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Abstract. ONCOhabitats is an open online service that provides a fully automatic 
analysis of tumor vascular heterogeneity in gliomas based on multiparametric 
MRI. Having a model capable of accurately segment pathological tissues is crit-
ical to generate a robust analysis of vascular heterogeneity. In this study we pre-
sent the segmentation model embedded in ONCOhabitats and its performance 
obtained on the BRATS 2019 dataset. The model implements an residual-Incep-
tion U-Net convolutional neural network, incorporating several pre- and post- 
processing stages.  A relabeling strategy has been applied to improve the seg-
mentation of the necrosis of high-grade gliomas and the non-enhancing tumor of 
low-grade gliomas. The model was trained using 335 cases from the BraTS 2019 
challenge training dataset and evaluated with 125 cases from the validation set 
and 166 cases from the test set. The results on the validation dataset in terms of 
the mean/median Dice coefficient are 0.73/0.85 in the enhancing tumor region, 
0.90/0.92 in the whole tumor, and 0.78/0.89 in the tumor core. The Dice results 
obtained in the independent test are 0.78/0.84, 0.88/0.92 and 0.83/0.92 respec-
tively for the same sub-compartments of the lesion. 
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1 Introduction 

Gliomas are one of the most common central nervous system (CNS) tumors. Gliomas 
comprise a very diverse group of CNS tumors that vary histologically from low grade 
(LGGs; grade II) to high grade (HGGs; Grades III, IV)[1]. Knowing the extent and the 
heterogeneity of the lesion is crucial to make a correct diagnosis, plan radiotherapy 
treatment, analyze the response to treatment, and monitor the progression of the disease.  
Manual segmentation and volumetric studies of the different glioma tissues involves an 
arduous, time-consuming and often unaffordable task for humans, that is not often per-
formed in clinical practice but only in some clinical studies. 
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In recent years, and with the emergence of new deep learning technologies, a sub-
stantial effort has been made to generate models capable of automatically delineate gli-
oma pathologic tissues with high accurate confidence. An example of the effort in-
vested in this task is the creation of the multimodal BRain Tumour Segmentation 
(BRATS) challenge. Since 2012 and until now, numerous researchers have focused 
their efforts on generating more accurate brain tumor segmentation models, reaching 
computational models with a performance close to human expert labelling [2]. Never-
theless, there is still a need for more research to achieve completely reliable segmenta-
tion models that can handle the wide range of heterogeneous tumors that can arise in 
real clinical routine. 

This work presents a segmentation model of gliomas that consists on a patch-based 
3D U-net Convolutional Neural Network based on residual-Inception blocks. The pre-
processing includes noise reduction, bias correction, and intensity normalization. A re-
labeling strategy was applied to differentiate HGG necrosis and LGG non-enhancing 
tumor in the training stage. Finally, a postprocessing stage was implemented to remove 
spurious or incoherent segmentation objects. 

The proposed tumor segmentation model is included in the last version of ONCO-
habitats [3] online platform (https://www.oncohabitats.upv.es), provided by the Poly-
technic University of Valencia [4].  ONCOhabitats provides a fully automatic analysis 
of tumor vascular heterogeneity, four vascular habitats within the lesion from MRI im-
ages: the High Angiogenic Tumor (HAT), the Low Angiogenic Tumor (LAT), the In-
filtrated Peripheral Edema (IPE) and the Vasogenic Peripheral Edema (VPE) [5].  ON-
COhabitats includes two main services: (1) glioma tissue segmentation based on CNN; 
and (2) vascular heterogeneity assessment. In addition, we provide to researchers and 
clinicians our computational resources, including a system able to process about 300 
cases per day including image preprocessing and standardization, regions of interest 
(ROIs) segmentation, perfusion quantification and vascular heterogeneity assessment 
of the lesion. 

2 Materials 

To train the proposed model, only the images provided in the 2019 edition of the 
BRATS challenge were used [2], [8], [9], [10], [11] . The training dataset includes 335 
studies, each one composed by pre- and post-contrast T1-weighted MRI, as well as T2-
weighted, T2-fluid attenuated inversion recovery (FLAIR) MRI. Additionally, the 
ground truth maps are provided, distinguishing between 3 labels: label 1, which en-
closes necrosis, non-enhancing tumor, cyst and hemorrhage tissues; label 2, which de-
lineates the edema; and label 4 that represents the enhancing tumor. The validation da-
taset comprises 125 images while the test set is composed of 166 images, both including 
the same MRI sequences but without the ground truth maps. An online oracle is pro-
vided to evaluate the proposed models in a blind manner. 
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2.1 Preprocessing 

BRATS2019 dataset preprocessing performed by the organizers includes: 1) voxel iso-
tropic resampling to 1mm3, 2) intra-patient registration to the T1ce sequence and inter-
patient registration to a common reference space, and 3) skull-stripping for cranium 
removal. 

We have extended this preprocessing by including a denoising stage using the 
Adaptive Non-Local Means filter proposed in [12]. We employed search windows of 
7x7x7 and a patch window of 3x3x3, with Rician noise model. Additionally, a bias field 
correction stage was performed using N4ITK software at different scale levels [13], 
with 150 B-splines. Finally, z-score normalization was performed for each image, only 
normalizing the voxels within the brain (i.e. excluding the background from the nor-
malization). 

3 Methods 

We propose a patch-based 3D U-net Convolutional Neural Network based on residual-
Inception blocks. The network takes as input 3D patches of 64x64x64 of three channels 
being the T1 contrast enhanced, the T2 and the Flair sequences. T1 sequence was dis-
carded due to a worsening of the results when including it in the learning process. 
Therefore, the network works with patches of 64x64x64x3. The architecture details are 
described below. 

 

3.1 Architecture 

A U-net with 4 levels of depth is designed. The encoding path includes 3 downsampling 
blocks consisting of Conv 3x3x3 (stride 2x2x2) + ReLU + Batch Normalization. Like-
wise, the decoding path incorporates 3 analogous upsampling blocks consisting of: 
TransposeConv 3x3x3 (stride 2x2x2) + ReLU + Batch Normalization. Hence, the 
downsampling and upsampling operations are learnt by the network instead of using 
Max Pooling or repeatable Upsampling operations. 

The network is composed of 4 levels with 24, 48, 96, 192 filters at each level respec-
tively. Each level contains a Residual-Inception module to capture features at different 
scales. The residual-Inception block has 4 parallel paths with the following structure: 

• Conv 1x1x1-NF + ReLU + Batch Normalization 
• Conv 3x3x3-NF + ReLU + Batch Normalization 
• Conv 3x3x3-NF + ReLU + Batch Normalization + Conv 3x3x3-NF + ReLU 

+ Batch Normalization 
• Max Pooling 3x3x3 (stride 1x1x1) + Conv 1x1x1-NF + ReLU + Batch Nor-

malization, 
where NF refers to the Number of Filters depending on the level of the U-net in which 
the Residual-Inception block is. The output of these 4 paths is then feed to a concate-
nation layer and the output is passed to a block of the form: Conv 1x1x1-NF + ReLU + 



4 

Batch Normalization, to compress the information extracted by the 4 paths. Finally, a 
residual connection is introduced by summing the input of the Residual-Inception block 
to the output. Figure 1 shows a diagram of the Residual-Inception block. Note that each 
Simple block (except the Max Pooling) includes a Convolution + ReLU + Batch Nor-
malization layers. Additionally, long-skip connection between symmetric levels are in-
troduced to allow a better gradient flow during training process. Figure 2 shows a dia-
gram of the network architecture used in the study. 
 
 

 

  
Fig. 1. Diagram of the Residual-Inception block used in our model. 
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Fig. 2. Diagram of the 4-level residual network architecture. Residual-Inception blocks are used 

as feature extraction modules. Downsampling and upsampling operations are performed 
through strided conventional and transposed convolutions. Long concatenation-skip-connec-

tions are employed between symmetric levels. 

 
3.2 Training strategy 

Label 1 in the BRATS 2019 dataset encloses a set of different glioma tissues, including 
necrosis, non-enhancing tumor, cyst, hemorrhage, etc. Such tissues largely differ in ap-
pearance in the MRI images, so in order to simplify the learning task for the network 
we decided to re-label the label 1 in all the LGG cases by label 3. Such re-labelling 
pursues the idea of associating the label 1 mostly to the necrosis tissue, typically present 
in HGG; and the label 3 to the non-enhancing tumor tissue, typically predominant in 
LGG. 

We followed a balanced training strategy by creating batches containing a uniform 
proportion of patches containing predominantly edema (label 2), necrosis (label 1), en-
hancing tumor (label 4), non-enhancing tumor (label 3) and healthy tissues (label 0). 
Due to memory restrictions, batches of 4 samples was employed to train the network. 

We also employed a combined loss consisting on the unweighted sum of cross-en-
tropy and dice losses. Additionally, we trained the network with label smoothing with 
a factor 0.1, to relax the confidence in the labels. Adam optimizer was used with a 
starting learning rate of 1e-3. We trained the network 35k iterations. 

3.3 Postprocessing 

In order to remove spurious or incoherent segmentation components, we developed a 
simple postprocessing stage based on Connected Components (CC) analysis. As a rule 
of thumb, we always save the biggest CC as it is the most probable that contains the 
correct segmentation. The remaining CCs are analyzed and saved only if they met the 
following criteria: 
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1. The CC contains a number of voxels of class 4, class 3 or class 1 greater than 
the 5% of the size of the CC. 

2. The CC has more than 1000 voxels 

Such simple post-processing mostly intends to discard erroneous CCs produced by 
magnetic bias field inhomogeneities in the images. Typically, these CCs are mainly 
labeled as class 2 (edema-like pattern), due to hyperintensities in Flair or T2 images. 
Thus, by the opposite, if the CC contains voxels segmented as enhancing tumor, non-
enhancing tumor or necrosis, it can serve as an indicator of the confidence in the seg-
mentation of the CC. Anyway, if the CC is big enough (more than 1000 voxels) we also 
assume that it is not an inhomogeneity artifact and the CC is saved for the final seg-
mentation. 

4 Results 

The results obtained by ONCOhabitats glioma segmentation model on the independ-
ent validation dataset provided by BraTS 2019 challenge are summarized in Table 1. 
Dice, Sensitivity, Specificity and Hausdorff95 Distance metrics are reported. 

 

Table 1. Summary of the results obtained by ONCOhabitats glioma segmentation model on the 
independent validation dataset for Enhancing Tumor (ET), Whole Tumor (WT) and Tumor 

Core (TC) regions. 

 Dice Sensitivity Specificity Hausdorff95 

 ET WT TC ET WT TC ET WT TC ET WT TC 

Mean 0.73 0.90 0.78 0.78 0.88 0.75 1.00 1.00 1.00 4.25 5.06 7.80 
Std.Dev. 0.29 0.08 0.25 0.27 0.11 0.27 0.00 0.01 0.00 7.50 6.59 11.7 
Median 0.85 0.92 0.89 0.87 0.91 0.87 1.00 1.00 1.00 2.24 3.16 3.39 
25QT 0.73 0.89 0.73 0.77 0.85 0.64 1.00 0.99 1.00 1.41 2.24 2.00 
75QT 0.90 0.94 0.94 0.95 0.95 0.94 1.00 1.00 1.00 3.32 5.10 9.26 

 
Additionally, box plot of the distribution of the Dice, sensitivity and specificity met-

rics for the cases on the independent validation dataset evaluated on the Enhancing 
Tumor (ET), Whole Tumor (WT) and Tumor Core (TC) regions are presented in Figure 
2. 
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Fig. 3. Box plot showing the distribution of the Dice, sensitivity and specificity metrics for the 
cases on the independent validation dataset evaluated on the Enhancing Tumor (ET), Whole 

Tumor (WT) and Tumor Core (TC) regions. 
 

 
 
Similarly, the results obtained by the ONCOhabitats model on the test dataset are pre-
sented in Table 2.  

Table 2. Summary of the results obtained by ONCOhabitats glioma segmentation model on the 
test dataset for Enhancing Tumor (ET), Whole Tumor (WT) and Tumor Core (TC) regions. 

 Dice 

 ET WT TC 
Mean 0.78 0.88 0.83 
Std.Dev. 0.22 0.11 0.25 
Median 0.84 0.92 0.92 
25QT 0.77 0.87 0.86 
75QT 0.91 0.95 0.95 

 
Figure 4 shows a comparison between the results of our model in the validation and the 
test set. An overall stable performance of the mean Dice is demonstrated, indicating 
that the model is robust against unseen samples and suggest no overfitting. Moreover, 
the ET and TC regions showed an improved performance in the test dataset with respect 
to the validation dataset. Finally, comparing our Dice results in the Whole Tumor sub-
compartment with the Validation Leaderboard ranking, there is a small difference of 
0.01687 Dice points with respect to the 1st place team, but using a small and therefore 
fast network. 
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Fig. 4. Bar plot showing the mean Dice for the cases on the independent Validation and Test 
dataset evaluated on the Enhancing Tumor (ET), Whole Tumor (WT) and Tumor Core (TC) re-

gions. The error bars represent the standard deviation. 
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Finally, Figure 5 shows the segmentation results of several cases of the test dataset.  
 

 

Fig. 5. Examples of glioma segmentation of 5 cases from the test set. First row shows 
the segmentation performed by the ONCOhabitats model over the T1ce sequence. 

Second, third and fourth rows show the T1ce, T2 and FLAIR sequences respectively. 
 

5 Conclusions  

In this work, we propose a glioma segmentation model based on a residual U-Net re-
sidual CNN together with an additional imaging pre- and post-processing stages to re-
move spurious or incoherent segmentation objects. This segmentation model has been 
trained using a relabeling strategy aimed to improve the segmentation of HGG necrosis 
and LGG non-enhancing tumor. The proposed model is included in the current version 
of ONCOhabitats open online service (https://www.oncohabitats.upv.es).  

The results obtained show and improvement on the performance of the previous seg-
mentation model included on ONCOhabitats reported in [3]. This allows to signifi-
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cantly improve the other services provided by ONCOhabitats, such as the vascular het-
erogeneity assessment service, since they use as basis the glioblastoma segmentation 
module.  
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