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FEN Medium-voltage (5 kV) DC CAMPUS grid
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Rated current of 
power cables Icabel 680 A
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≈ 900 m

M. Stieneker, J. Butz, S. Rabiee, H. Stagge and R. W. D. Doncker, "Medium-Voltage DC Research Grid Aachen," International ETG Congress 2015; Die 

Energiewende - Blueprints for the new energy age; Proceedings of, Bonn, Germany, 2015, pp. 1-7.
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IGCT-based High-Power DC-DC Converter

 Key component for DC Grids: 
Robust, efficient high-power converter

 Demonstrator, dual-active bridge concept
 wide soft-switching operation area
 Power > 5 MW
 Input and output ratio up to 5 kV
 3 single-phase transformers each rated

for 2.2 MVA (600 kg/transformer)
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IGCT-based High-Power DC-DC Converter

 Key Elements for DC Grids: High-Power Dual-Active Bridge
 IGCTs require clamping circuits to limit di/dt, which increase the losses
 Alternative: Soft switching
 Must be unconditional
 Accidental hard-switching is absolutely not allowed
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IGCT-based High-Power DC-DC Converter

 Classic Auxiliary-Resonant Commutated-Pole (ARCP) 
 Quasi resonant switching for zero-voltage switching at operating conditions
 Expected loss savings up to 90 kW 
 Challenging control of correct boost current

• Sensitive to control and device delays
• Very little margin for ib and after t4
• Otherwise hard-switching/snubber dump may occur
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IGCT-based High-Power DC-DC Converter

 Modified Auxiliary-Resonant Commutated Pole
 Splitting the center node creates margin for complete resonant transition
 Split voltage um set for capacitive load capability, control and switching delays 
 Zero-voltage detection across the IGCT, inhibiting IGCT turn-on, prevents from 

accidental snubber dump
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IGCT-based High-Power DC-DC Converter

 Modified Auxiliary-Resonant Commutated Pole
 Splitting the center node creates margin for complete resonant transition
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Gravity slingshot 

assist
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IGCT-based High-Power DC-DC Converter

2 years ago with conventional IGCT clamping circuit at dc-link voltage of 1.2 kV:

Appearance of the Saturation in the High-Power Setup
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IGCT-based High-Power DC-DC Converter

Appearance of the Saturation in the High-Power Setup

 DC-offsets in magnetizing currents measured

 Various effects can cause saturation

 Unequal in volt-seconds per switching cycle
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IGCT-based High-Power DC-DC Converter

Estimation of DC-Magnetizing Currents

 Simulation with inductance 

depending on magnetizing 

current

 Hysteresis effect neglected

 Accurancy high enough between 

simulation and hysteresis

 Langevin approach matches most



13

IGCT-based High-Power DC-DC Converter

Estimation of DC-Magnetizing Currents

 Space vector representation with Clarke transformation:

 Phasor represenation of second harmonic of the star-point voltage:
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IGCT-based High-Power DC-DC Converter

Estimation of DC-Magentizing Currents

Parameter sweep in simulation brought up 

following relationships:

 Absolut values depend:

 Arguments have linear relationships:

With the star-point voltage dc-magnetizing 

currents can be estimated!
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IGCT-based High-Power DC-DC Converter

Simulation, Emulation and Control

 Compensator embedded on controller platform (FGPA+DSP)

 Controller-in-the-loop test setup

 Controller unit proofs proper functionality of the unique compensation

 Additional investment in hardware ~150 €
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Multi-Megawatt Three-Phase Dual-Active Bridge DC-DC Converter

Results of 3 years in 30 seconds
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IEGT-based High-Power DC-DC Converter

AFE UM 2 UM 4

Motor

Gearbox5 MVA transformer 
@ 1 kHz by Schaffner
and thyssenkrupp

Drive testbench
connected to MVDC 
grid
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IEGT-based High-Power DC-DC Converter

 5 kV galvanic isolated bidirectional DC-
DC converter

 Off-the shelf converter with new-
developed 1 kHz medium-frequency
transformer with 16x power density
compared to 50 Hz state-of-the-art

 5 MVA Transformer build with FEN 
partners (thyssen krupp electric steel
and Schaffner GmbH)

 Key-component for smart energy
distribution in coming DC grids

1 Gravimetric power density of the transformator compared to 50 Hz dry transformers
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DC Transition
Higher Efficiency, Saving Materials, Digital, Flexible, but also more Ecological!

4,5 MVA, 50 Hz Transformator

11.500 kg (2,5 kg/kVA)
5,0 MVA, 1.000 Hz Transformator

675 kg (0,14 kg/kVA)

Solid State DC transformers reduce significantly our CO2-foot print
Estimated Transformer use; AC@50 Hz >25,000 ton/GVA,  DC@1 kHz Grid < 1,500 ton/GW
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IETO-IGBT Hybrid Switch

• Turn-off thyristor
 Lower on-state voltage

• IGBT
 Lower turn-off loss

• Hybrid concept
 Shifting technology curve towards 

optimized overall performance
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Diode Assisted Gate Commutated Thyristor (DAGCT) 

• For DC circuit breaker application

• Lower cost than IGCT
 Simplified gate driver circuit
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Representative research on MVDC at Institute PGS & FEN
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