a high-pressure roller-press are presented. Application of a roller-press enables higher crushing efficiency due to both power saving and reduction of sizes of ore crush products to release mineral aggregates. Ore disintegration by compressive strain prevails among currently applied crushing methods. Disintegration occurs not only due to the compressive, but also to the shear strain. Considering smaller power consumption of the shear strain than that of the compressive strain, it is concluded that roller-press application is quite efficient.
Simulation of crushing by using the Bond law frequently applied in practice is under consideration. It is essential to consider the stochasticity of the ore flow to be crushed. Presentation of this flow as a random figure by transforming it by the Bond crushing law results in a probabilistic characteristic of the crushing result. This characteristic enables finding properties of the crush product and probabilistic formulation of the problem of improving the crushing process by setting a relevant functional. To apply the results obtained to practical uses, the crushing process is simulated. The theoretical results are confirmed by setting the stochastic properties of the input ore flow by means of Rosen-Rammler’s law followed by statistical substantiation of the conducted calculations in Mathcad. After stimulation and considering stochastic properties of the feed ore flow, the solution of the optimal stabilization problem reveals that stabilization is achieved, while dispersion in relation to the stabilization goal reduces sharply almost five-fold
Files
Ore crushing in the high-pressure roller-press as a modelling object under stochastic properties of feed materials.pdf
Files
(276.2 kB)
Name | Size | Download all |
---|---|---|
md5:db128e4a174730c0c84cb1eb0aede849
|
276.2 kB | Preview Download |
Additional details
References
- Oliynyk, T. A., Skliar, L. V., Oliynyk, M. O. (2015). Doslidzhennia umov selektyvnoho ruinuvannia mineralnykh kompleksiv pry zbahachenni hematyt-ilmenitovykh rud. Zbahachennia korysnykh kopalyn, 60 (101), 57–67.
- Linch, A. (1981). Tsikly drobleniya i izmel'cheniya. Modelirovanie, optimizatsiya, proektirovanie i upravlenie. Moscow: Nedra, 343.
- Elnikova, S. P., Gazaleeva, G. I. (2019). Reduction energy prediction for layer-type cone crushers. Obogashchenie Rud, 5, 3–8. doi: https://doi.org/10.17580/or.2019.05.01
- Vasil'ev, P. (2012). Chislennoe reshenie uravneniya kinetiki dezintegratsii i raskrytiya mineralov polikristallicheskih chastits. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Ekonomika. Informatika, 7 (126), 92–101.
- Saramak, D. (2013). Mathematical models of particle size distribution in simulation analysis of highpressure grinding roll operations. Physicochemical Problems of Mineral Processing, 49 (1), 121–131. doi: http://doi.org/10.5277/ppmp130112
- Anticoi, H., Guasch, E., Ahmad Hamid, S., Oliva, J., Alfonso, P., Bascompta, M. et. al. (2018). An Improved High-Pressure Roll Crusher Model for Tungsten and Tantalum Ores. Minerals, 8 (11), 483. doi: https://doi.org/10.3390/min8110483
- Anticoi, H., Guasch, E., Oliva, J., Alfonso, P., Bascompta, M., Sanmiquel, L. (2019). High-pressure grinding rolls: model validation and function parameters dependency on process conditions. Journal of Materials Research and Technology, 8 (6), 5476–5489. doi: https://doi.org/10.1016/j.jmrt.2019.09.016
- Djokoto, S. S., Karimi, H. R. (2011). Modeling and simulation of a High Pressure Roller Crusher for silicon carbide production. 11th International Conference on Electrical Power Quality and Utilisation. doi: https://doi.org/10.1109/epqu.2011.6128963
- Rashidi, S., Rajamani, R. K., Fuerstenau, D. W. (2017). A Review of the Modeling of High Pressure Grinding Rolls. KONA Powder and Particle Journal, 34, 125–140. doi: https://doi.org/10.14356/kona.2017017
- Fedotov, P. K., Pykhalov, A. A. (2014). Numerical simulation of boundary conditions and load in analysis of a breed's stress-strain when splitting it between rollers in roller press. Sovremennye tehnologii. Sistemniy analiz. Modelirovanie, 1 (37), 27–32.
- Fedotov, P. K. (2014). Modeling fracture of ore particles in a layer under pressure. Journal of Mining Science, 50 (4), 674–679. doi: https://doi.org/10.1134/s1062739114040073
- Fedotov, P. (2013). Main reason of lower energy consumption by ore fragmentation in press-rollers. Gorniy informatsionno-analiticheskiy byulleten', 3, 309–314.
- Hopunov, E. (2011). Rol' struktury i prochnostnyh harakteristik mineralov v razrushenii i raskrytii rud. Obogashchenie rud, 1, 25–31.
- Mulyavko, V., Oleynik, T., Oleynik, M., Mikhno, S., Lyashenko, V. (2014). Innovation technologies and machinery for separation of feebly magnetic ores. Obogashchenie Rud, 2 (350), 43–49.
- Morkun, V., Gubin, G., Oliinyk, T., Lotous, V., Ravinskaia, V., Tron, V. et. al. (2017). High-energy ultrasound to improve the quality of purifying the particles of iron ore in the process of its enrichment. Eastern-European Journal of Enterprise Technologies, 6 (12 (90)), 41–51. doi: https://doi.org/10.15587/1729-4061.2017.118448
- Smyrnov, V. O., Biletskyi, V. S. (2012). Pidhotovchi protsesy zbahachennia korysnykh kopalyn. Donetsk: Skhidnyi vydavnychyi dim, Donetske viddilennia NTSh, 284.
- Zaytsev, V., Polyanin, A. (2001). Spravochnik po obyknovennym differentsial'nym uravneniyam. Moscow: Fizmatlit, 576.
- Izmailov, A., Solodov, M. (2008). Chislennye metody optimizatsii. Moscow: Fizmatlit, 320.
- Alekseev, V., Tihomirov, V., Fomin, S. (2005). Optimal'noe upravlenie. Moscow: Fizmatlit, 384.
- Lavrent'ev, M., Shabat, B. (1973). Problemy gidrodinamiki i ih matematicheskie modeli. Moscow: Fizmatlit, 416.
- Olver, F. (1978). Vvedenie v asimptoticheskie metody i spetsial'nye funktsii. Moscow: Nauka, 375.
- Oliinyk, T., Nikolaienko, P. (2019). Vykorystannia matematychnoho modeliuvannia dlia vyznachennia hranulometrychnoho skladu produktu droblennia rudy v shari pid tyskom. Zbahachennia korysnykh kopalyn, 72 (113), 44–47.
- Linnik, Yu. (1962). Metod naimen'shih kvadratov i osnovy matematiko-statisticheskoy teorii obrabotki nablyudeniy. Moscow, 354.
- Id'e, V., Drayard, D., Dzheyms, F., Rus, M., Sadule, B. (1976). Statisticheskie metody v eksperimental'noy fizike. Moscow: Atomizdat, 335.
- Dimitrova, D. S., Kaishev, V. K., Tan, S. (2017). Computing the Kolmogorov-Smirnov Distribution when the Underlying CDF is Purely Discrete, Mixed or Continuous. Available at: https://openaccess.city.ac.uk/id/eprint/18541/8/Dimitrova%252C%20Kaishev%252C%20Tan%20%25282017%2529%20KSr1.pdf