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ABSTRACT 
In the present work we have gone a step forward towards integration by part of higher order Malliavin derivatives by 

formulating and extending some formulas and results on Malliavin calculus and ordinary stochastic differential 

equations to include delay stochastic differential equations as well as ordinary SDE’s. Here we have also stated 

clearly what we mean by the Malliavin derivatives and densities of distributions of the solutions process for delay 

stochastic differential equations which we are considering. 
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INTRODUCTION, NOTATIONS AND DEFINITIONS 
In Chapter 1 of the Ph.D. thesis of Ahmed  we have proved the existence and uniqueness of a solution for certain 

types of delay (functional) stochastic differential equations (delay SDE’s) with discontinuous initial data,see also , 

and the web cite www.sfde.math.siu.edu. See the delay SDE ([1.1.1]) in the present work. Here we establish an 

integration by parts formula involving solutions to such type of delay (functional) SDE’s. The integration by parts 

formula which we establish can be used to extend the formulas in  and  to include delay SDE’s as well as ordinary 

SDE’s. In this work we also establish some other useful applications to delay SDE’s. Generally speaking we can say 

that our work extends the first three chapters of the work by Norris to include delay SDE’s as well as ordinary 

SDE’s; see Theorems 2.3, 3.1 and 3.2 in . We will also show in a sequal paper to this work that the distribution of 

the solution process has smooth density. Also we will establish an integration by parts formula involving Malliavin 

derivatives of higher order. 

 

Notations and Definitions 

The following notations and definitions will be used throughout this work:  is a probability space;  is a 

positive real number;  is an increasing family of sub-  algebras of , each of which contains all null 

subsets of ;  is the set of natural numbers;  is a -dimensional 

normalized Brownian motion. If  is a topological space, then  denotes its Borel field. The symbol  refers to 

the Lebesgue measure on , and  denotes the Euclidean norm on , . 
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Let  be a Banach space and let  be a sub-  algebra of  containing all subsets of measure zero in , then 

 denotes the space of all functions  which are -  measurable and are such that 

. 

The symbol  denotes the Banach space (with norm determined by ) of 

all equivalence classes of functions  which are -  measurable and which are such that 

. The symbol  ( , ) denotes the space of all linear maps from  to . 

The symbol  refers to the interval , and  or  refers to the Borel field on . 

If  is a process, then for each  and  we define the map: 

 by  for all  and almost all . For each  we 

write . Let the function  belong to ,  belong to 

, and for  let  ,  be functions from 

 to . Then a process  is called a solution of the delay 

SDE with integral form  

(1.1) 

 if 

1.  is -  measurable; 

2. For each , the process  is -  measurable, and for each , the process  is 

-  measurable; 

3. , 

4.  satisfies the delay SDE ([1.1.1]). 

The following conditions are sufficient for the existence of a unique solution to ([1.1]) (see  and ). 

1. . 

2. . 

3. ,  are such that 

1.  and  are -  measurable. 

2. For each , the stochastic variables  and  are 

-  measurable. 

3. There exists a constant  and a function  such that  

(1.2) 
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4. for almost all  and for all ;  and  belongs to . 

5. There exists a constant  such that, for almost all ,  

(1.3) 

6.  for all ; for all , , and for all , . 

 

INTEGRATION BY PARTS FORMULA 
In the beginning of this section we recall the following five basic numbered equations and definitions, See . For 

, let , be the Malliavin derivative of the solution 

process . We write  ( , ) for its time delay. 

In the following definition we give a precise definition of the Malliavin derivative of a real-valued functional  of 

Brownian motion. 

[D:Malliavin] Let  be a functional of -dimensional Brownian motion, and let 

 be a deterministic vector-valued function in . 

Then  is given by the limit:  

  (2.1) 

 The mapping  is a linear map (functional) from the space  to 

. Here  denotes the space of all -matrices (  rows,  columns). 

Notice that, for  be a deterministic matrix-valued function in 

,  can be considered as a -matrix where each entry is an -valued adapted 

stochastic process;  can be considered as a -matrix where each entry is an -valued adapted 

stochastic process. If  is a real  matrix, then  denotes 

its transposed: it is  matrix with entries . 

The process  satisfies the following delay stochastic differential equation:  
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(2.2) 

 where  belongs to . If  belongs to  we replace  with  in ([E: SDEDP]). If  we obtain the 

delay stochastic differential equation for the process :  

(2.3) 

 We also write , and . In addition, we write 

 (the delay of ), and , the delay of the process 

. The matrix  can be identified with an operator from  to itself, the matrix  can be 

considered as an linear mapping from  to , the matrix  as a mapping from  to , 

and, finally,  as a mapping from  to itself. Notice that  can be considered as -

matrix where each entry is an -valued adapted stochastic process;  can be considered as -matrix 

where each entry is an -valued adapted stochastic process. To be precise, write the solution process as a -

vector , and consider the mapping ( , )  
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    (2.4) 

which is a mapping from  to , and where each variable , $\ell\not= k$, is a fixed function in . 

The derivative of the function in ([E: mapping]) can be considered as a continuous linear functional on . 

Therefore it can be represented as an inner-product with a function in , which is denoted by . 

Consequently, we write  

(2.5) 

 After giving a brief introduction to our work, we are now ready to continue the work that we have started in .  

 

Here, and in the sequel, we write  and  instead of  and  

respectively. For a concise formulation of the stochastic differential equation for the matrix-valued process 

 and its inverse we introduce the following stochastic differentials:  

  (2.6) (2.7) & (2.8) 

 First we introduce the following definitions:  

 

 Next we consider the new process satisfying the delay SDE 

   (2.9) 

The delay SDE ([E: Ito(6)]) can also be written as  
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 (2.10) 

 We can thus split ([E: Umatrix]) into the following four delay SDE’s  

     (2.11) 

  

     (2.12) 

  

     (2.13) 

  

     (2.14) 

 Recall that the process satisfies  

     (2.15) 

Then it’s delay satisfies  

      (2.16) 

where for,  is equivalent to  

    (2.17) 
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Next we recall the delay SDE for , namely  

 (2.18) 

 Observe that the delay SDE ([E: V 3]) is an extension of the SDE (3.3) in Norris  to include delay SDE’s as well as 

ordinary SDE’s. We can see this by considering only the terms in ([E: V 3]) which include derivatives of the 

coefficients with respect to the space variable and in the same time it contain no derivative with respect to the delay 

variable. If we do this then we are automatically in the Norris case of SDE’s. 

Now we rewrite the four delay SDE’s in (2.11), (2.12), (2.13), and (2.14) as in 

(2.19), (2.20), (2.21), and (2.22) respectively. respectively. 

First we recall the following definitions:  

 
 We begin with a delay stochastic differential equation for the process :  

     (2.19) 

 Next we also see that the process  satisfies the following delay stochastic differential equation:  

     (2.20) 

 Then we also observe that the matrix-valued process  satisfies the following delay stochastic differential 

equation:  

    (2.21) 
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 where  is the delay of ,in other words the second delay of . Similarly the process  

satisfies the following delay stochastic differential equation:  

    (2.22) 

 where  is the delay of , in other words the second delay of . We shall recall the solutions to the 

equations (2.21) and (2.22),, the delayed space flow and the delayed -flow respectively. Next we can see that the 

delay SDE’s in (2.11), 

(2.12), (2.13) and (2.14) are equivalent to the delay SDE's (2.19),(2.20), (2.21) and 

(2.22) respectively. In rewriting the above four delay SDE's (2.19), (2.20), (2.21) 

and (2.22) we have used the fact that the following four pairs of differentials are equivalent where , :  

      (2.23) 

  

     (2.24) 

  

    (2.25) 

  

 (2.26) 

We notice that the -th row, , of the matrix  is given by:  

 

 We also notice that the -th columns, , of the matrices  and  are 

respectively given by  
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 Consequently the derivative  is given by  

 

                  (2.27) 

 It goes without saying that the derivative  in the left side of (2.27) is the derivative of the function 

, with , where the coordinates, 

, are frozen. By the same token the derivative  in the right side of (2.27) is 

the derivative of the function  

 

 at . Similar conventions are used for the -valued derivatives:  

 

 Of course, for the derivatives of  we also employ this kind of expressions. Consider the 

following delay SDE  

        (2.28) 

 We recall the delay SDE for   

                         (2.29) 

 Next we recall the delay SDE for , namely  
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          (2.30) 

 If we have no delay variables (in other words if we have only state variables), then the three delay SDE’s (2.28), 

(2.15), and (2.30) take the forms of the following three SDE’s respectively  

(2.31) (2.32) & (2.33) 

 

 Observe that the SDE’s (2.31), (2.32) and (2.33) are equivalent to the SDE’s (3.1), (3.2) and (3.3) in Norris  

respectively. Thus we can see that our delay stochastic differential equations (2.28), (2.15) and (2.30) in fact extend 

the SDE’s (3.1), (3.2) and (3.3) in Norris ; they include the case of delay as well as ordinary SDE’s. Moreover, we 

have also proved that  and  are each others inverse, in the case of delay SDE’s as well as ordinary SDE’s. 

Next we consider the delay versions of equations (2.28), (2.15), and (2.30) namely  

        (2.34) 
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     (2.35) 

And 

 
Then we can see that it is most probable that  and  are also each others inverse. Now we can proceed to get our 

integration by parts formula by following steps similar to the ones in chapter 3 of Norris . As above  is a 

solution to the following delay SDE:  

 
 and the process  satisfies the following delay SDE:  
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     (2.37) 

Then we can see that the delay SDE(2.37) in fact extends the SDE (2.8) in chapter 

two of the work of Norris [10] to include delay as well as ordinary SDE's. 

1. All the results which we have established in this work can be extended by replacing the Brownian motion  

by another process , ( ) which is a continuous martingale adapted to  

and has independent increments and satisfies with some constant  the inequalities  

 
2. Observe that the above properties of  which we have just mentioned are the only properties of  which we 

have used (in case of Brownian motion) to prove the results which we have obtained in this work.See  and . 

3. All the lemmas and theorems in this work hold for any delay interval  inplace of 

.See  and . 
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