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The importance of three-dimensional effects for flapping wings is addressed by means

of numerical simulation. In particular, the clap–fling–sweep mechanism is examined.

The flow at the beginning of the downstroke is shown to be in reasonable agreement

with the two-dimensional approximation. After the wings move farther than one chord

length apart, three-dimensional effects become essential. Two values of the Reynolds

number are considered. At Re¼128, the spanwise flow from the wing roots to the wing

tips is driven by the centrifugal forces acting on the mass of the fluid trapped in the

recirculation bubble behind the wings. It removes the excess of vorticity and delays the

periodic vortex shedding. At Re¼1400, vortex breakdown occurs past the outer portion

of the wings, and multiple vortex filaments are shed into the wake.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

One of the major hypotheses, that underlies many aerodynamic theories (see, e.g., Ellington, 1978) and computational
studies (see, e.g., Wang, 2005) of insect hovering flight, states that the near flow can be sufficiently well described within
the two-dimensional approximation. This viewpoint is classical. It is very appealing since it greatly simplifies the
modelling and, together with other assumptions, can even lead to an analytical description of the flow. The two-
dimensional approximation is well justified for wings of large aspect ratio, but for real insect wings this parameter varies
between 1 and 6 (for a single wing). It is therefore important to assess the significance of three-dimensionality of the flow
and the validity of the two-dimensional approximation.

Firstly, the length of the wings is finite. The pressure difference between the lower and the upper surfaces forces the air
to flow around the tips. As a result, less lift is generated near the wing ends. In addition, tip vortices shed into the flow
modify the forces generated at all spanwise positions of the wing.

Secondly, the wings rotate, and this makes a big difference, as compared to the same wings in rectilinear translational motion
(see, e.g., Sane, 2003). Insect wings typically operate at large angles of attack, where the flow separates from sharp leading edges,
and strong leading-edge vortices are formed. As long as they remain near the wings, depression in their cores leads to larger lift.

The dynamics of the leading-edge vortices is strongly influenced by the three-dimensional nature of the flow. As first
observed by Maxworthy (1979) in his experiments with a dynamically scaled model, these vortices follow the wings
during the entire downstroke. This feature makes a striking contrast to periodic vortex shedding that occurs in the two-
dimensional motion.
ll rights reserved.
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This ‘delayed stall’ appears to be very common for all flying insects. For instance, stably attached leading-edge vortices
were observed in experiments with hawkmoths (Ellington et al., 1996), butterflies (Srygley and Thomas, 2002),
dynamically scaled robotic flies (Birch and Dickinson, 2001; Lehmann et al., 2005) and also in numerical simulations
(e.g., Lan and Sun, 2001; Liu and Ellington, 1998). This behaviour of the leading-edge vortex is associated with the air flow
in spanwise direction along the wing. Maxworthy (2007) made an estimate of the spanwise velocity assuming that the
vortex has a conical tornado-like shape. Birch et al. (2004) observed experimentally, and Aono et al. (2008) confirmed
numerically, that the structure of the leading-edge vortex significantly differs between the values of the Reynolds number
Re of order 100 and of order 1000. Lentink and Dickinson (2009) argued that stable attachment of these vortices occurs
when the Rossby number (identical to the aspect ratio of a single wing) is less than 3. However, a quantitative description
of how the spanwise flow affects vorticity dynamics is still incomplete.

The purpose of this work is to quantify three-dimensional effects in the flow due to the clap–fling–sweep mechanism
(Lighthill, 1973; Weis-Fogh, 1973). In particular, we assess the validity of the two-dimensional approximation, as
anticipated in our previous study Kolomenskiy et al. This unsteady aerodynamic mechanism is used by some insects when
they need more lift at the beginning of their wing stroke. When the stroke amplitude is large, the wings eventually touch
with their surfaces. While the wings pronate, their trailing edges the remain together, impeding the air flow between
them. Much stronger vortices are therefore generated at the leading edges, compared to normal hovering when the wings
do not clap, as first suggested by Maxworthy (1979). Later on, several authors explored this by numerical simulations
(Haussling, 1979; Kolomenskiy et al., 2010; Kolomenskiy et al.; Miller and Peskin, 2005; Sohn and Wu, 1987; Sun and Yu,
2003), yet the models were two-dimensional and neglected some important phenomena mentioned earlier in this
introduction. Three-dimensional numerical simulations were performed by Sun and Yu (2006) who restricted their
attention to Re¼15, which is low enough for the leading-edge vortices to be stable even in a two-dimensional flow. Herein
we consider Re¼128 corresponding to fruit flies and Re¼1400 more typical of butterflies.

The remainder of this paper is organized as follows. In Section 2, we give a short description of the physical model and
the numerical method. Section 3 explains the geometry and kinematics of the flapping wings model. The results are
presented in Section 4, and the conclusions are drawn in Section 5.

2. Governing equations and numerical discretization

We consider rigid wings moving in a viscous incompressible fluid. The no-slip boundary condition at the solid boundary
is modelled using the volume penalization method (Angot et al., 1999).

The three-dimensional solver employs the rotational formulation of the penalized Navier–Stokes equation,

@uZ

@t
þxZ � uZþrPZ�nr2uZþ

wO
Z
ðuZ�usÞ ¼ 0, ð1Þ

with the vorticity xZ ¼r � uZ and the modified pressure PZ ¼ pZþu2
Z=2. The incompressibility condition r � uZ ¼ 0 yields

�r
2PZ ¼r � xZ � uZþ

wO
Z ðuZ�usÞ

� �
: ð2Þ

In the above equations the unknowns are the velocity uZ and the pressure pZ. The parameter n is the kinematic
viscosity, while the density of the fluid r is normalized to unity. The mask function wO describes the geometry of the wings,
it equals 1 inside of the solid and 0 inside of the fluid. The vector field us is the local velocity of the solid medium. Z is the
penalization parameter. By solving Eq. (2) the divergent part of the nonlinear and the penalization terms is removed.

Eqs. (1) and (2) are solved using a classical Fourier pseudo-spectral method. The spatial computational domain is a
rectangular box with periodic boundary conditions imposed on all its faces. It is discretized with a uniform Cartesian grid.
The time integration is exact for the viscous term and the adaptive second order Adams–Bashforth scheme is used for the
nonlinear term. Our parallel implementation of the code employs the P3DFFT fast Fourier transform package.1

The two-dimensional solver is based on the vorticity-stream function formulation of the Navier–Stokes equation.
The numerical method is essentially the same. Its details were reported earlier by Kolomenskiy and Schneider (2009).

3. Flow configuration

Unlike in some other computational studies of insect flight, the present numerical experiments do not aim at reproducing
subtleties of flapping wings of real insects, but rather focus on the essential features explained in the introduction.

A model wing, shown in Fig. 1(a), has a very simple shape: its planform is a circular sector and its cross-section is
rectangular. The linear dependence of the chord length c on the radius r, inspired by the experimental setup of
Maxworthy (1979), is convenient for analysis of the spanwise distribution of different aerodynamic quantities. The wing
dimensions are chosen such that the chord length equals cn¼1 at the radius rn¼3. The full wing length from root to tip
equals R¼4.
1 p3dfft.googlecode.com

p3dfft.googlecode.com


Fig. 1. Sketch of one wing (a) and the assembly of two flapping wings (b).
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Fig. 2. Wing kinematics: time evolution of the angles a and b and their derivatives.
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Fig. 1(b) shows an assembly of the two wings. Each of them rotates with respect to a hinge point situated at the vertex
of the sector’s sharp angle, in the mid-thickness plane. The distance between the hinges equals d0¼0.1.

The kinematics of the wings is depicted in Fig. 2. Initially the trailing edges are aligned with the Ox line, and the wings
touch with their upper surfaces—‘clap’. The wings start rotating first about the trailing edges, the angle a increases up to
451—‘fling’. Then the wings rotate about the y axis—‘sweep’. The two wings remain symmetrical with respect to the xy

plane. The angular velocities are imposed as

_a ¼ Dy
Dtrot

1:0�cos
2p
Dtrot

t

� �� �
for toDtrot ð3Þ

and

_b ¼
U�

2r�
1:0þcos pþp t�taccel

Dtaccel

� �� �
for taccelrtotaccelþDtaccel,

_b ¼
U�

r�
for tZtaccelþDtaccel, ð4Þ

where Dy¼ p=4, Dtrot ¼ 1:74, Dtaccel ¼ 1:3, taccel ¼ 0:86, Un
¼1.

Two values of the Reynolds number are considered, Re¼U�c�=n¼ 128 and 1400. This corresponds to n¼ 0:0078125 and
0.00071429, respectively. The penalization parameter is Z¼ 10�3 and Z¼ 5� 10�3, respectively. The periodic box size is
Lx � Ly � Lz ¼ 113, and the number of grid points is Nx � Ny � Nz ¼ 10243.

In addition, two-dimensional numerical simulations are performed, where the solid body motion corresponds to that of
the wing sections at rn on the cylindrical surface sketched in Fig. 1(b). The domain size in that case is Lx � Ly ¼ 2pr� � 11
and the number of grid points is either Nx � Ny ¼ 1754� 1024 or 3508�2048. Note that all physical quantities are
presented in a dimensionless form. The distances are normalized by the chord length at three quarters from the root,
shown in Fig. 1, and the time scale is given by the inverse of the terminal angular velocity.

4. Results and discussion

4.1. Reynolds number Re¼128

Fig. 3 depicts the absolute value of the vorticity at three consequent time instants. Red color corresponds to high
magnitude of vorticity, and it is mainly seen in the vortices attached to the wing edges. Blue color indicates lower vorticity,
and it is observed in the free vortex wake. During fling, at t¼1.2, very strong leading-edge vortices are seen. Equally strong
vortices are generated at the wing tips, but the flux between them is only about 15% of the flux between the leading edges.
This vorticity results from the air flow into the opening space between the wings past its sharp edges. Also note a vortex



Fig. 3. Vorticity magnitude at time instants (a) t¼1.2, (b) t¼3.2, (c) t¼7.2 at the Reynolds number Re¼128. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Radial component of the vorticity probed on a cylinder surface r¼0.75R. Time instants are (a) t¼1.2, (b) t¼3.2, (c) t¼7.2.
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Fig. 5. Vorticity field in the two-dimensional numerical simulation. Time instants are (a) t¼1.2, (b) t¼3.2, (c) t¼7.2.
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which reconnects the wing ends. It forms a horseshoe shape at later times, t¼3.2 and 7.2. At t¼7.2 the vortices shed from
the wing ends resemble hairpins typical for flows past three-dimensional bluff bodies like spheres or disks.

It is straightforward to compare these results with those predicted within the two-dimensional approximation.
In Figs. 4 and 5, a cylindrical section of the three-dimensional field (radial component only) is compared with the
two-dimensional result. At the beginning, t¼1.2, the vorticity fields look similar in both cases. The two-dimensional free
vortices are slightly stronger. The discrepancy becomes large at t¼3.2.

When the wings move far apart, t¼7.2, the dynamics of the free vortices in the two cases becomes drastically different.
In the two-dimensional simulation, the leading- and the trailing-edge vortices grow in strength until they are
subsequently shed, and the process would repeat periodically if the wings continued to move further. This agrees with
previous results by Miller and Peskin (2005). The three-dimensional vortices are less intense, but they remain attached and
their strength remains constant in time after t� 4. The near flow field of a wing is approximately steady in a moving
reference frame. The horseshoe vortex is visible in the far field.

The lift coefficient per wing is calculated using the following formula:

cL ¼
2L

rU�2A
, ð5Þ

where L is the vertical component of the aerodynamic force, called here ‘lift’ for short, and A is the wing area,
A¼ 0:5R2arctan c�=r� � 2:57. Fig. 6 depicts the lift coefficient (5) as a function of time, compared with the same quantity
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Fig. 6. Time evolution of the lift coefficient. Comparison of the result from a three-dimensional numerical simulation with two-dimensional estimates for
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estimated using the two-dimensional simulations,

cL �

Z Reff

0
cLAR ¼ 1

UðrÞ2

U�2
1

A
cðrÞ dr: ð6Þ

To derive this formula, the lift coefficient of a planar section at distance r is approximated by the lift coefficient of the
reference section at distance rn, cLAR ¼ 1 ¼ 2LAR ¼ 1=rU�2c�, scaled with the chord length cðrÞ ¼ c�r=r� and the velocity
UðrÞ ¼U�r=r�. The sectional lift force LAR ¼ 1 is a result of the two-dimensional numerical simulation. Integration is carried
up to the efficient wing length Reff¼0.88R obtained from the spanwise distribution of circulation described below.
A comparison between the two-dimensional calculations made with two different grids suggests that the accuracy is
enough for at least a qualitative analysis.

During fling, cL is mainly driven by the time evolution of _a2. It grows rapidly and then drops, reaching its minimum at

t¼1.3, when both velocities _a and _b are quite small. Another peak follows at t¼1.9 as an optimum between _b
2

increasing

and €b decreasing in time. This behaviour agrees well with two-dimensional numerical simulations of Miller and Peskin
(2005), Sun and Yu (2003) and three-dimensional experiments of Lehmann et al. (2005). The two-dimensional
approximation remains adequate during fling and the beginning of sweep, until t� 2, when separation of the trailing
edges exceeds one chord length. The latter discrepancy is a direct consequence of the delayed stall. The two-dimensional
estimate is oscillating, its amplitude is as large as its mean value. The value resulting from the three-dimensional
simulation saturates after t¼4, and it is larger.

A comparison between robotic wing experiments and two-dimensional computations of normal hovering was earlier
performed by Wang et al. (2004). They proved the two-dimensional approximation to be sufficient to predict aerodynamic
forces when the stroke amplitude is such that the wing travels between 3 and 5 chord lengths. But the clap–fling–sweep
implies a larger stroke amplitude (6 to 8 chord lengths), therefore the two-dimensional vortex shedding occurs well before
the end of the downstroke.

Obviously, the key feature absent in the two-dimensional approximation is the spanwise flow. Knowing that the two-
dimensional approximation is good enough to predict the lift coefficient during fling, it is instructive to compare the
spanwise and the in-plane components of the velocity.

Fig. 7 presents this comparison for two different time instants, at the beginning and at the end of fling. Arrows visualize
the velocity in the symmetry plane Oxy (i.e., a side view), where the radial component is maximized and the azimuthal
component vanishes due to symmetry. In Fig. 7, colour depicts the azimuthal component of the vorticity. At t¼0.6 the
velocity is perpendicular to the edges, therefore its radial component is relatively small between r¼1.5 and r¼3.5. Also
note some inflow through a small gap between the trailing edges. At t¼1.2 the spanwise flow increases, and only between
r¼2.5 and r¼3.5 the flow remains effectively two-dimensional (meanwhile this part of the wing generates most lift).
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Near the wing ends, at r43:5, the flow is essentially in the spanwise direction. The strong vertical gradient of the velocity
creates a vortex (shown in red) which then rolls up and advects inwards.

When the wings move apart, the radial velocity increases and its maximum becomes of order unity, as displayed in
Fig. 8(a). The strong spanwise flow from root to tip occupies a large domain behind the wing, but this is not where the
vorticity is strong (cf. Fig. 4(b)). The vorticity is the strongest near the sharp edges, where, surprisingly, the spanwise flow
is in the opposite direction, from tip to root. These features can be observed in experimental measurements by Birch and
Dickinson (2001) and in the numerical simulation by Aono et al. (2008).

The reason for the strong spanwise flow from root to tip behind the upper surface is evident from the velocity field
relative to the wing, shown in Fig. 8(b). It reveals a recirculation bubble, and centrifugal forces acting on it generate the
spanwise flow. To explain why the maximum spanwise flow from root to tip occurs outside the vortex cores, let us
examine the radial component of the vorticity equation:

Dor

Dt
�x � rur ¼ 0: ð7Þ

The viscous term is neglected for simplicity. D/Dt denotes the material derivative. Let us follow a Lagrangian fluid particle
which is at time t0 located at a point such that its radial coordinate is r0 and the radial velocity is maximized (centre of the
red colour area in Fig. 8(a), for instance). At that point both derivatives @ur=@y and @ur=@y are zero. Eq. (7) thus becomes

Dor

Dt
�or

@ur

@r
¼ 0: ð8Þ

The radial gradient @ur=@r is positive and varies little with r (see Fig. 9). Moreover, it remains approximately constant in
time, since the particle is trapped in the recirculation bubble behind the wing. In these conditions the vorticity carried by
the fluid particle under consideration would increase exponentially in time, and the only solution compatible with the
steady flow is zero. This is slightly modified by the action of viscous diffusion and other imperfections.

Some flow in the opposite direction, from tip to root, occurs near the lower surface because of the continuity. It peaks in
front of the leading edge. Parametric studies (not shown here) indicate that this peak diminishes with smaller wing
thickness.

Fig. 9 (solid lines) shows how the circulation and the spanwise velocity vary in the spanwise direction. The circulation at
distance r is computed by integrating the radial vorticity throughout the right half of the corresponding cylindrical section.
The maximum radial velocity is sought in the same domain. The circulation is proportional to r2, and the maximum spanwise
velocity is increasing linearly with r, except that near the root there are low Reynolds number effects, and near the tips,
at r� 0:88R, the circulation drops to zero. The latter value is used to define the upper integration limit in (6).

4.2. Reynolds number Re¼1400

Experiments of Birch et al. (2004) showed that the flow at Re¼1400 differs qualitatively from what is observed at Re of
order 100. Our numerical simulations confirm this fact, but some details are new and some further insights are given.



Fig. 10. Vorticity magnitude at time instants (a) t¼1.2, (b) t¼3.2 at the Reynolds number Re¼1400.

−1 0

0

1

ωr

−10

0

10

−2 −1 0

0

1

ωr

−10

0

10

−2 −1

0

1

ωr

−10

0

10

Fig. 11. Radial component of the vorticity at time t¼3.2. Three radial positions are shown, (a) r¼0.25R, (b) 0.5R, (c) 0.75R.
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Fig. 10 shows the vorticity field at two time instants. At the end of fling, t¼1.2, the vortex pattern is essentially the same as
observed at the lower Reynolds number, but the structure of vortex cores is different: thin vorticity layers generated at the
edges roll up into conical vortices. The vorticity peaks inside their cores and near the wing edges. The conical vortices are
slightly distorted near the corner at the wing ends. This perturbation grows, and at t¼3.2 there are two distinct spanwise
zones: near the wing root the vortex is stable and follows the wing; near the wing ends the vortex core breaks down and
multiple filaments are shed into the wake. The delayed stall therefore takes place only near the wing root. The structure of
the horseshoe vortex also differs from the lower Reynolds number case. It is more compact and intense. In addition, as the
wings move apart, the trailing-edge vortex separates and spirals around it.

Fig. 11 displays the radial component of the vorticity at t¼3.2 at three cylindrical sections. The flow field at r¼0.25R

exhibits a laminar pattern with one leading- and one trailing-edge vortex following the wing. At r¼0.5R the leading-edge
vortex is less diffuse, and the trailing-edge vortex is shed. Visualization at r¼0.75R reveals two subsequently shed leading-
edge vortices, the first of them bursts into multiple pieces.

The radial velocity is shown in Fig. 12. At r¼0.25R it is positive in a large area past the wing, and slightly negative in
front of it. This is similar to the lower-Reynolds number case, but the magnitude is now twice as large. At r¼0.5R the
velocity is very large in the vortex core. At r¼0.75R local peaks are seen in the detached vortex filaments.

The dashed line in Fig. 9(a) depicts spanwise distribution of the circulation at t¼3.2. Despite the drastic change in the
vortex structure at r¼0.5R, on both sides G¼ 0:22 _br2 is a good approximation (except very near the wing ends). The
distribution of the maximum radial velocity Fig. 9(b) (dashed line) reveals the two zones: at ro0:5R it varies gradually
with r, mounting to ur= _br¼ 1:9, while at r40:5R it oscillates and drops to much smaller values.

The spanwise flow from root to tip is driven by two motives: the centrifugal force and the pressure gradient inherent to
vortices. For the conical vortices at ro0:5R the two contributions are of the same order of magnitude, as explained by
Maxworthy (2007). This is the reason why the spanwise velocity is so large, compared to the lower-Reynolds number case
where, presumably, only the centrifugal force matters.
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5. Conclusions

Two- and three-dimensional numerical simulations of the Lighthill–Weis-Fogh mechanism indicate that during fling,
the two-dimensional approximation is well justified; during sweep, three-dimensionality of the flow leads to the
delayed stall.

The three-dimensional flow fields at Re¼128 and Re¼1400 differ in many features. At Re¼128 the strongest vorticity
is found at the wing edges, and the maximum spanwise flow from root to tip is in the recirculation bubble past the wings.
Some inverse spanwise flow occurs below the lower surfaces and it peaks near the leading edges. The near flow field is
steady in the reference frame moving with the wing, provided the wing motion is steady (like during sweep).

At Re¼1400 the vorticity sheets shed from the leading edges roll up into conical vortices. They burst near the outer
halves of the wings. Radial velocity is large inside the vortex cores, and particularly inside the inner portions of the
leading-edge vortices where it is double the reference speed of the wing section.

Scaling of the circulation like _br2 and radial velocity like _br suggests that similarity considerations might be helpful in a
further analysis.
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