

Representative research on power electronics in MVDC Institute for Power Generation and Storage Systems Flexible Electrical Network

Dr.-Ing. Shenghui Cui

BMBF Forschungscampus "Flexible Electrical Networks" Partners of FEN Research Campus*

* Member of CIGRE C6.31 MVDC Feasibility Study and DKE LVDC Std. Committee

FEN Medium-voltage (5 kV) DC CAMPUS grid

M. Stieneker, J. Butz, S. Rabiee, H. Stagge and R. W. D. Doncker, "Medium-Voltage DC Research Grid Aachen," *International ETG Congress 2015; Die Energiewende - Blueprints for the new energy age; Proceedings of*, Bonn, Germany, 2015, pp. 1-7.

- Key component for DC Grids: Robust, efficient high-power converter
- **•** Demonstrator, dual-active bridge concept
	- wide soft-switching operation area
	- $-$ Power $>$ 5 MW
	- $-$ Input and output ratio up to 5 kV
	- 3 single-phase transformers each rated for 2.2 MVA (600 kg/transformer)

- Key Elements for DC Grids: High-Power Dual-Active Bridge
	- IGCTs require clamping circuits to limit d*i*/d*t*, which increase the losses
	- Alternative: Soft switching
	- Must be unconditional
	- Accidental hard-switching is absolutely not allowed

- Classic Auxiliary-Resonant Commutated-Pole (ARCP)
	- Quasi resonant switching for zero-voltage switching at operating conditions
	- Expected loss savings up to 90 kW
	- Challenging control of correct boost current
		- Sensitive to control and device delays
		- Very little margin for *i^b* and after *t⁴*
		- Otherwise hard-switching/snubber dump may occur

6

resonant phase

 $T_{\rm mag}$

- **Modified Auxiliary-Resonant Commutated Pole**
	- Splitting the center node creates margin for complete resonant transition
	- $-$ Split voltage u_m set for capacitive load capability, control and switching delays
	- Zero-voltage detection across the IGCT, inhibiting IGCT turn-on, prevents from accidental snubber dump

- **Modified Auxiliary-Resonant Commutated Pole**
	- Splitting the center node creates margin for complete resonant transition
	- $-$ Split voltage u_m set for capacitive load capability, control and switching delays
	- Zero-voltage detection across the IGCT, inhibiting IGCT turn-on, prevents from accidental snubber dump

Appearance of the Saturation in the High-Power Setup

2 years ago with conventional IGCT clamping circuit at dc-link voltage of 1.2 kV:

10

Appearance of the Saturation in the High-Power Setup

- **DC-offsets in magnetizing currents measured**
- **Various effects can cause saturation**
- **Unequal in volt-seconds per switching cycle**

11

 $\left(\mathrm{c}\right)$

11

 (b)

 $u_{p1,M}$

 $u_{\rm p1}$

Estimation of DC-Magnetizing Currents

- **Simulation with inductance** depending on magnetizing current
- **Hysteresis effect neglected**
- **Accurancy high enough between** simulation and hysteresis
- **Langevin approach matches most**

Estimation of DC-Magnetizing Currents

Space vector representation with Clarke transformation:

$$
\overline{i_{\rm m1}} = 1.6 \text{ A}
$$
\n
$$
\overline{i_{\rm m2}} = -11.3 \text{ A}
$$
\n
$$
\overline{i_{\rm m3}} = 9.7 \text{ A}
$$
\n
$$
2/3(\overline{i_{\rm m1}} + \underline{a} \cdot \overline{i_{\rm m2}} + \underline{a}^2 \cdot \overline{i_{\rm m3}})
$$
\n
$$
\underline{i_{\rm m, dc}} = e^{j120^\circ}
$$
\n
$$
\underline{i_{\rm m, dc}}
$$

Phasor represenation of second harmonic of the star-point voltage:

Estimation of DC-Magentizing Currents

Parameter sweep in simulation brought up following relationships:

Absolut values depend:

 $|\underline{i}_{\text{m,dc}}| \approx c_{\text{amp}} \cdot |\underline{u}_{2y}|$

Arguments have linear relationships:

$$
\left| \arg(\underline{i}_{\mathrm{m,dc}}) \approx \arg(\underline{u}_{2\mathrm{y}}) + 90^{\circ} - \varphi \right|
$$

With the star-point voltage dc-magnetizing currents can be estimated!

Simulation, Emulation and Control

- Compensator embedded on controller platform (FGPA+DSP)
- **Controller-in-the-loop test setup**
- **Controller unit proofs proper functionality of the unique compensation**
- **Additional investment in hardware ~150 €**

Results of 3 years in 30 seconds

Drive testbench connected to MVDC grid

5 MVA transformer Gearbox @ 1 kHz by Schaffner and thyssenkrupp

RSCHUNGSCAMPU FLEXIBLE ELEKTRISCHE NETZE

- 5 kV galvanic isolated bidirectional DC-DC converter
- **The shelf converter with new**developed 1 kHz medium-frequency transformer with 16x power density compared to 50 Hz state-of-the-art
- **5 MVA Transformer build with FFN** partners (thyssen krupp electric steel and Schaffner GmbH)
- Key-component for smart energy distribution in coming DC grids

¹ Gravimetric power density of the transformator compared to 50 Hz dry transformers

DC Transition Higher Efficiency, Saving Materials, Digital, Flexible, but also more Ecological!

4,5 MVA, 50 Hz Transformator 11.500 kg (2,5 kg/kVA)

5,0 MVA, 1.000 Hz Transformator 675 kg (0,14 kg/kVA)

Solid State DC transformers reduce significantly our $\mathsf{CO}_2\text{-}$ foot print Estimated Transformer use; AC@50 Hz >25,000 ton/GVA, DC@1 kHz Grid < 1,500 ton/GW

IETO-IGBT Hybrid Switch

- Turn-off thyristor
	- Lower on-state voltage
- IGBT
	- Lower turn-off loss
- Hybrid concept
	- Shifting technology curve towards optimized overall performance

Diode Assisted Gate Commutated Thyristor (DAGCT)

- For DC circuit breaker application
- Lower cost than IGCT
	- Simplified gate driver circuit

FLEXIBLE
ELEKTRISCHE

NETZE

Representative research on MVDC at Institute PGS & FEN

Dr.-Ing. Shenghui Cui

