

NATIONAL OPEN ACCESS SCIENTIFIC CENTRE FOR FUTURE ENERGY TECHNOLOGIES

UNCERTAINTY AND SENSITIVITY ANALYSIS OF THE PHEBUS FPT1 TEST SIMULATION RESULTS

Noura Elsalamouny

Tadas Kaliatka

Content

- Introduction
 - PHEBUS FPT-1 test
 - RELAP/SCDAPSIM code
 - o SUSA tool
 - Method of analysis
- Uncertainty quantification of PHEBUS FPT-1 test
 - o Uncertainty analysis
 - Sensitivity analysis
- Conclusions, future work

Phases & processes of FPT1 test

- Calibration phase ends at 7900 s;
- **Pre-oxidation phase** from 7900 s to 11060 s;
- Oxidation phase from 11060 s to 13200 s;
- **Power plateau phase** from 13200 s to 14580 s;
- **Heat up phase** from 14580 s to 17039 s.

Uncertainty parameters used in the calculations of **PHEBUS FPT-1** experiment for cladding temperature & total hydrogen generation

		Reference value			
No	Parameter		Ranges	PDF	
	Thermal propertie	es of materials			
P1	Zircaloy-4, Specific heat (J/kgK)				
P2	Zircaloy-4, Density (kg/m ³)				
P3	Zircaloy-4, Thermal conductivity (W/mK)				
P4	Gap, Specific heat (J/kgK)				
P5	Gap, Density (kg/m ³)				
P6	Gap, Thermal conductivity (W/mK)				
P/	Thoria (ThO ₂), Specific heat (J/kgK)				
P8	Inoria (InO ₂), Density (Kg/m ³) Theorie (ThO). Theorem leased with the (M(ω))				
P9	I noria (I O_2), I nermal conductivity (W/MK)	Poforonco valuo			
P10	ZrO_2 , Specific heat (J/kgK) Reference				
P11 P12	$2rO_2$, Density (kg/m ³)	according to ISP-46 [5]	±20% [1, 2]	Normal	
P12	$2rO_2$, Thermal conductivity (W/MK)				
P13	Gap (inner and outer), Specific neat (J/kgk)				
P14	Gap (inner and outer), Density (kg/m ³)				
P15	Gap (inner and outer), Thermal conductivity (w/mk)				
P16	Spray coating, Specific heat (1/kgK)				
P17	Spray coating. Density (kg/m ³)				
P18	Spray coating. Thermal conductivity (W/mK)				
P19	Inconel ⁶²⁵ . Specific heat (J/kgK)				
P20	Inconel ⁶²⁵ . Density (kg/m ³)				
P21	Inconel ⁶²⁵ , Thermal conductivity (W/mK)				
	SCDAP para	meters			
P22	Temperature for failure of oxide shell on outer surface of fuel and cladding (K)	2500	±10%	Uniform	
P23	Fraction of oxidation of fuel rod cladding for stable oxide shell	0.6	±50%	Uniform	
P24	Hoop strain threshold for double-sided oxidation	0.07	±50%	Uniform	
P25	Cladding rupture strain	0.18	0.1 <x<0.2< td=""><td>Uniform</td></x<0.2<>	Uniform	
P26	Cladding transition strain	0.2	0.1 <x<0.2< td=""><td>Uniform</td></x<0.2<>	Uniform	
P27	Limits strain. Strain limit for rod-to-rod contact	0.245	0.2 <x<0.245< td=""><td>Exponential</td></x<0.245<>	Exponential	
				Lambda = 1	
P28	Pressure drop caused by ballooning	Modelled	Modelled / not modelled	Discrete	
				0-0.5 prob	
				1-0.5 prob	
P29	Fraction of surface area covered with drops that results in blockage that stops local oxidation	0.2	±50%	Uniform	
P30	Velocity of drops of cladding material slumping down outside surface of fuel rod (m/s)	0.5	±50%	Uniform	
P31	Gamma heat fraction. The fraction of power used to directly heat the	0.026	±50%	Uniform	
	coolant by gamma heating				
P32	Mass of grid spacer, kg	3.724E-3	±20%	Normal	
P33	Height of grid spacer, m	0.043	±20%	Normal	
P34	Plate thickness of grid spacer, m	0.004	±20%	Normal	
P35	Definition of Core Slumping Model	0	0: latest possible;	Discrete.	
			1: earliest possible;	0 – 0.5 prob.	
				1 – 0.5 prob.	
P36	Minimum flow area per fuel rod in cohesive debris in core region, m ²	4.4E-5	±50%	Normal	

Uncertainty Results (1)

Uncertainty upper and lower limits with experimental data and reference calculation for cladding temperature at 950 mm elevation.

Uncertainty Results (2)

Uncertainty upper and lower limits with experimental data and reference calculation for total hydrogen generation.

Sensitivity results (1)

Determination coefficient (R^2)

18000

20000

Sensitivity Results (2)

Spearman's rank correlation

Sensitivity results (3)

Cladding temperature at 950mm elevation calculations

Phases									
Calibration	Pre-oxidation	Oxidation	Power plateau	Heat up					
(6000s)	(9000s)	(12500s)	(14000s)	(16000s)					
P12 , ZrO ₂ ,	P12 , ZrO ₂ ,	P12, ZrO ₂ , Thermal	P12, ZrO ₂ ,	P12, ZrO ₂ , Thermal					
Thermal	Thermal	conductivity,	Thermal	conductivity, influence					
conductivity,	conductivity,	influence (-0.83);	conductivity,	(-0.98);					
influence	influence (-0.85);	P8, ThO2 density,	influence (-0.88);	P10, ZrO ₂ , Specific					
(-0.98).	P15 , Gap thermal	influence (-0.32);	P9 , ThO ₂	heat, influence (-0.6);					
	conductivity,	P18, Spray coating	Thermal	P9 , ThO ₂ Thermal					
	influence (0.25).	thermal conductivity	conductivity,	conductivity, influence					
		influence (0.21).	influence (-0.25);	(-0.22).					

Sensitivity results (4)

Total hydrogen generation calculations

Phases						
Calibration (6000s)	Pre-oxidation (9000s)	Oxidation (12500s)	Power plateau	Heat up (16000)		
			(14000s)			
P12, ZrO ₂ , Thermal conductivity,	P12, ZrO2, Thermal	Weak linear correlation between uncertain				
influence (-0.98)	conductivity, influence	parameters				
	(-0.92);					
	P8, ThO2 density, influence					
	(-0.22).					

Sample scatter plot and regression line for linear regression

Time = 12500s

P12 (ZrO2 Thermal conductivity W/mK)

CONCLUSIONS

- Uncertainty and sensitivity analysis were provided for cladding temperature at 950mm elevation and total hydrogen generation calculation results for FPT1.
- Results of uncertainty analysis showed that in the case of cladding temperature upper and lower uncertainty limits bounded the experimental data, but in the case of total hydrogen generation, they were in a good agreement in the late phases.
- Results of sensitivity analysis showed that ZrO_2 thermal conductivity has the dominant influence on cladding temperature at 950 mm elevation and hydrogen generation calculation results.

Future work

- It is planned to reduce the number of uncertain parameters fixing them at reference values and to provide uncertainty and sensitivity analysis once again to see how changes the uncertainty quantification of results.
- Sensitivity analysis showed a weak linear correlation of uncertain parameters to calculation results in the case of total hydrogen generation at the late phases of the experiment. This means that the applied sensitivity method could give not exact results of the sensitivity analysis.
- Another possibility for such phases to use different sensitivity methods which are not based on the linearity of input parameters to result. However, these methods require a huge amount of calculation cases.

Thanks for your attention

Acknowledgement

Work provided in this article was done in the frame of MUSA project. MUSA project has received funding from the Euratom research and training program 2014-2018 under grant agreement No 847441.

Noura Elsalamouny <u>Noura.Elsalamouny@lei.lt</u>