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S.a Low-angle region 

 

Figure S1. Temperature dependence of the low-angle signal and extracted interparticle spacing. a) The 
periodically modulated signal at low angles evolves with temperature during the annealing experiment. The X-ray 
scattering intensity is plotted on a logarithmic scale and data recorded at different temperatures are offset for clarity. 
Vertical dashed lines mark the position of the dips at the start of the experiment at 25°C. b) The comparison between 
interparticle spacing L extracted from the low-angle data (red solid circles) and from the multilayer diffraction model 
fit of the first Bragg peak (black solid circles). The two differ by a nearly constant value of 5.56 ± 0.04 Å. 

The low-angle region of CsPbBr3 nanocrystal superlattices patterns contained broad periodically modulated 

signals which gradually shifted under thermal annealing (Figure S1a). At room temperature, the modulation 

periodicity measured at the signal minima was 0.201 Å-1, corresponding to a period of 31.3 Å in the real space. 

Upon heating, the signal minima shifted towards higher angles and the periodic inter-minima distance broadened, 

corresponding to the shortening of the period in real space to 29.5 Å at 125°C. That trend parallels the contraction 

of the interparticle spacing L extracted by the multilayer diffraction model (L=36.9→35.1 Å), while the absolute 

values differ by 5.56 ± 0.04 Å (Figure S1b). The ≈5.6 Å mismatch is explained by the nature of the low-angle 

scattering data. At low angles, X-ray scattering is sensitive to the nanometer-scale electron density modulation, as 

depicted in Figures 1d and S2a. The low-angle diffraction pattern represents a Fourier transform power spectrum 

of the electron density modulation in the sample. The superlattice electron density in the direction normal to the 

substrate can be represented by a “pulse train” profile (Figure S2a) where regions of high electron density 

correspond to inorganic nanocrystals and regions of low electron density correspond to organic ligands between 

them. The scattered intensity can be approximated by a sinc2 function: 

𝐼(𝑞)  =  ቀ
ୱ୧୬ (௪௜ௗ௧௛∙௤)

(௪௜ௗ௧௛∙௤)
ቁ

ଶ

  Eq. S1 
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Figure S2. Origin of the low-angle periodic signals. a) The nanometer-scale electron density modulation in the 
superlattice is represented as a pulse train, of which the diffraction experiment performs the Fourier transform. b) 
The low-angle signal can be described as a power spectrum of the low amplitude part of the pulse train, namely 
the interparticle spacing, and approximated by a sinc2 function. The inset shows how the multilayer diffraction model 
reproduces the low-angle region of the pattern. 

The width found in Equation S1 is that of the considered section of the pulse train. For the low electron density 

part, which is the one reproducing the low-angle profile, the width is described as d∙M, where 𝑀 = 𝐿/𝑑 −

1 represents the number of virtual crystal planes found within the interparticle spacing and represented by the red 

dashed lines in Figure S2a. The -1 comes from the extremes of the interparticle spacing, that belong to the 

nanocrystals and should not be counted twice, providing an explanation for the ≈5.6 Å periodicity mismatch (Figure 

S1b).The resulting profile approximates both the periodicity and the intensity of the broad periodical signal found at 

low-angles (Figure S2b). 

The multilayer diffraction model qualitatively accounts for all the low-angle signal features (superlattice Bragg 

peak and broad periodical signals, inset of Figure S2b). However, we decided not to include it in the fit: the natural 

broadening of signals at low angles smears out most of its fine structure, and the measured intensity is strongly 

dependent on the incidence angle (thus requiring additional corrections in the model). In addition, the analysis of 

extremely low-angle data (i.e. q<0.2 Å-1) is strongly influenced by residual misalignments and deviations due to the 

non-negligible refraction of X-rays and dynamical scattering phenomena. Taking into account these effects would 

complicate the model beyond its intended purpose. 
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S.b Multilayer Diffraction model and its implementation 

General model structure  

The Multilayer Diffraction model we used to fit the θ:2θ XRD patterns is based on the work of Fullerton et. al.1 

The original algorithm was developed for epitaxially grown binary multilayers, thus it describes the sample as a 

periodic stack of bilayers. We kept the bilayer description, even if redundant for a single-material superlattice, in 

order to ease the model implementation. Simply, the two materials in the bilayer are identical. Our algorithm takes 

a 2D-array of scattered intensity (counts) vs scattering vector (q, Å-1) as an input. 2θ→q conversion, background 

subtraction and intensity corrections must be performed beforehand (see Methods). In total, the algorithm considers 

five parameters related to the superlattice structure, one instrumental parameter, and three constants (Table S1). 

Table S1. Parameters of the Multilayer Diffraction model. This table summarizes the structural (blue) and 

instrumental (green) parameters considered by the Multilayer Diffraction model, explaining their conceptual role 

and their effect on the simulated profile.  

Parameter Role Effect on the diffraction profile 

d 
(Å) 

Is the periodicity of the atomic planes 

generating the Bragg peaks.  

Centers the interference convolution profile in the q-

scale, takes part in the determination of L together with 

N and d. Sensitive to q-zero correction.  

L 
(Å) 

Is the interparticle spacing, defined as the 

distance between the two closest atomic 

planes of neighboring nanocrystals.  

Centers the position of fringes. Depends on d, L and N. 

It is characterized by a series of relative minima in the 

χ2/L plot, which can complicate its determination.  

σL 
(Å) 

Represents the stacking disorder of 

nanocrystals in terms of statistical 

fluctuation of the local interparticle spacing.  

Smears the superlattice fringes. It is crucial for 

observing the superlattice interference: if disorder is 

too high fringes disappear, and only a peak profile 

dependent on d and N remains visible. 

N 
(at. planes) 

Represents the nanocrystals thickness 

expressed in numbers of atomic planes.  

Determines the broadening of the interference 

convolution profile. Together with d it defines the 

nanocrystal form factor.  

σN 
(at. planes) 

Represents the size distribution broadening 

of nanocrystals in the sample.  

It has a small effect on the simulated pattern. Mainly, it 

smears the outermost, low-intensity fringes of the 

convolution.  

q-zero correction 

(Å-1) 

Compensates for small misalignments of 

the diffractometer. Must be small, on the 

order of ± 0 - 0.02 Å-1. 

Shifts the q-scale by a constant. Shifts the periodic 

signals in the pattern (i.e. superlattice fringes and 

Bragg peaks) so that they are found at q-vales multiple 

of each other. Affects determination of d and L, which 

are related by the equation 𝛬 = 𝑑 ∙ (𝑁 − 1) + 𝐿. 

Instrumental 

broadening 

(Å-1) 

Considers the broadening of signals in the 

diffractogram due to the instrumental 

contribution. This parameter must be 

determined experimentally.  

A Gaussian of constant σ is convoluted on the top of 

the computed pattern before comparing it to the 

experimental data. Causes the broadening of all the 

diffraction features. 

Coherence length 

(n. of nanocrystals) 

Is the number of nanocrystals which are 

illuminated by coherent radiation.  

Should be set high enough to have no effect on the 

diffraction pattern, because the structural coherence 

dominates. We set it to a constant value of 20 

nanocrystals.   

Experimental 

intensity fluctuation 

(%) 

It is used by the bootstrap algorithm to 

evaluate the error bars on fitted parameters. 

Must be determined experimentally. 

No effect on the fit.  
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Figure S3. Nanocrystal form factor. An individual nanocrystal generates a diffraction profile which depends solely 
on the atomic lattice periodicity d and on the nanocrystal size N. This profile is the envelope that convolutes the 
intensity of the superlattice fringes.  

Implementation 

The Multilayer Diffraction model calculates the diffraction profile of an ensemble of superlattices. Each 

superlattice is size-pure (i.e. contains only nanocrystals of one specific size). The model sums the contribution of 

many superlattices formed by particles of different sizes to account for the nanocrystal size distribution. As a very 

first step, the model computes a Gaussian distribution of nanocrystal sizes, based on N and σN. This will be used 

to weight the contributions of each size to the overall diffraction profile. 

P୒ =  
ଵ

஢ొ √ଶ஠
e

ି
భ

మ
 ൬

ొబషొ

ಚొ
൰

మ

   Eq. S2 

Note about PN: The PN distribution is discrete, i.e. only integer values of N, i.e. unit cells in a nanocrystal, are 

considered, because each atomic layer represents a scattering center. Any fractional description would be 

meaningless. For calculation purposes, the distribution is truncated at N ± 3 σN. 

For each nanocrystal size in the distribution, the model performs the following routine. First step, the algorithm 

computes the single nanocrystal form factor: 

F(q) =  
ଵିୣ౟∙ొౚ∙౧

ଵିୣ౟∙ౚ∙౧    Eq. S3 

Second step, using F(q) and N the algorithm computes additional factors needed to describe the diffracted 

intensity: 

 |F|ଶ = F(q) ∙ F(q)∗   Eq. S4 

T(q) =  e୧∙(୒ିଵ)ୢ∙୯   Eq. S5 

Φ(q) =  T ∙ F(q)∗   Eq. S6 

Where |F|2 is the intensity profile diffracted by a single nanocrystal, as shown in Figures 2a and S3. T(q) is a 

factor responsible for the phase mismatch due to the spacing between adjacent nanocrystals, and the Φ(q)is pre-

calculated just to shorten Equation 9, where the product it represents recourses frequently.  
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Note about F(q): In the work of Fullerton et. al1, the model computes the average 〈F(q)〉 for all the possible layer 

thicknesses instead of the size-pure F(q) factor as we did. In our case, we simply describe the total diffracted 

intensity I(q) as sum of all the possible I(q, N)’s weighted according to the PN distribution. This is a valid assumption 

as the X-ray experiment measures an ensemble, not a single superlattice. 

Third step, the model computes a distribution for the interparticle spacing values, which is a Gaussian centered 

in L with a standard deviation of σL.  

P୐ =  
ଵ

஢ై√ଶ஠
e

ି
భ

మ
 ൬

ైషై

ಚై
൰

మ

    Eq. S7 

Unlike the others, Equation S7 does not appear explicitly in the model by Fullerton et al. Instead, they considered 

its effects by introducing the distribution-dependent factor ξ, which is the one effectively computed by the algorithm. 

The mathematical description is equivalent: for the demonstration please refer to the original publication.1  

ξ = i ∙ qL −
୯మ஢ై

మ

ଶ
   Eq. S8 

Fourth step, the coherence length C (number of nanocrystals which diffract coherently, see section S.f),  |F|ଶ, Φ, 

T, and ξ are combined to calculate the diffracted intensity I(q,N) as follows (see Ref.1 for the in-depth discussion 

and derivation of Equation S9): 

I(q, N) =  2C ∙ ൣ|F|ଶ +  Re൫eஞΦF൯൧ + 2 Re ቈΦF ൬
ୣషಖ

୘మ +
ଶ

୘
+ eஞ൰ × ቆ

େି(ୋଵ)ୣమಖ୘మା൫ୣమಖ୘మ൯
ిశభ

൫ଵିୣమಖ୘మ൯
మ − Cቇ቉  Eq. S9 

Fifth step, the total diffracted intensity of the sample is computed by adding up the I(q,N) contributions according 

to the PN probability distribution: 

I(q)୲୭୲ =  ∑ P୧ ∙ I(q, i)୒ାଷ஢୒
୧ୀ ୒ିଷ஢୒    Eq. S10 

Sixth step, the calculated I(q)tot is convoluted with the instrumental peak profile. The instrumental peak profile is 

represented as a Gaussian with a broadening σG. We estimated it experimentally from the Gaussian fit of a                   

LaB6 standard diffraction pattern (peak at q = 1.51 Å-1, σ = 0.007 Å-1): 

I(q)ୡୟ୪ୡ =  ∫ I(q)୲୭୲ ∙
 

୯
e

ି
భ

మ
 ൬

౧షಜ

ಚృ
൰

మ

dτ Eq. S11 

Seventh and the last step, the computed I(q)calc is intensity-normalized to match the peak of the experimentally 

measured I(q) and compared with the experimental data. The best fit parameters are found by minimizing the sum 

of least squares: 

xଶ = ∑ (I(q)ୡୟ୪ୡ − I(q)୭ୠୱ)ଶ 
୯     Eq. S12 

 

The fitting procedure was automated by using the scipy.optimize.least_squares routine to minimize the sum of least 

squares, given the starting value and upper and lower boundaries for each parameter in the model. The reader is 

referred to the code provided in Supporting Information for an example. 
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We point out that the superlattice periodicity Λ is a derived parameter due to implementation reasons. It is 

convenient to calculate Λ by using the value of most probable nanocrystal size N rounded to the closest integer 

minus one (to avoid double-counting of the outermost atomic planes which is included in L, see Figure 2 in the main 

text), d, and L (see Table S1 for definitions):  

𝛬 ± 𝜎௸ = [(𝑁௜௡௧ − 1)⸱𝑑 + 𝐿] ± ඥ[(𝑁 − 1) ∙ 𝜀ௗ]ଶ + 𝜀௅
ଶ  Eq. S13 

Where σΛ is calculated according to error propagation formulas, while εd and εL represent the uncertainty 

associated with the parameters d and L respectively as estimated by bootstrap (section S.j). 
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S.c Physical meaning of L 

In our fitting model, the L parameter represents the distance between two adjacent crystalline cores. This distance 

comprises the outermost nanocrystal atoms and the organic ligands passivating its surface (Figure S4). We assume 

that the surface chemistry of nanocrystals is independent from the nanocrystal size, thus the interparticle spacing 

can be considered constant for all the superlattices. However, due to the “soft” nature of the ligands, L can be 

locally thickened or thinned, causing a random nanocrystal misplacement. Such continuous disorder is captured 

by the parameter σL, whose main effect on the pattern is to let the interference fringes appear or fade according to 

the degree of the disorder (Figure 3c). Right after the self-assembly, the organic layer between nanocrystals also 

contains trapped residual solvent molecules (or in general any volatile molecule coming from the synthesis), which 

are removed from the superlattices under vacuum.2 

 

 

Figure S4. Thickness of CsPbBr3 nanocrystals. The Multilayer Diffraction model measures the nanocrystal 
thickness in terms of Pb-Br2 planes. However, the CsPbBr3 nanocrystals are oleylammonium bromide-terminated, 
thus the real thickness increases by d, while the interparticle spacing decreases by the same amount with respect 
to the fitted parameter.  
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S.d Physical meaning of N and nanocrystal thickness 

The Multilayer Diffraction model measures the thickness of nanocrystals in terms of atomic planes N. As a 

consequence, the crystal structure and the surface termination layer of the inorganic core must be considered when 

converting N into a thickness in nanometers. Taking the case of PbS nanocrystals, particles are formed by layers 

of Pb-S that are all identical to each other. The Multilayer Diffraction method measures N = 4 planes with a 

periodicity d = 3.02 Å, and the thickness is simply given by (N-1)∙d = 9.07 Å. 

The case of CsPbBr3 nanocrystals is different. The first Bragg peak corresponds to the pseudocubic (100) planes, 

which have a periodicity of d = 5.84 Å, compatible with both the Cs-Br planes and the Pb-Br2 planes in the structure. 

However, the Pb-Br2 planes are the most electron dense (152 e-/unit cell in PbBr2 vs 90 e-/unit cell in CsBr planes, 

calculated by summing up the total number of electrons per formula unit), thus we consider them as the main 

scattering entities. The Multilayer Diffraction method measures N = 13, meaning that nanocrystal are 13 Pb-Br2 

planes thick. However, CsPbBr3 is oleylammonium bromide-terminated, thus an extra Pb-Br bond should be 

considered on each side (≈ 2.92×2 = 5.84 Å, Figure S3), raising the nanocrystal thickness to N∙d ≈ 76 Å. As a 

consequence, the actual interparticle spacing is smaller than the fitted one by a difference of d. 

 
S.e Physical meaning of σN 

From the size distribution analysis by TEM, we are aware that the synthesis produces nanocrystals of CsPbBr3 

with a distribution of edge lengths on the order of roughly ±1 nm (≈ ±2 unit cells),3 which is correctly recovered by 

the Multilayer Diffraction method (σN = 1.55 unit cells). Directly transferring this size distribution onto Λ would make 

it incompatible with the superlattice interference, because the periodicity fluctuation must be on the order of a few 

Å to observe the superlattice fringes (see Equation 1 derived in section S.k). However, as demonstrated by 

Sevenhans et. al. on epitaxial multilayers, the superlattice diffraction can withstand larger fluctuations if they are 

distributed over multiples of the atomic lattice periodicity.4 This is a sensible explanation for epitaxially grown 

multilayers, where the atomic planes are extended over dimensions much larger than the atomic plane thickness, 

and a fluctuation in the number of unit cells affects homogeneously the entire layer. In the case of nanocrystal 

superlattices, a fluctuation of the nanoparticle size would instead affect just a stacked column of particles. We argue 

that this would unavoidably destroy the superlattice structural coherence we observe, especially if repeated over 

the large number of layers found in each superlattice (∼100 layers for a 1μm thick SL). As the coherence is observed 

in our experiments, we conclude that the self-assembly process is size-selective and individual superlattices (or 

superlattice regions) contain nanocrystals of the same size and shape. The size-selective nature of the self-

assembly is a plausible explanation, as it has been previously reported in other systems.5,6 
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S.f Physical meaning of C  

The superlattice interference effect requires several neighboring nanocrystals within the superlattice to be 

illuminated by a coherent radiation. This means that the phase of the incoming X-rays must be constant over a 

spatial region which contains multiple nanocrystals (coherence volume), so that only the phase mismatch due to 

the superlattice stacking periodicity produces interference. Despite being considered incoherent if compared with 

sources such as synchrotrons and free electron lasers, laboratory-grade X-ray diffractometers produce a beam 

which is coherent within a small volume. The degree of coherence depends on the instrumental configuration and 

on the incidence angle of the beam on the sample. 

In principle, the factor C in Equations S9 should describe the number of nanocrystals which diffract coherently, 

i.e. the number of nanocrystals fitting into the coherence length of the X-ray beam. However, assessing the 

coherence length of the beam is useful only if another degree of coherence, the structural one, is high enough to 

make the difference appreciable. The stacking disorder of nanocrystals limits the effects of the beam coherence: 

above a certain threshold, increasing C does not produce any difference in the simulated pattern. 

To investigate the influence of beam coherence on our experiments, we measured the same superlattice sample 

multiple times while gradually increasing the incident and receiving slits width in our diffractometer from 0.1 to 3 

mm (Figure S5). The transversal component of the beam coherence, which is the one affecting the measurement 

the most, depends on the width of the source D (= slit width) and on the radius of the diffractometer R, which is 

constant.7  

𝑇ଵ =  
ఒோ

஽
  Eq. 14 

A loss in the beam coherence should cause the superlattice diffraction pattern to resemble the diffraction profile 

of an individual nanocrystal. However, as Figure S5 shows, we found no effect attributable to a loss of coherence. 

The overall diffraction profile broadens due to the broader instrumental response function (Gaussian convolution). 

However, the peak asymmetry due to superlattice fringes is still visible with a 3 mm slit (≈ 24 nm coherence length, 

according to Equation S14, meaning only 2 nanocrystals diffracting coherently). 

Our conclusion is that Equation S14 is inadequate to describe the coherence length in our beam. A likely reason 

is that Equation S14 is derived for a small spherical source, while our instrument uses a parallel beam geometry. 

Consequently, the resulting wave front is much flatter and therefore much more coherent than that expected for an 

isotropic source having the size of our slit. Consequently, the coherence length of our beam is large enough to be 

neglected, since the structural coherence of the superlattice lattice itself is low enough to dominate over the 

interference effect. For this reason, we picked a C value large enough that its variation has no impact on the fit 

result. We estimated that C = 20 is adequate for the purpose based on the χ2 maps (see section S.h). 
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Figure S5. Effect of the slit width on the superlattice interference pattern. Increasing the diffractometer slit 
width increases the instrumental broadening (as seen by the smoothing of the diffraction profile) but does not cause 
the loss of the superlattice fringes (the Bragg peak profile remains structured), thus it is not altering the beam 
coherence length appreciably. 
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S.g Meaning of q-zero correction and fitting strategies 

The q-zero correction represents a constant shift of the q-scale, which is meant to correct small misalignments 

of the diffractometer. It is based on the knowledge that some signals in a diffraction pattern, e.g. Bragg peaks of 

multiple diffraction orders and superlattice fringes, must be periodic in the q-scale. The q-zero correction shifts the 

scale so that this condition is exactly verified. To do so, the algorithm needs to include in the fit at least two signals 

belonging to the same periodicity: without this contribution the q-zero correction cannot be resolved from d and 

must be set to 0 Å-1. This is the case of a single unstructured Bragg peak like that of PbS nanocrystal superlattices 

(Figure 6e),  

 

If multiple fringes are visible, they can be exploited to perform the correction taking advantage of the multi-region 

fit option in our algorithm. For example, in the case of CsPbBr3 and PbS nanoplatelets we fitted one extra fringe, 

chosen between q=0 Å-1 and the analyzed Bragg peak. Its fit weight was set to 1/10 to minimize its influence on 

the other structural parameters: since d and the q-zero correction are underdetermined even a small contribution 

external to the Bragg peak is enough to resolve them. A similar strategy was applied for CsPbBr3 nanocrystal 

superlattices. No extra fringes were available; thus, we exploited the periodicity of Bragg peaks by including the 

second one at a 1/10 weight. In principle both peaks could have been fitted with equal weight. However, the first 

Bragg peak is more informative of the superlattice structure: it is strongly modulated by the superlattice interference 

and is less affected by the kα1/kα2 polychromaticity of the beam and the orthorhombic peak splitting of the 

pseudocubic perovskite structure. These two effects combined cause a q-dependent peak broadening, which is 

stronger for the second Bragg peak: including it with equal weight would lead to an underestimation of the 

nanocrystal size.  
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S.h Parameter sensitivity and χ2 maps for CsPbBr3 nanocrystal superlattices 

The Multilayer Diffraction algorithm includes the χ2 maps as a tool to test the impact of parameters on the fit 

(Figure S6). Those plots show how the gradual variation of one single parameter affects the χ2 of the fit (plotted on 

a logarithmic scale) while all the other parameters are kept constant. Most parameters feature a single and narrow 

minimum, indicating that the best fit parameter is uniquely determined, and the uncertainty is small (d, σL, S and q-

zero correction). The parameter σN weakly affects the fit, hence it has a shallow minimum and is affected by a 

higher uncertainty. We set C = 20 in all our fits, as explained in the section S.f above. 

The most peculiar behavior is that of L, which shows several minima separated by a period d from one another. 

That periodicity arises from the definition of 𝛬 that interconnects L, N, and d, as defined in Equation S13 above. 

For a given sample, an integer change of N automatically involves a change of L by a multiple of d to keep Λ 

constant.  

 

 

Figure S6. χ2 maps, showing the effect of varying different parameters on the goodness of fit. The χ2 maps shown 
here are from the fit of the room temperature CsPbBr3 nanocrystal superlattice diffractogram. 
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S.i Experimental intensity fluctuation 

The experimental intensity fluctuation was estimated by performing 3 repeated measurements on a room 

temperature CsPbBr3 nanocrystal superlattice sample. For each measurement, the data was split into regions (low 

angle, 1st Bragg Peak, 2nd Bragg Peak) and normalized to produce data that is equivalent to what would be passed 

into the fit function. The average and standard deviation of relative intensity was calculated at each q-value. Errors 

on the intensity did not vary particularly strongly with relative intensity value, and were usually below 3% of the 

maximum value (see Figure S7). We used a flat error of 0.03 of the relative intensity values for most samples. 

Reduced χ2 values at best fit (see Figure S6) with this assumed error are approximately 1, lending additional 

credence to this error estimation and fit quality. 

 
Figure S7. Scatter plot of standard deviation at different relative intensity values, measured on a replica sample 
of CsPbBr3 nanocrystal superlattices.  
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S.j Bootstrap algorithm and correlation maps 

Based on the error estimate in the preceding section, we used a bootstrap scheme to evaluate the uncertainty in 

the fit parameters. We assume an uncorrelated gaussian error between 2-5 % of the maximum value (depending 

on the sample). In the bootstrap algorithm, this error is incorporated into the fit by making modified simulated 

measurements with intensity values randomly selected from a gaussian distribution centered on the measured 

intensity value with a standard deviation defined by the gaussian error. This simulated measurement is then fit, and 

the parameter values are extracted. The average and standard deviation of these parameters over 100 repeated 

samples is reported in the main text.  

 

 

Figure S8. Bootstrap Histograms, in one dimension (diagonal elements) and two dimensions (off-diagonal 

elements), showing distribution and correlation of parameters from simulated measurements, together with the 

resulting averages and standard deviations of fitted parameters. The histograms are produced by using n = 100 

iterations (left) and n=1000 iterations (right): the number of iterations can be increased (at the expense of increased 

computational time) by changing the value of “n_random ” parameter in the Deconvolution.py function file. The 

analyzed sample is CsPbBr3 nanocrystal superlattices at room temperature (experimental data and script are 

anneal_RT.csv and anneal_RT.ipynb files, respectively). 
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S.k Derivation and application of Equation 1 

The superlattice periodicity fluctuation can be estimated by finding the misplacement needed to make X-rays 

scattered by one nanocrystal interfere destructively with X-rays scattered by its perfectly stacked neighbors. For a 

perfect superlattice with a periodicity Λ0, X-rays interfere constructively at an angle θ0 determined by Bragg’s law: 

𝑛λ = 2𝛬଴ sin(𝜃଴)  Eq. S15 

We now consider a nanocrystal stacked at an imperfect distance Λ = Λ0 ± δΛ, where δΛ represents its 

misplacement. The interference observed at the original angle θ0 will become less and less constructive the more 

δΛ increases. The δΛ at which the interference becomes completely destructive is found by imposing n ± ½ instead 

of n on the left side in Bragg’s law: 

ቀ𝑛 ±
ଵ

ଶ
ቁ λ = 2𝛬 sin(𝜃଴)  Eq. S16 

Substituting Equation S16 for sin(θ0) gives: 

ቀ𝑛 ±
ଵ

ଶ
ቁ λ = 2𝛬 ∙

௡஛

ଶ௸బ
  Eq. S17 

𝑛𝛬଴  ±  
ଵ

ଶ
𝛬଴ = 𝑛𝛬  Eq. S18 

Substituting Λ = Λ0 ± δΛ produces:  

𝑛𝛬଴  ±  
ଵ

ଶ
𝛬଴ = 𝑛𝛬଴ ± 𝑛𝛿௸  Eq. S19 

𝛿௸ = ±
௸బ

ଶ௡
   Eq. S20 

Equation S20 indicates the misplacement needed to bring a nanocrystal into completely destructive interference 

conditions with the rest of the SL. However, we are more interested in the loss of constructive interference, which 

occurs when totally constructive and totally destructive interference have the same probability. Thinking of δΛ as an 

average misplacement, this occurs when δΛ is equal to half the value found by Equation S20. Finally, this implies 

that if we can see the superlattice effect decorating a Bragg peak, the average displacement must be smaller than 

this threshold: 

𝛿௸ ≤
௸బ

ସ௡
=  

గ

ଶ௤
   Eq. S21 = Eq. 1  

Where 𝑛 =
௤௸బ

ଶగ
 represents the index of the superlattice fringe (like that of a Bragg peak). Equation 1 can be used 

as a figure of merit to estimate the superlattice stacking disorder by the inspection of the Bragg peaks fine structure, 

with no need of a full profile fit. An example of application on CsPbBr3 nanocrystal superlattices follows. First, 

inspect the diffractogram (Figure 1c, main text) and notice that the first Bragg peak (q = 1.1 Å-1) shows superlattice 

fringes while the second (q = 2.2 Å-1) does not. Then, calculate δΛ at both peaks using Equation 1, finding that δΛ 

≈ 1.4 Å for the first and δΛ ≈ 0.7 Å for the second. The first Bragg peak shows superlattice fringes, therefore the 

average displacement must be smaller than the calculated value. On the contrary, the second Bragg peak is not 

modulated by the superlattice interference, and the structural disorder must be higher than the related threshold. 

Thus, we shall conclude that 0.7 Å < δΛ < 1.4 Å. Note that δΛ ≠ σΛ: the first is an average misplacement, while the 

second is the standard deviation of a Gaussian distribution. However, the two parameters share the same order of 

magnitude.  
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S.l Comparison with GISAXS, GIWAXS and SAED 

Figure S9. The role of size on the structure of CsPbBr3 nanocrystal superlattices. a) TEM image of several CsPbBr3 
superlattices grown on the same mesh. b) Plot relating the size of each superlattice (indicated by its major diagonal) 
to its distortion from a perfect square/rectangle.  

Figure 3b shows a GISAXS pattern collected from a film of CsPbBr3 nanocrystal superlattices. Signal comes in 

form of spots, demonstrating that nanocrystals are periodically stacked along all the three spatial directions as 

expected for a 3D-superlattice. Given the thickness of our superlattices (up to 1 μm ≈ 100 layers), this suggests 

that underlying nanocrystal templated the growth of those on the top, avoiding superlattice plane shifts or rotations. 

The shape of the spots, narrow and well defined, attests the high structural order of superlattices. However, 

quantifying the degree of order by GISAXS would entail measuring the bidimensional instrumental broadening and 

deconvoluting its contribution over a bidimensional map, that is a challenging task. GISAXS spots were indexed 

with the SUNBIM software,8 and are compatible with a primitive cubic packing of nanocrystals. The extracted 

horizontal and vertical periodicities of 103.9 ± 0.4 Å and 103.0 ± 1.1 Å suggest that packing is isotropic within the 

instrumental resolution (Figure 1b).  

Figure 3c-d shows a side-by-side comparison of GIWAXS and SAED. The CsPbBr3 nanocrystals used in this 

work have an orthorhombic structure, however the differences from the ideal cubic structure are small and 

dynamic.9–12 Thus, both patterns were indexed according to a pseudo-cubic description for simplicity. Despite 

showing similarities, GIWAXS and SAED patterns are different: with respect to our sample GIWAXS is a powder-

like ensemble measurement that includes signals coming from all the nanocrystal atomic planes, while SAED is a 

single-superlattice measurement sensitive only to the planes perpendicular to the substrate. The GIWAXS pattern 

contains well-defined spots, slightly elliptical in the annular direction. As for GISAXS, this suggests a high structural 

order, which is again challenging to quantify. In addition, they attest to the extremely selective orientation of 

individual nanocrystals in the sample (laying with the pseudocubic {100} planes parallel to the substrate). The arc 

at ~0.9 Å-1 comes from an unidentified impurity, perhaps the same found in the θ:2θ XRD pattern (Figure 1c). 

However, the arc shape implies that, whatever structure is formed, it must be randomly oriented, which rules out 

any contribution from the nanocrystals.  



S19 

 

In both GIWAXS and SAED, the annular broadening of spots arises from the tilt of the individual nanocrystals 

with respect to the X-ray/electron beam axis.13 This is more pronounced in the SAED pattern, while in the GIWAXS 

it is minimal. The difference is mainly due to smaller superlattices (measured by SAED) being more distorted than 

larger ones. In fact, the inspection of several superlattices in TEM revealed that smaller superlattices have a higher 

chance of being distorted from the ideal squared/rectangular shape, which we can take as an indicator of structural 

perfection (Figure S9). This explains why superlattices studied in SAED, for which thin (and therefore small) 

superlattices are needed, are more prone to nanocrystal tilting. In addition, the horizontal direction of growth probed 

in SAED does not benefit from the substrate templating effect, whereas the vertical direction probed in GIWAXS 

does. This might lead to the structural disorder in the horizontal direction being slightly higher, even if we argue that 

this effect is probably negligible. In fact, no trace of visible mosaicity was in found in HRSEM images of superlattices 

grown on silicon substrates (Figure 1b). 

To summarize and compare with the Multilayer Diffraction model, the picture provided by GISAXS, GIWAXS and 

SAED is that CsPbBr3 nanocrystals superlattices feature a primitive cubic packing that is ordered and periodic in 

all the three spatial directions. This information cannot be extracted from the Multilayer Diffraction method, which 

is inherently monodimensional. Nanocrystals inside the superlattice are oriented with the pseudocubic {h00} planes 

parallel to the substrate. Since nanocrystals are orthorhombic, this could be in principle distinguished as one of two 

non-equivalent orientations (pseudocubic {h00} = (020)+{101} orthorhombic) or a random mixture of them, but the 

resolution of GIWAXS/SAED is insufficient for this purpose. The narrow spots in GISAXS and GIWAXS indicate a 

high structural order all over the sample. However, extracting quantitative information about the disorder is 

challenging, while it is readily available by the Multilayer Diffraction model, although limited to the vertical direction. 

The same goes for parameters such as nanocrystal size, interparticle spacing and their distributions, which would 

require a complex fit of the GISAXS/GIWAXS scattering maps and are instead easily recovered by the Multilayer 

Diffraction method.  
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S.m Thermal annealing of CsPbBr3 nanocrystal superlattices 

Figure S10 shows the evolution of the most important features in the CsPbBr3 nanocrystal superlattices pattern 

upon thermal annealing. All the patterns evolve in the 25-150°C temperature range. The evolution of the first Bragg 

peak profile is commented in the main text, with reference to Figure 4. In addition, the overall intensity of the peak 

increases due to a better alignment of nanocrystals with the substrate surface, compatibly with an improvement of 

the superlattice structural order. The same effect is found for the superlattice Bragg peak at low angles (2θ ≈ 1.75°) 

and the second Bragg peak (2θ ≈ 30.5°). Interestingly, panel c) demonstrates that the second Bragg peak is not 

completely unaffected by the superlattice effect, as the gradually increasing structural order of the superlattice is 

captured by the appearance of a weak peak profile modulation.  

At 150°C a sudden drop of the diffracted intensities occurs in all regions, together with the loss of superlattice 

fringes and the sharpening of the Bragg peak profile. This is compatible with the sudden sintering of nanocrystals 

within the superlattice structure, that introduces disorder (loss of superlattice fringes, loss of superlattice Bragg 

peak), misaligns the atomic planes (decrease in the diffracted intensity) and causes the formation of larger 

crystallites (sharper Bragg peak profiles). 

 

Figure S10. Thermal annealing of CsPbBr3 nanocrystal superlattices. Evolution of all the regions in the 
CsPbBr3 nanocrystal superlattices pattern upon thermal annealing. Intensities are not normalized.  
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S.n N and σN evolution during thermal annealing  

 

 

Figure S11. N and σN evolution during thermal annealing. As expected in the absence of nanocrystals 
coalescence, the nanocrystal size S and size distribution σN remained constant in the 25-125°C range, with 
fluctuations within the error bars.  
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S.o CsPbBr3 nanoplatelets data treatment and anisotropic lattice expansion 

 

 

Figure S12. Preparing CsPbBr3 nanoplatelets pattern for the fit. The as-acquired pattern (left) was fitted with a 
series of gaussian curves, representing the diffuse scattering (green), the superlattice fringes (grey) and two 
spurious peaks (red) not belonging to the superlattice interference pattern. Those were subtracted to obtain the 
pattern fitted by the Multilayer Diffraction method (right). 

The as-acquired diffraction pattern of CsPbBr3 nanoplatelets contains two peaks which are not compatible with 

superlattice fringes: they are sharper than the peaks surrounding them, and their position in the q.-scale does not 

follow the periodicity of superlattice fringes. These outlier peaks are identified as the (220)/(004) peak (q=2.15 Å-1) 

and (114)/(222) peak of CsPbBr3, visible due to the non-oriented nanoplatelets present in the sample. The outlier 

peaks were fitted with a Gaussian peak shape and subtracted before performing the multilayer diffraction fit.  

However, the presence of the (220)/(004) peak is useful to study the anisotropic lattice expansion found in 

CsPbBr3 nanoplatelets. Its position is compatible with a pseudocubic d = 5.836 Å, compatible with that of cuboidal 

nanocrystals. The peak shape is sharp, indicating that the reflection comes from the spatially-extended direction of 

the nanoplatelets. The superlattice interference convolution profile, instead, is clearly shifted towards lower angles, 

compatibly with d = 6.0166 Å resulting from the fit. This clearly indicates that CsPbBr3 nanoplatelets undergo an 

anisotropic lattice expansion along their thinner direction (+3.0%).   
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S.p PbS nanocrystal superlattices χ2 maps and rotational disorder 

The χ2 maps for PbS nanocrystal superlattices (Figure S13) show that σL produces the best fit for any value 

above ≈ 1.5 Å. This clearly indicates that the superlattice interference is completely absent for this sample. As 

consequently expected, L plays no role in the fit, because the pattern contains no information at all about the relative 

arrangement of nanocrystals within the SL. It is worth noting that σL represents a linear misplacement, but for 

spheroidal nanoparticles some tilting disorder is to be expected as well. This, however, can be expressed as a 

linear displacement via a simple geometrical relation: 

𝛼 = arctan ቀ
ଶఙಽ

ௐ
ቁ Eq. S22 

Where 𝑊 =  (𝑁 − 1) ∙ 𝑑 is the width of the nanocrystal expressed in Å. Applying Equation 22 to the estimated σL 

> 1.5 Å yields a titling misplacement of α > 1.9°, which is enough to destroy the superlattice interference while still 

maintaining a high preferred orientation for nanocrystals. The physical reality combines both a linear and an angular 

tilting, of which σL represents a collective measurement.  

 Interestingly, σS is unusually high for such a highly monodisperse sample (as seen by TEM, Figure 6g). This is 

probably due to the spherical shape of nanocrystals, that causes the nanocrystal vertical thickness to change 

between center and borders, and might even cause a slight underestimation of the nanocrystal size S.  

 

 

Figure S13. χ2 maps for PbS nanocrystal superlattices, together with a scheme explaining the effect of 
nanocrystal tilting on the misplacement parameter σL.  
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S.q Effects of the Lorentz-Polarization correction 

The Lorentz-Polarization correction is a procedure applied to the as-measured diffractograms to compensate 

for two angle-dependent alterations of the diffracted intensity. Specifically, the polarization correction takes into 

account the contribution of the polarization of the incident beam, while the Lorentz correction accounts for the 

different time crystallites remain within diffraction conditions at different measurement angles.  

The q-scale diffraction data fitted in this work was obtained from the experimentally measured 𝐼(2𝜃) by dividing 

it with the Lorentz-polarization factor, 𝐿𝑝 =
(ଵା஺ ୡ୭ మ ଶఏ)

(ଵା஺) ୱ୧୬ ଶఏ
, where 𝐴 =  𝑐𝑜𝑠ଶ2𝜃ெ and θM is the Bragg angle of the 

monochromator crystal (1° in our case).14 

Figure S14 compares the diffractogram and fit results of PbS nanosheets before and after the application of 

the Lorentz-Polarization correction. This example was chosen because the Lorentz-Polarization correction mostly 

affects the relative intensities of signals which are far from each other in the q-scale.  

 

Figure S14. PbS nanosheets patterns and fits before and after the application of the Lorentz-polarization 
correction. 

 

Table 1. Fit results for PbS nanoplatelet assemblies before and after the Lorentz-polarization correction. 

Sample d (Å) L (Å) σL (Å) N (planes) σN (planes) Λ (Å) 

Before LP 

Correction 

3.0233 

± 0.0042 

44.3933 

± 0.029 

0.324 

± 0.016 

3.98 ≈ 4 

± 0.05 

(9.07 Å thick) 

0.817 

± 0.078 

53.463 

± 0.032 

After LP 

Correction 

3.0083 

± 0.0042 

44.444 

± 0.024 

0.325 

± 0.017 

3.98 ≈ 4 

± 0.05 

(9.07 Å thick) 

0.850 

± 0.080 

53.469 

± 0.027 
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S.r List of provided files 

 Microsoft Excel Spreadsheet for XRD data conversion from 2θ(°)/Intensity format to q(Å-1)/Lp-corrected 

Intensity format: Data Conversion.xlsx 

 

 Python function file required for running the Jupyter Notebooks, that contains the multilayer diffraction fitting 

algorithm: Deconvolution.py 

 

 XRD datafiles [q(Å-1)/Lp-corrected Intensity]: 

 Of CsPbBr3 nanocrystal superlattices at different temperatures: anneal_RT: anneal_50; 

anneal_75; anneal_100; anneal_125 (.csv) 

 Of CsPbBr3 nanoplatelet stacks: CsPbBr3_nanoplatelets.csv 

 Of PbS nanoplatelet stacks: PbS_nanoplatelets.csv 

 Of PbS nanocrystal superlattices: PbS_nanocrystals.csv 

 

 Jupyter Notebooks file with fitting routine and bootstrapping error analysis: 

 Of CsPbBr3 nanocrystal superlattices at different temperatures: anneal_RT: anneal_50; 

anneal_75; anneal_100; anneal_125 (.ipynb) 

 Of CsPbBr3 nanoplatelet stacks: CsPbBr3_nanoplatelets.ipynb 

 Of PbS nanoplatelet stacks: PbS_nanoplatelets.ipynb 

 Of PbS nanocrystal superlattices: PbS_nanocrystals.ipynb 

 

 Output of the Jupyter Notebooks fitting routines in the format of a multicolumn data file: 

 Of CsPbBr3 nanocrystal superlattices at different temperatures: FIT_anneal_RT: FIT_anneal_50; 

FIT_anneal_75; FIT_anneal_100; FIT_anneal_125 (.csv) 

 Of CsPbBr3 nanoplatelet stacks: FIT_CsPbBr3_nanoplatelets.csv 

 Of PbS nanoplatelet stacks: FIT_PbS_nanoplatelets.csv 

 Of PbS nanocrystal superlattices: FIT_PbS_nanocrystals.csv 
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