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EXPERIMENTS & RESULTS

Hip cartilage damage is  a  major  predictor  of  the  clinical 
out-  come  of  surgical  correction  for  femoro-acetabular 
impingement  (FAI)  and  hip  dysplasia.  Automatic 
segmentation for hip cartilage is an essential prior step in 
assessing cartilage damage status. 

Deep  Convolutional  Neural  Networks  have  shown  great 
success in various automated medical image segmentations, 
but testing on domain-shifted datasets (e.g. images obtained 
from  different  centers)  can  lead  to  severe  performance 
losses. Our aim it to train a network which can realise cross-
center hip MRI cartilage segmentation, without the need for 
additional  time-consuming  annotations  on  the  target 
domain. 

INTRODUCTION & AIM METHOD & DATASET Dataset & Preprocessing
•The source dataset contains 25 hip 
MR  images  from  University 
Hospital of Berne ( 20 for training 
and 5 for validation).

•The target dataset contains 21 hip 
MR  images  from  the  Boston 
Children’s  Hospital  of  Harvard 
Medical  School  (14  cases  for 
training and 7 cases for testing). 

•All MR images were resampled to 
0.25*0.25*1mm3 .

Table 1.  Quantitative comparative results with other state-of-the-art 
methods for the task of cross-center hip cartilage segmentation.

Figure 1. Method overview: red arrows and blue arrows represent the target and source domain, respectively. 
The segmenter is trained with supervised loss on the source domain, and unsupervised adversarial loss between 
domains by two discriminators, i.e. the feature map discriminator and the entropy map discriminator.
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Methods Adaptation DOC (%) HD (mm) ASD 
(mm)

No Adaptation Train on Source Data Only 46.46 51.10 3.15

CycleGAN (Zhu et al.) Image Appearance Translation 8.86 64.67 9.48

MCD (Saito et al.) Max Classifier Discrepancy 59.74 32.43 2.10

ADDA (Tzeng et al.) Feature Alignment 67.25 24.48 1.23

Ours Feature Alignment + Entropy 
Alignment 72.82 14.98 0.43

Target Model Train on Target Data Directly 81.30 10.48 0.37

Figure 2. Qualitative comparison of segmentation by different methods. 


