A strengthened form of the strong Goldbach conjecture

Ralf Wüsthofen

Abstract. Based on a strengthened form of the strong Goldbach conjecture, this paper constitutes an antinomy within ZFC.

Notations. Let \mathbb{N} denote the natural numbers starting from 1, let \mathbb{N}_n denote the natural numbers starting from n > 1 and let \mathbb{P}_3 denote the prime numbers starting from 3.

Strengthened strong Goldbach conjecture (SSGB): Every even integer greater than 6 can be expressed as the sum of two different primes.

Theorem. $\mathbb{N}_4 \neq \mathbb{N}_4$.

Proof. We define the set $S_g := \{ (pk, mk, qk) \mid k, m \in \mathbb{N}; p, q \in \mathbb{P}_3, p < q; m = (p + q) / 2 \}.$

SSGB is equivalent to saying that every integer $x \ge 4$ is the arithmetic mean of two different odd primes and so it is equivalent to saying that all integers $x \ge 4$ appear as m in a middle component mk of S_g.

There are two possibilities for S_g , exactly one of which must occur: Either there is an $n \in \mathbb{N}_4$ in addition to all the numbers m defined in S_g or there is not. The latter corresponds to SSGB and the former corresponds to the negation \neg SSGB.

The set S_g has the following property: The whole range of \mathbb{N}_3 can be expressed by the triple components of S_g, since every integer $x \ge 3$ can be written as some pk with k = 1 when x is prime, as some pk with $k \ne 1$ when x is composite and not a power of 2, or as (3 + 5)k / 2 when x is a power of 2; $p \in \mathbb{P}_3$, $k \in \mathbb{N}$.

We can split S_g into two complementary subsets: For any $y \in \mathbb{N}_3$, S_g = S_g+(y) \cup S_g-(y), with

 $S_{g}+(y) := \{ (pk', mk', qk') \in S_{g} \mid \exists k \in \mathbb{N} \ pk' = yk \lor mk' = yk \lor qk' = yk \} and$

 $S_g(y) := \{ (pk', mk', qk') \in S_g \mid \forall k \in \mathbb{N} \ pk' \neq yk \land mk' \neq yk \land qk' \neq yk \}.$

In the case of \neg SSGB, there is at least one $n \in \mathbb{N}_4$ different from all the numbers m that are defined in S_g. In the case of SSGB, there is no such n. The following steps work regardless of the choice of n if there is more than one n.

According to the above three types of expression by Sg triple components, for n we have

(C) $\forall k \in \mathbb{N} \exists (pk', mk', qk') \in S_g \quad nk = pk' \lor nk = mk' = 4k'.$

Moreover, due to the definition of Sg, we have

(M)
$$\nexists$$
 p, q ∈ \mathbb{P}_3 , p < q n = (p + q) / 2.

Because the properties (C) and (M) hold for any n given by \neg SSGB, under the assumption \neg SSGB the set S_g can be written as the union of the following triples, which would otherwise be impossible.

(i) S_g triples of the form (pk' = nk, mk', qk') with k' = k in case n is prime, due to (C)

(ii) S_g triples of the form (pk' = nk, mk', qk') with k' \neq k in case n is composite and not a power of 2, due to (C)

(iii) S_g triples of the form (3k', 4k' = nk, 5k') in case n is a power of 2, due to (C)

(iv) all remaining S_g triples of the form (pk' = nk, mk', qk'), (pk', mk' = nk, qk') or (pk', mk', qk' = nk)

and

(v) S₉ triples of the form (pk' \neq nk, mk' \neq nk, qk' \neq nk), i.e. those S₉ triples where none of the nk's equals a component.

Let S_g + be shorthand for S_g +(n) and let S_g - be shorthand for S_g -(n). Then, as S_g + denotes the union of the triples of types (i) to (iv) and S_g - denotes the union of the triples of type (v), we can state

 \neg SSGB => ((S_g = S_g+ \cup S_g-) or \neg (C) or \neg (M)).

Since (C) and (M) are true, we get

 \neg SSGB => S_g = S_g+ \cup S_g-.

 $S_{g}+ \cup S_{g}$ - is independent of n, since for every n it equals S_{g} . So, we can write

(1) $\forall y \in \mathbb{N}_3 \neg SSGB \Rightarrow S_g = S_g + (y) \cup S_g - (y).$

Under the assumption SSGB there is no n, which only means that the numbers m defined in S_g take all integer values $x \ge 4$. So, in addition to (1), here we also have

(2) $\forall y \in \mathbb{N}_3$ SSGB => Sg = Sg+(y) \cup Sg-(y).

We note that the statements (1) and (2) were each derived from an assumption. That is, they were not stated trivially as

 $P \implies S_g = S_g+(y) \cup S_g-(y)$ and $\neg P \implies S_g = S_g+(y) \cup S_g-(y)$,

which, because of $S_g = S_g+(y) \cup S_g-(y)$, holds for every proposition P. In other words, both (1) and (2) are true non-vacuously. (See also the general principle in the final Note.)

Because of the rule "($\forall x P(x)$) and ($\forall x Q(x)$) <=> $\forall x (P(x) \text{ and } Q(x))$ ", by (1) and (2) for each set S_g+(y) \cup S_g-(y), y \in \mathbb{N}_3 , we have

SSGB => $S_g = S_g+(y) \cup S_g-(y)$

and

 \neg SSGB => S_g = S_g+(y) \cup S_g-(y).

For each $k \ge 1$, we define M(k) := { mk | (pk, mk, qk) \in S_g }. Then, for some set M,

(1') SSGB => M(1) = M

and

(2') ¬SSGB => M(1) = M.

On the other hand, under the assumption SSGB the numbers m defined in S_g take all integer values $x \ge 4$ whereas under \neg SSGB they don't. By this, we get

and

(4) \neg SSGB => M(1) \neq N₄.

Since the statements (1'), (2'), (3), (4) are all true non-vacuously, by transitivity we obtain the contradiction $\mathbb{N}_4 \neq \mathbb{N}_4$.

Note. The proof is based on the following general principle.

Let P be a proposition and let A, B, C, D be sets with $C \neq D$. If we can establish the following statements non-vacuously, i.e. the premises are all true,

- (1) P => A = B
- (2) ¬P => A = B
- (3) P => A = C

(4) $\neg P => A = D$,

then, by transitivity, we have a contradiction.