
The Heliophysics Application Programmer's Interface
Specification 3.0.0

Robert	Weigel	

Jon	Vandegriff	

Jeremy	Faden	

Aaron	Roberts	

Todd	King	

Robert	Candey	

Bernard	Harris	

2021-04-01	

	 	

Table of Contents
1	Significant	Changes	to	Specification	..	4	
1.1	v2	to	v3	API	Changes	..	4	
1.2	v2	to	v3	Schema	Changes	...	4	

2	Introduction	..	4	
2.1	Overview	...	4	
2.2	Adoption	..	5	
2.3	Limitations	..	6	

3	Endpoints	...	6	
3.1	Overview	...	6	
3.2	hapi	...	8	
3.3	about	..	8	
3.4	capabilities	...	9	
3.5	catalog	...	11	
3.6	info	...	12	
3.6.1	Request	Parameters	...	13	
3.6.2	Info	Response	Object	...	13	
3.6.3	unitsSchema	Details	..	15	
3.6.4	Parameter	Object	..	16	
3.6.5	size	Details	...	19	
3.6.6	fill	Details	...	19	
3.6.7	Bins	Object	...	20	
3.6.8	Subsetting	Parameters	..	23	
3.6.9	JSON	References	..	25	
3.6.10	Time-Varying	Bins	...	28	
3.6.11	Time-Varying	size	..	30	

3.7	data	...	31	
3.7.1	Request	Parameters	...	31	
3.7.2	Response	...	32	
3.7.3	Examples	...	34	
3.7.4	Response	formats	..	35	
3.7.5	Errors	While	Streaming	..	37	
3.7.6	Representation	of	Time	..	38	

4	Status	Codes	..	41	
4.1	status	Object	...	42	
4.2	status	Error	Codes	...	42	
4.3	Client	Error	Handling	...	44	

5	Cross-Origin	Resource	Sharing	..	44	
6	Security	Notes	..	45	
7	References	...	45	
8	Contact	..	45	
9	Appendix	..	45	
9.1	Sample	Landing	Page	...	45	
9.2	JSON	Object	of	Status	Codes	..	46	
9.3	Examples	...	46	

	

	 	

Version	3.0.0	|	Heliophysics	Data	and	Model	Consortium	(HDMC)	|	

1 Significant Changes to Specification
Details	on	the	following	are	documented	as	issues	in	the	3.0	Milestone	list.	

1.1 v2 to v3 API Changes

Non-backward	compatible	changes	to	the	request	interface	in	HAPI	3.0:	

1. The	URL	parameter	id	was	replaced	with	dataset.	
2. time.min	and	time.max	were	replaced	with	start	and	stop,	respectively.	
3. Addition	of	a	new	endpoint,	"about",	for	server	description	metadata.	

These	changes	were	discussed	in	issue	#77.	HAPI	3	servers	must	accept	both	the	old	and	
these	new	parameter	names,	but	the	HAPI	2	specification	requires	an	error	response	if	the	
new	URL	parameter	names	are	used.	In	a	future	version,	the	deprecated	older	names	will	
no	longer	be	valid.	

1.2 v2 to v3 Schema Changes
1. Ability	to	specify	time-varying	bins	(#83)	
2. Ability	to	use	JSON	references	in	info	response	(#82)	
3. Ability	to	indicate	a	units	schema	(if	one	is	being	used	for	units	strings)	(#81)	

2 Introduction

2.1 Overview

This	document	describes	the	Heliophysics	Application	Programmer’s	Interface	(HAPI)	
specification,	which	is	an	API,	metadata,	and	data	streaming	format	specification	for	time-
series	data.	The	intent	of	this	specification	is	to	enhance	interoperability	among	time	series	
data	providers.	The	objective	of	this	specification	is	to	capture	features	available	from	
many	existing	data	providers	and	to	codify	implementation	details	so	that	providers	can	
use	a	common	API.	This	will	make	it	possible	to	obtain	time	series	science	data	content	
seamlessly	from	many	sources	and	using	a	variety	of	programming	languages.	

This	document	is	intended	to	be	used	by	two	groups	of	people:	first	by	data	providers	who	
want	to	make	time-series	data	available	through	a	HAPI	server,	and	second	by	data	users	
who	want	to	understand	how	data	is	made	available	from	a	HAPI	server,	or	perhaps	to	
write	client	software	to	obtain	data	from	an	existing	HAPI	server.	

HAPI	constitutes	a	minimum	but	complete	set	of	capabilities	needed	for	a	server	to	allow	
access	to	the	time	series	data	values	within	one	or	more	data	collections.	Because	of	its	
focus	on	data	access,	the	HAPI	metadata	standard	is	not	intended	for	complex	search	and	
discovery.	However,	the	metadata	schema	allows	ways	to	indicate	where	further	

descriptive	details	for	any	dataset	could	be	found	and	the	metadata	contains	enough	
information	to	enable	its	use	by	complex	search	and	discovery	software.	

The	HAPI	API	is	based	on	REpresentational	State	Transfer	(REST)	principles,	which	
emphasize	that	URLs	are	stable	endpoints	through	which	clients	can	request	data.	Because	
it	is	based	on	well-established	HTTP	request	and	response	rules,	a	wide	range	of	HTTP	
clients	can	be	used	to	interact	with	HAPI	servers.	

Key	definitions	for	terms	used	in	this	document	include	

• parameter	–	a	measured	science	quantity	or	a	related	ancillary	quantity	at	one	
instant	in	time;	may	be	scalar	or	a	multi-dimensional	array	as	a	function;	must	have	
units	and	must	have	a	fill	value	that	indicates	no	measurement	was	available	or	
absent	information	

• record	–	all	the	parameters	and	an	associated	time	value	

• dataset	–	a	collection	of	records	with	the	same	parameters;	a	HAPI	service	presents	
a	dataset	as	a	seamless	collection	of	time-ordered	records	such	that	it	or	a	subset	of	
it	can	be	retrieved	without	knowledge	of	the	actual	storage	details	

• catalog	-	a	collection	of	datasets	

• request	parameter	–	keywords	that	appear	after	the	?	in	a	URL	

	 For	example,	in	the	request	(see	change	notes)	

	 http://server/hapi/data?dataset=alpha&start=2016-07-13&stop=2016-07-14	

	 the	three	request	parameters	are	dataset	(corresponding	to	the	identifier	of	the	
dataset),	start,	and	stop.	They	have	values	of	alpha,	2016-07-13,	and	2016-07-14,	
respectively.	This	document	will	always	use	the	full	phrase	"request	parameter"	to	
refer	to	these	URL	elements	to	distinguish	them	from	the	parameters	in	a	dataset.	

	 In	the	above	URL,	the	segment	represented	as	server	captures	the	hostname	for	the	
HAPI	server	as	well	as	any	prefix	path	elements	before	the	required	hapi	element.	
For	example,	in	http://example.com/public/data/hapi	the	server	element	is	
example.com/public/data.	

2.2 Adoption

In	terms	of	adopting	HAPI	as	a	data	delivery	mechanism,	data	providers	will	likely	not	want	
to	change	or	remove	existing	services,	so	a	HAPI-compliant	access	mechanism	could	be	
added	alongside	existing	services.	Several	demonstration	servers	were	created	while	the	
specification	was	being	written	to	validate	decisions	being	made,	but	the	code	for	those	
was	incorporated	into	existing	services	and	therefore	is	not	generic.	There	are	some	
generic	tools	to	assist	providers	with	adoption.	There	is	a	node.js	HAPI	front-end	that	
requires	providers	to	write	only	a	simple	data	streaming	script.	There	is	also	a	validator	
mechanism	to	test	a	server	for	HAPI	compliance.	But	there	are	not	yet	any	other	libraries	to	

assist	with	server	generation,	although	at	least	two	are	planned	-	one	in	Python	and	one	in	
Java.	The	eventual	goal	is	to	create	a	reference	implementation	as	a	full-fledged	example	
that	providers	could	adapt.	On	the	client-side,	there	are	also	demonstration-level	
capabilities,	the	most	mature	being	a	Python	reader	library.	Some	clients	already	support	
reading	from	HAPI	servers	(Autoplot	and	SPEDAS,	for	example).	Simple	libraries	in	several	
languages	(Matlab,	IDL)	are	available	to	assist	in	writing	clients	that	extract	data	from	HAPI	
servers.	However,	even	without	a	library	or	example	code,	the	HAPI	specification	is	
designed	to	be	simple	enough	so	that	even	small	data	providers	could	add	HAPI	compliant	
access	to	their	holdings.	

2.3 Limitations

Because	HAPI	requires	a	single	time	column	to	be	the	first	column,	this	requires	each	
record	(one	row	of	data)	to	be	associated	with	one	time	value	(the	first	value	in	the	row).	
This	has	implications	for	serving	files	with	multiple	time	arrays	in	them.	Supposed	a	file	
contains	1-second	data,	3-second	data,	and	5-second	data,	all	from	the	same	measurement	
but	averaged	differently.	A	HAPI	server	could	expose	this	data,	but	not	as	a	single	dataset.	
To	a	HAPI	server,	each	time	resolution	could	be	presented	as	a	separate	dataset,	each	with	
its	own	unique	time	array.	

Note	that	there	are	only	a	few	supported	data	types:	isotime,	string,	integer,	and	double.	
This	is	intended	to	keep	the	client	code	simple	in	terms	of	dealing	with	the	data	stream.	
However,	the	spec	may	be	expanded	in	the	future	to	include	other	types,	such	as	4-byte	
floating-point	values	(which	would	be	called	float),	or	2-byte	integers	(which	would	be	
called	short).	

3 Endpoints

3.1 Overview

The	HAPI	specification	has	five	required	endpoints	that	give	clients	a	precise	way	to	first	
determine	the	data	holdings	of	the	server	and	then	to	request	data.	The	functionality	of	the	
required	endpoints	is	as	follows:	

1. /hapi/capabilities	lists	the	output	formats	the	server	can	stream	(csv,	binary,	or	
json,	described	below).	

2. /hapi/about	lists	the	server	id	and	title,	contact	information,	and	a	brief	description	
of	the	datasets	served	(this	endpoint	is	new	in	the	version	3	HAPI	specification).	

3. /hapi/catalog	lists	the	catalog	of	available	datasets;	each	dataset	is	associated	with	
a	unique	id	and	may	optionally	have	a	title.	

4. /hapi/info	lists	information	about	a	dataset	with	a	given	id;	a	primary	component	
of	the	description	is	the	list	of	parameters	in	the	dataset.	

5. /hapi/data	streams	data	for	a	dataset	of	a	given	id	and	over	a	given	time	range;	a	
subset	of	parameters	in	a	dataset	may	be	requested	(default	is	all	parameters).	

There	is	also	an	optional	landing	page	endpoint	/hapi	that	returns	human-readable	HTML.	
Although	there	is	recommended	content	for	this	landing	page,	it	is	not	essential	to	the	
functioning	of	the	server.	

The	five	required	endpoints	are	REST-style	in	that	the	resulting	HTTP	response	is	the	
complete	response	for	each	endpoint.	In	particular,	the	/data	endpoint	does	not	give	URLs	
for	file	or	links	to	where	the	data	can	be	downloaded;	instead,	it	streams	the	data	contained	
in	the	HTTP	response	body.	The	full	specification	for	each	endpoint	is	described	below.	

All	endpoints	must	have	a	/hapi	path	element	in	the	URL	and	only	the	/info	and	/data	
endpoints	take	query	parameters:	

http://server/hapi (Optional HTML landing page)	
http://server/hapi/capabilities	
http://server/hapi/about	
http://server/hapi/catalog	
http://server/hapi/info?dataset=...[&...]	
http://server/hapi/data?dataset=...&...	

Requests	to	a	HAPI	server	must	not	change	the	server	state.	Therefore,	all	HAPI	endpoints	
must	respond	only	to	HTTP	HEAD	and	GET	requests.	

The	request	parameters	and	their	allowed	values	must	be	strictly	enforced	by	the	server.	
HAPI	servers	must	not	add	additional	request	parameters	beyond	those	in	the	
specification.	If	a	request	URL	contains	any	unrecognized	or	misspelled	request	
parameters,	a	HAPI	server	must	respond	with	an	error	status	(see	HAPI	Status	Codes	for	
more	details).	The	principle	being	followed	is	that	the	server	must	not	silently	ignore	
unrecognized	request	parameters	because	this	would	falsely	indicate	to	clients	that	the	
request	parameter	was	understood	and	was	taken	into	account	when	creating	the	output.	
That	is,	if	a	server	is	given	a	request	parameter	that	is	not	part	of	the	HAPI	specification,	
such	as	averagingInterval=5s,	the	server	must	report	an	error	for	two	reasons:	1.	
additional	request	parameters	are	not	allowed,	and	2.	the	server	will	not	do	any	averaging.	

The	outputs	from	a	HAPI	server	to	the	about,	catalog,	capabilities,	and	info	endpoints	
are	JSON	objects,	the	formats	of	which	are	described	below	in	the	sections	detailing	each	
endpoint.	The	data	endpoint	must	be	able	to	deliver	Comma	Separated	Value	(CSV)	data	
following	the	RFC	4180	standard	[1],	but	may	optionally	deliver	data	content	in	binary	
format	or	JSON	format.	The	response	stream	formats	are	described	in	the	Data	Stream	
Content	section.	

The	following	is	the	detailed	specification	for	the	five	main	HAPI	endpoints	as	well	as	the	
optional	landing	page	endpoint.	

3.2 hapi

This	root	endpoint	is	optional	and	should	provide	a	human-readable	landing	page	for	the	
server.	Unlike	the	other	endpoints,	there	is	no	strict	definition	for	the	output,	but	if	present,	
it	should	include	a	brief	description	of	the	data	and	other	endpoints,	and	links	to	
documentation	on	how	to	use	the	server.	An	example	landing	page	that	can	be	easily	
customized	for	a	new	server	is	given	in	the	Appendix.	

There	are	many	options	for	landing	page	content,	such	as	an	HTML	view	of	the	catalog,	or	
links	to	commonly	requested	data.	

Sample	Invocation	

http://server/hapi	

Request	Parameters	

None	

Response	

The	response	is	in	HTML	format	with	a	mime	type	of	text/html.	There	is	no	specification	
for	the	content,	but	should	provide	an	overview	that	is	useful	for	science	users.	

Example	

Retrieve	the	landing	page	for	this	server.	

http://server/hapi	

Example	Response	

See	the	Appendix.	

3.3 about

Sample	Invocation	

http://server/hapi/about	

Request	Parameters	

None	

Response	

The	server's	response	to	this	endpoint	must	be	in	JSON	format	[3]	as	defined	by	RFC-7159,	
and	the	response	must	indicate	a	mime	type	of	application/json.	Server	attributes	are	
described	using	keyword-value	pairs,	with	the	required	and	optional	keywords	described	
in	the	following	table.	

	

About	Object	

Name	 Type	 Description	
id	 string	 Required	A	unique	ID	for	the	server.	Ideally,	this	ID	has	the	

organization	name	in	it,	e.g.,	NASA/SPDF/SSCWeb,	
NASA/SPDF/CDAWeb,	INTERMAGNET,	UniversityIowa/VanAllen,	
LASP/TSI,	etc.	

title	 string	 Required	A	short	human-readable	name	for	the	server.	The	
suggested	maximum	length	is	40	characters.	

contact	 string	 Required	Contact	information	or	email	address	for	server	issues.	
HAPI	clients	should	show	this	contact	information	when	it	is	certain	
that	an	error	is	due	to	a	problem	with	the	server	(as	opposed	to	the	
client).	Ideally,	a	HAPI	client	will	recommend	that	the	user	check	their	
connection	and	try	again	at	least	once	before	contacting	the	server	
contact.	

description	 string	 Optional	A	brief	description	of	the	type	of	data	the	server	provides.	
contactID	 string	 Optional	The	identifier	in	the	discovery	system	for	information	about	

the	contact.	For	example,	a	SPASE	ID	of	a	person	identified	in	the	
contact	string.	

citation	 string	 Optional	How	to	cite	data	server.	An	actionable	DOI	is	preferred	(e.g.,	
https://doi.org/...).	This	citation	differs	from	the	citation	in	an	
/info	response.	Here	the	citation	is	for	the	entity	that	maintains	the	
data	server.	

Example	

http://server/hapi/about	

Example	Response:	

{	
 "HAPI": "3.0",	
 "status": {"code": 1200, "message": "OK"},	
 "id": "TestData3.0",	
 "title": "HAPI 3.0 Test Data and Metadata",	
 "contact": "examplel@example.org"	
}	

3.4 capabilities

This	endpoint	describes	relevant	implementation	capabilities	for	this	server.	Currently,	the	
only	possible	variability	from	server	to	server	is	the	list	of	output	formats	that	are	
supported.	

A	server	must	support	the	csv	output	format,	but	binary	output	format	and	json	output	
may	optionally	be	supported.	Servers	may	support	custom	output	formats,	which	would	be	
advertised	here.	All	custom	formats	listed	by	a	server	must	begin	with	the	string	x_	to	

indicate	that	they	are	custom	formats	and	avoid	naming	conflicts	with	possible	future	
additions	to	the	specification.	

Sample	Invocation	

http://server/hapi/capabilities	

Request	Parameters	

None	

Response	

The	server's	response	to	this	endpoint	must	be	in	JSON	format	[3]	as	defined	by	RFC	7159,	
and	the	response	must	indicate	a	mime	type	of	application/json.	Server	capabilities	are	
described	using	keyword-value	pairs,	with	outputFormats	being	the	only	keyword	
currently	in	use.	

Capabilities	Object	

Name	 Type	 Description	
HAPI	 string	 Required	The	version	number	of	the	HAPI	specification	this	

description	complies	with.	
status	 Status	

object	
Required	Server	response	status	for	this	request.	

outputFormats	 string	
array	

Required	The	list	of	output	formats	the	server	can	emit.	All	
HAPI	servers	must	support	at	least	csv	output	format,	with	
binary	and	json	output	formats	being	optional.	

Example	

Retrieve	a	listing	of	capabilities	of	this	server.	

http://server/hapi/capabilities	

Example	Response:	

{	
 "HAPI": "2.1",	
 "status": {"code": 1200, "message": "OK"},	
 "outputFormats": ["csv", "binary", "json"]	
}	

If	a	server	only	reports	an	output	format	of	csv,	then	requesting	binary	data	should	cause	
the	server	to	respond	with	an	error	status	of	1409 "Bad request - unsupported output
format"	with	a	corresponding	HTTP	response	code	of	400.	See	below	for	more	about	error	
responses.	

3.5 catalog

This	endpoint	provides	a	list	of	datasets	available	from	the	server.	

Sample	Invocation	

http://server/hapi/catalog	

Request	Parameters	

None	

Response	

The	response	is	in	JSON	format	[3]	as	defined	by	RFC-7159	and	has	a	MIME	type	of	
application/json.	The	catalog	is	a	simple	listing	of	identifiers	for	the	datasets	available	
from	the	server.	Additional	metadata	about	each	dataset	is	available	through	the	info	
endpoint	(described	below).	The	catalog	takes	no	query	parameters	and	always	lists	the	
full	catalog.	

Catalog	Object	

Name	 Type	 Description	
HAPI	 string	 Required	The	version	number	of	the	HAPI	specification	this	

description	complies	with.	
status	 object	 Required	Server	response	status	for	this	request.	(see	HAPI	

Status	Codes)	
catalog	 array	of	

Dataset	
Required	A	list	of	datasets	available	from	this	server.	

Dataset	Object	

Name	 Type	 Description	
id	 string	 Required	The	computer-friendly	identifier	(see	below)	that	the	host	

system	uses	to	locate	the	dataset.	Each	identifier	must	be	unique	within	the	
HAPI	server	where	it	is	provided.	

title	 string	 Optional	A	short	human-readable	name	for	the	dataset.	If	none	is	given,	it	
defaults	to	the	id.	The	suggested	maximum	length	is	40	characters.	

	

	 	

Example	

Retrieve	a	listing	of	datasets	shared	by	this	server.	

http://server/hapi/catalog	

Example	Response:	

{	
 "HAPI" : "2.1",	
 "status": {"code": 1200, "message": "OK"},	
 "catalog": 	
 [
 {"id": "ACE_MAG", title:"ACE Magnetometer data"},	
 {"id": "data/IBEX/ENA/AVG5MIN"},	
 {"id": "data/CRUISE/PLS"},	
 {"id": "any_identifier_here"}	
]	
}	

The	identifiers	must	be	unique	within	a	single	HAPI	server.	Also,	dataset	identifiers	in	the	
catalog	should	be	stable	over	time.	Including	rapidly	changing	version	numbers	or	other	
revolving	elements	(dates,	processing	ids,	etc.)	in	the	datasets	identifiers	should	be	
avoided.	The	intent	of	the	HAPI	specification	is	to	allow	data	to	be	referenced	using	RESTful	
URLs	that	have	a	reasonable	lifetime.	

Identifiers	must	be	limited	to	the	set	of	characters	including	upper	and	lower	case	letters,	
numbers,	and	the	following	characters:	comma,	colon,	slash,	minus,	and	plus.	See	89	for	a	
discussion	of	this.	

3.6 info

This	endpoint	provides	a	data	header	for	a	given	dataset.	The	header	is	expressed	in	JSON	
format	[3]	as	defined	by	RFC-7159	and	has	a	MIME	type	of	application/json.	The	
specification	for	the	header	is	that	it	provides	the	minimal	amount	of	metadata	that	allows	
for	the	automated	reading	by	a	client	of	the	data	content	that	is	streamed	via	the	data	
endpoint.	The	header	must	include	a	list	of	the	parameters	in	the	dataset,	as	well	as	the	
date	range	covered	by	the	dataset.	There	are	also	optional	metadata	elements	for	capturing	
other	high-level	information	such	as	a	brief	description	of	the	dataset,	the	nominal	cadence	
of	the	data,	and	ways	to	learn	more	about	a	dataset.	The	table	below	lists	all	required	and	
optional	dataset	attributes	in	the	header.	

Servers	may	include	additional	custom	(server-specific)	keywords	or	keyword/value	pairs	
in	the	header	provided	that	the	keywords	begin	with	the	prefix	x_.	While	a	HAPI	server	
must	check	all	request	parameters	(servers	must	return	an	error	code	given	any	
unrecognized	request	parameter	as	described	earlier),	the	JSON	content	output	by	a	HAPI	
server	may	contain	additional,	user-defined	metadata	elements.	All	non-standard	metadata	
keywords	must	begin	with	the	prefix	x_	to	indicate	to	HAPI	clients	that	these	are	
extensions.	Custom	clients	could	make	use	of	the	additional	keywords,	but	standard	clients	

would	ignore	the	extensions.	By	using	the	standard	prefix,	the	custom	keywords	will	not	
conflict	with	any	future	keywords	added	to	the	HAPI	standard.	Servers	using	these	
extensions	may	wish	to	include	additional,	domain-specific	characters	after	the	x_	to	avoid	
possible	collisions	with	extensions	from	other	servers.	

Each	parameter	listed	in	the	header	must	itself	be	described	by	specific	metadata	elements	
and	a	separate	table	below	describes	the	required	and	optional	parameter	attributes.	

By	default,	the	parameter	list	in	the	info	response	will	include	all	parameters	available	in	
the	dataset.	However,	a	client	may	request	a	header	for	just	a	subset	of	the	parameters.	The	
subset	of	interest	is	specified	as	a	comma-separated	list	via	the	request	parameter	called	
parameters.	(Note	that	the	client	would	have	to	obtain	the	parameter	names	from	a	prior	
request.)	There	must	not	be	any	duplicates	in	the	subset	list,	and	the	subset	list	must	be	
arranged	according	to	the	ordering	in	the	original,	full	list	of	parameters.	The	reduced	
header	is	useful	because	it	is	also	possible	to	request	a	subset	of	parameters	when	asking	
for	data	(see	the	data	endpoint),	and	a	reduced	header	can	be	requested	that	would	then	
match	the	subset	of	parameters	in	the	data.	This	correspondence	of	reduced	header	and	
reduced	data	ensures	that	a	data	request	for	a	subset	of	parameters	can	be	interpreted	
properly	even	if	additional	subset	requests	are	made	with	no	header.	(Although	a	way	to	
write	a	client	as	safe	as	possible	would	be	to	always	request	the	full	header	and	rely	on	its	
parameter	ordering	to	determine	the	data	column	ordering.)	

Note	that	the	data	endpoint	may	optionally	prepend	the	info	header	to	the	data	stream	
when	include=header	is	included	in	the	request	URL.	In	cases	where	the	data	endpoint	
response	includes	a	header	followed	by	csv	or	binary	data,	the	header	must	always	end	
with	a	newline.	This	enables	the	end	of	the	JSON	header	to	be	more	easily	detected.	

Sample	Invocation	

http://server/hapi/info?dataset=ACE_MAG	

3.6.1 Request Parameters
Name	 Description	
dataset	 Required	The	identifier	for	the	dataset	(see	change	notes)	
parameters	 Optional	A	subset	of	the	parameters	to	include	in	the	header.	

Response	

The	response	is	in	JSON	format	[3]	and	provides	metadata	about	one	dataset.	

3.6.2 Info Response Object
Dataset	Attribute	 Type	 Description	
HAPI	 string	 Required	The	version	number	of	the	HAPI	

specification	with	which	this	description	complies.	
status	 object	 Required	Server	response	status	for	this	request;	see	

HAPI	Status	Codes.	
format	 string	 Required	(when	the	header	is	prefixed	to	data	stream)	

Format	of	the	data	as	csv	or	binary	or	json.	
parameters	 array	of	

Parameter	
Required	Description	of	the	parameters	in	the	data.	

startDate	 string	 Required	Restricted	ISO	8601	date/time	of	first	record	
of	data	in	the	entire	dataset.	

stopDate	 string	 Required	Restricted	ISO	8601	date/time	of	the	last	
record	of	data	in	the	entire	dataset.	For	actively	
growing	datasets,	the	end	date	can	be	approximate,	but	
it	is	the	server's	job	to	report	an	accurate	end	date.	

timeStampLocation	 string	 Optional	Indicates	the	positioning	of	the	timestamp	
within	the	measurement	window.	Must	be	one	of	begin,	
center,	end	or	other.	If	this	attribute	is	absent,	
clients	are	to	assume	a	default	value	of	center,	
which	is	meant	to	indicate	the	exact	middle	of	the	
measurement	window.	A	value	of	other	indicates	that	
the	location	of	the	time	stamp	in	the	measurement	
window	is	not	known	or	these	options	cannot	be	used	
for	an	accurate	description.	See	also	HAPI	convention	
notes.	(Note:	version	2.0	indicated	that	these	labels	
were	in	all	upper	case.	Starting	with	version	2.1,	servers	
should	use	all	lower	case.	Clients,	however,	should	be	
able	to	handle	both	all	upper	case	and	all	lower	case	
versions	of	these	labels.)	

cadence	 string	 Optional	Time	difference	between	records	as	an	ISO	
8601	duration.	This	is	meant	as	a	guide	to	the	nominal	
cadence	of	the	data	and	not	a	precise	statement	about	
the	time	between	measurements.	See	also	HAPI	
convention	notes.	

sampleStartDate	 string	 Optional	Restricted	ISO	8601	date/time	of	the	start	of	
a	sample	time	period	for	a	dataset,	where	the	time	
period	must	contain	a	manageable,	representative	
example	of	valid,	non-fill	data.	Required	if	
sampleStopDate	given.	

sampleStopDate	 string	 Optional	Restricted	ISO	8601	date/time	of	the	end	of	a	
sample	time	period	for	a	dataset,	where	the	time	period	
must	contain	a	manageable,	representative	example	of	
valid,	non-fill	data.	Required	if	sampleStartDate	given.	

description	 string	 Optional	A	brief	description	of	the	dataset.	
unitsSchema	 string	 Optional	The	name	of	the	units	convention	that	

describes	how	to	parse	all	units	strings	in	this	dataset.	
Currently,	the	only	allowed	values	are:	udunits2,	
astropy3,	and	cdf-cluster.	See	above	for	where	to	
find	out	about	each	of	these	conventions.	The	list	of	

allowed	unit	specifications	is	expected	to	grow	to	
include	other	well-documented	unit	standards.	

resourceURL	 string	 Optional	URL	linking	to	more	detailed	information	
about	this	dataset.	

resourceID	 string	 Optional	An	identifier	by	which	this	data	is	known	in	
another	setting,	for	example,	the	SPASE	ID.	

creationDate	 string	 Optional	Restricted	ISO	8601	date/time	of	the	dataset	
creation.	

citation	 string	 Optional	How	to	cite	the	data	set.	An	actionable	DOI	is	
preferred	(e.g.,	https://doi.org/...).	Note	that	there	is	a	
citation	in	an	/about	response	that	is	focused	on	the	
server	implementation,	but	this	citation	is	focused	on	
one	dataset.	

modificationDate	 string	 Optional	Restricted	ISO	8601	date/time	of	the	
modification	of	the	any	content	in	the	dataset.	

contact	 string	 Optional	Relevant	contact	person	name	(and	possibly	
contact	information)	for	science	questions	about	the	
dataset.	

contactID	 string	 Optional	The	identifier	in	the	discovery	system	for	
information	about	the	contact.	For	example,	the	SPASE	
ID	or	ORCID	of	the	person.	

3.6.3 unitsSchema Details

One	optional	attribute	is	unitsSchema.	This	allows	a	server	to	specify,	for	each	dataset,	
what	convention	is	followed	for	the	units	strings	in	the	parameters	of	the	dataset.	
Currently,	the	only	allowed	values	for	unitsSchema	are:	udunits2,	astropy3,	and	cdf-
cluster.	These	represent	the	currently	known	set	of	unit	conventions	that	also	have	
software	available	for	parsing	and	interpreting	unit	strings.	Note	that	only	major	version	
numbers	(if	available)	are	indicated	in	the	convention	name.	It	is	expected	that	this	list	will	
grow	over	time	as	needed.	Current	locations	of	the	official	definitions	and	software	tools	
for	interpreting	the	various	units	conventions	are	in	the	following	table:	

	 	

	

Convention	
Name	 Current	URL	

Description	
(context	help	if	
link	is	broken)	

udunits2	 https://www.unidata.ucar.edu/software/udunits	 Unidata	from	
UCAR;	a	C	library	
for	units	of	
physical	
quantities	

astropy3	 https://docs.astropy.org/en/stable/units/	 package	inside	
astropy	that	
handles	defining,	
converting	
between,	and	
performing	
arithmetic	with	
physical	
quantities,	such	
as	meters,	
seconds,	Hz,	etc	

cdf-
cluster	

https://caa.esac.esa.int/documents/DS-QMW-TN-
0010.pdf	which	is	referenced	on	this	page:	
https://www.cosmos.esa.int/web/csa/documentation	

conventions	
created	and	used	
by	ESA's	Cluster	
mission	

3.6.4 Parameter Object

The	focus	of	the	header	is	to	list	the	parameters	in	a	dataset.	The	first	parameter	in	the	list	
must	be	a	time	value.	This	time	column	serves	as	the	independent	variable	for	the	dataset.	
The	time	column	parameter	may	have	any	name,	but	its	type	must	be	isotime	and	there	
must	not	be	any	fill	values	in	the	data	stream	for	this	column.	Note	that	the	HAPI	
specification	does	not	clarify	if	the	time	values	given	are	the	start,	middle,	or	end	of	the	
measurement	intervals.	There	can	be	other	parameters	of	type	isotime	in	the	parameter	
list.	The	table	below	describes	the	Parameter	items	and	their	allowed	types.	

Parameter	
Attribute	 Type	 Description	
name	 string	 Required	A	short	name	for	this	parameter.	It	is	recommended	

that	all	parameter	names	start	with	a	letter	or	underscore,	
followed	by	letters,	underscores,	or	numbers.	This	allows	the	
parameter	names	to	become	variable	names	in	computer	
languages.	Parameter	names	in	a	dataset	must	be	unique,	and	
names	are	not	allowed	to	differ	only	by	having	a	different	case.	
Note	that	because	parameter	names	can	appear	in	URLs	that	

can	serve	as	permanent	links	to	data,	changing	them	will	have	
negative	implications,	such	as	breaking	links	to	data.	Therefore,	
parameter	names	should	be	stable	over	time.	

type	 string	 Required	One	of	string,	double,	integer,	isotime.	Binary	
content	for	double	is	always	8	bytes	in	IEEE	754	format,	
integer	is	4	bytes	signed	little-endian.	There	is	no	default	
length	for	string	and	isotime	types.	

length	 integer	 Required	For	type	string	and	isotime;	not	allowed	for	
others.	The	maximum	number	of	bytes	that	the	string	may	
contain.	If	the	response	format	is	binary	and	a	string	has	fewer	
than	this	maximum	number	of	bytes,	the	string	must	be	padded	
with	ASCII	null	bytes.	

size	 array	of	
integers	

Required	For	array	parameters;	not	allowed	for	others.	Must	
be	a	1-D	array	whose	values	are	the	number	of	array	elements	
in	each	dimension	of	this	parameter.	For	example,	"size"=[7]	
indicates	that	the	value	in	each	record	is	a	1-D	array	of	length	7.	
For	the	csv	and	binary	output,	there	must	be	7	columns	for	
this	parameter	--	one	column	for	each	array	element,	effectively	
unwinding	this	array.	The	json	output	for	this	data	parameter	
must	contain	an	actual	JSON	array	(whose	elements	would	be	
enclosed	by	[]).	For	arrays	2-D	and	higher,	such	as	
"size"=[2,3],	the	later	indices	are	the	fastest	moving,	so	that	
the	CSV	and	binary	columns	for	such	a	2	by	3	would	be	[0,0],	
[0,1],	[0,2]	and	then	[1,0],	[1,1],	[1,2].Note	that	"size":
[1]	is	allowed	but	discouraged,	because	clients	may	interpret	it	
as	either	an	array	of	length	1	or	as	a	scalar.	Similarly,	an	array	
size	of	1	in	any	dimension	is	discouraged,	because	of	ambiguity	
in	the	way	clients	would	treat	this	structure.	Array	sizes	of	
arbitrary	dimensionality	are	allowed,	but	from	a	practical	view,	
clients	typically	support	up	to	3D	or	4D	arrays.	See	below	for	
more	about	array	sizes.	

units	 string	OR	
array	of	
string	

Required	The	units	for	the	data	values	represented	by	this	
parameter.	For	dimensionless	quantities,	the	value	can	be	the	
literal	string	"dimensionless"	or	the	special	JSON	value	null.	
Note	that	an	empty	string	""	is	not	allowed.	For	isotime	
parameters,	the	units	must	be	UTC.	If	a	parameter	is	a	scalar,	the	
units	must	be	a	single	string.	For	an	array	parameter,	a	units	
value	that	is	a	single	string	means	that	the	same	units	apply	to	
all	elements	in	the	array.	If	the	elements	in	the	array	parameter	
have	different	units,	then	units	can	be	an	array	of	strings	to	
provide	specific	units	strings	for	each	element	in	the	array.	
Individual	values	for	elements	in	the	array	can	also	be	
"dimensionless"	or	null	(but	not	an	empty	string)	to	indicate	
no	units	for	that	element.	The	shape	of	such	a	units	array	must	

match	the	shape	given	by	the	size	of	the	parameter,	and	the	
ordering	of	multi-dimensional	arrays	of	unit	strings	is	as	
discussed	in	the	size	attribute	definition	above.	See	below	(the	
example	responses	to	an	info	query)	for	examples	of	a	single	
string	and	string	array	units.	

fill	 string	 Required	A	fill	value	indicates	no	valid	data	is	present.	If	a	
parameter	has	no	fill	present	for	any	records	in	the	dataset,	this	
can	be	indicated	by	using	a	JSON	null	for	this	attribute	as	in	
"fill": null	See	below	for	more	about	fill	values,	including	
the	issues	related	to	specifying	numeric	fill	values	as	
strings.	Note	that	since	the	primary	time	column	cannot	have	
fill	values,	it	must	specify	"fill": null	in	the	header.	

description	 string	 Optional	A	brief,	one-sentence	description	of	the	parameter.	
label	 string	OR	

array	of	
string	

Optional	A	word	or	very	short	phrase	that	could	serve	as	a	
label	for	this	parameter	(as	on	a	plot	axis	or	in	a	selection	list	of	
parameters).	Intended	to	be	less	cryptic	than	the	parameter	
name.	If	the	parameter	is	a	scalar,	this	label	must	be	a	single	
string.	If	the	parameter	is	an	array,	a	single	string	label	or	an	
array	of	string	labels	are	allowed.	A	single	label	string	will	be	
applied	to	all	elements	in	the	array,	whereas	an	array	of	label	
strings	specifies	a	different	label	string	for	each	element	in	the	
array	parameter.	The	shape	of	the	array	of	label	strings	must	
match	the	size	attribute,	and	the	ordering	of	multi-
dimensional	arrays	of	label	strings	is	as	discussed	in	the	size	
attribute	definition	above.	No	null	values	or	the	empty	string	
""	values	are	allowed	in	an	array	of	label	strings.	See	below	
(the	example	responses	to	an	info	query)	for	examples	of	a	
single	string	and	string	array	labels.	

bins	 array	of	
Bins	
object	

Optional	For	array	parameters,	each	object	in	the	bins	array	
corresponds	to	one	of	the	dimensions	of	the	array	and	
describes	values	associated	with	each	element	in	the	
corresponding	dimension	of	the	array.	The	table	below	
describes	all	required	and	optional	attributes	within	each	bins	
object.	If	the	parameter	represents	a	1-D	frequency	spectrum,	
the	bins	array	will	have	one	object	describing	the	frequency	
values	for	each	frequency	bin.	Within	that	object,	the	centers	
attribute	points	to	an	array	of	values	to	use	for	the	central	
frequency	of	each	channel,	and	the	ranges	attribute	specifies	a	
range	(min	to	max)	associated	with	each	channel.	At	least	one	
of	these	must	be	specified.	The	bins	object	has	a	required	units	
keyword	(any	string	value	is	allowed),	and	name	is	also	
required.	See	examples	below	for	a	parameter	with	bins	
describing	an	energy	spectrum.	Note	that	for	2-D	or	higher	
bins,	each	bin	array	is	still	a	1-D	array	--	having	bins	with	2-D	

(or	higher)	dependencies	is	not	currently	supported.	

3.6.5 size Details

The	'size'	attribute	is	required	for	array	parameters	and	not	allowed	for	others.	The	length	
of	the	size	array	indicates	the	number	of	dimensions,	and	each	element	in	the	size	array	
indicates	the	number	of	elements	in	that	dimension.	For	example,	the	size	attribute	for	a	1-
D	array	would	be	a	1-D	JSON	array	of	length	one,	with	the	one	element	in	the	JSON	array	
indicating	the	number	of	elements	in	the	data	array.	For	a	spectrum,	this	number	of	
elements	is	the	number	of	wavelengths	or	energies	in	the	spectrum.	Thus	"size": [9]	
refers	to	a	data	parameter	that	is	a	1-D	array	of	length	9,	and	in	the	csv	and	binary	output	
formats,	there	will	be	9	columns	for	this	data	parameter.	In	the	json	output	for	this	data	
parameter,	each	record	will	contain	a	JSON	array	of	9	elements	(enclosed	in	brackets	[]).	

For	arrays	of	size	2-D	or	higher,	the	column	orderings	need	to	be	specified	for	the	csv	and	
binary	output	formats,	because	for	both	of	these	formats,	the	array	needs	to	be	"unrolled"	
into	individual	columns.	The	mapping	of	2-D	array	element	to	unrolled	column	index	is	
done	so	that	the	later	array	elements	change	the	fastest.	This	is	illustrated	with	the	
following	example.	Given	a	2-D	array	of	"size":[2,5],	the	5	item	index	changes	the	most	
quickly.	Items	in	each	record	will	be	ordered	like	this	[0,0] [0,1], [0,2] [0,3] [0,4]
[1,0,] [1,1] [1,2] [1,3] [1,4]	and	the	ordering	is	similarly	done	for	higher	
dimensions.	

No	unrolling	is	needed	for	JSON	arrays	because	JSON	syntax	can	represent	arrays	of	any	
dimension.	The	following	example	shows	one	record	of	data	with	a	time	parameter	and	a	
single	data	parameter	"size":[2,5]	(of	type	double):	

["2017-11-13T12:34:56.789Z", [[0.0, 1.1, 2.2, 3.3, 4.4]
[5.0,6.0,7.0,8.0,9.0]]]	

3.6.6 fill Details

Note	that	fill	values	for	all	types	must	be	specified	as	a	string	(not	just	as	ASCII	within	the	
JSON,	but	as	a	literal	JSON	string	inside	quotes).	For	double	and	integer	types,	the	string	
should	correspond	to	a	numeric	value.	In	other	words,	using	a	string	like	invalid_int	
would	not	be	allowed	for	an	integer	fill	value.	Care	should	be	taken	to	ensure	that	the	string	
value	given	will	have	an	exact	numeric	representation,	and	special	care	should	be	taken	for	
double	values	which	can	suffer	from	round-off	problems.	For	integers,	string	fill	values	
must	correspond	to	an	integer	value	that	is	small	enough	to	fit	into	a	4-byte	signed	integer.	
For	double	parameters,	the	fill	string	must	parse	to	an	exact	IEEE	754	double	
representation.	One	suggestion	is	to	use	large	negative	integers,	such	as	-1.0E30.	The	
string	NaN	is	allowed,	in	which	the	case	csv	output	should	contain	the	string	NaN	for	fill	
values.	For	binary	data	output	with	double	NaN	values,	the	bit	pattern	for	quiet	NaN	
should	be	used,	as	opposed	to	the	signaling	NaN,	which	should	not	be	used	(see	[6]).	For	
string	and	isotime	parameters,	the	string	fill	value	is	used	at	face	value,	and	it	should	
have	a	length	that	fits	in	the	length	of	the	data	parameter.	

3.6.7 Bins Object

The	bins	attribute	of	a	parameter	is	an	array	of	JSON	objects.	These	objects	have	the	
attributes	described	below.	NOTE:	Even	though	ranges	and	centers	are	marked	as	
required,	only	one	of	the	two	must	be	specified.	

Bins	
Attribute	 Type	 Description	
name	 string	 Required	Name	for	the	dimension	(e.g.	

"Frequency").	
centers	 array	of	n	doubles	 Required	The	centers	of	each	bin.	
ranges	 array	of	n	array	of	2	

doubles	
Required	The	boundaries	for	each	bin.	

units	 string	 Required	The	units	for	the	bin	ranges	and/or	
center	values.	

label	 string	 Optional	A	label	appropriate	for	a	plot	(use	if	name	
is	not	appropriate)	

description	 string	 Optional	Brief	comment	explaining	what	the	bins	
represent.	

Note	that	some	dimensions	of	a	multi-dimensional	parameter	may	not	represent	binned	
data.	Each	dimension	must	be	described	in	the	bins	object,	but	any	dimension	not	
representing	binned	data	should	indicate	this	by	using	'"centers": null'	and	not	
including	the	'ranges'	attribute.	

The	data	given	for	centers	and	ranges	must	not	contain	any	null	or	missing	values.	The	
number	of	valid	numbers	in	the	centers	array	and	the	number	of	valid	min/max	pairs	in	
the	ranges	array	must	match	the	size	of	the	parameter	dimension	being	described.	So	this	
is	not	allowed:	

centers = [2, null, 4],	
ranges = [[1,3], null, [3,5]]	

If	the	bin	centers	or	ranges	change	with	time,	then	having	static	values	for	the	centers	or	
ranges	cannot	in	the	info	response	is	inadequate.	See	the	section	below	on	time	varying	
bins	for	how	to	handle	this	situation.	

	 	

Example	

These	examples	show	an	info	response	for	a	hypothetical	magnetic	field	dataset.	

http://server/hapi/info?dataset=ACE_MAG	

Example	Response:	

{ "HAPI": "3.0",	
 "status": { "code": 1200, "message": "OK"},	
 "startDate": "1998-001Z",	
 "stopDate" : "2017-100Z",	
 "parameters": [
 { "name": "Time",	
 "type": "isotime",	
 "units": "UTC",	
 "fill": null,	
 "length": 24 },	
 { "name": "radial_position",	
 "type": "double",	
 "units": "km",	
 "fill": null,	
 "description": "radial position of the spacecraft",	
 "label": "R Position"},	
 { "name": "quality_flag",	
 "type": "integer",	
 "units": "none",	
 "fill": null,	
 "description ": "0=OK and 1=bad"},	
 { "name": "mag_GSE",	
 "type": "double",	
 "units": "nT",	
 "fill": "-1e31",	
 "size" : [3],	
 "description": "hourly average Cartesian magnetic field in nT in
GSE",	
 "label": "B field in GSE"}	
]	
}	

This	example	included	the	optional	label	attribute	for	some	parameters.	The	use	of	a	
single	string	for	the	units	and	label	of	the	array	parameter	mag_GSE	indicates	that	all	
elements	of	the	array	have	the	same	units	and	label.	The	next	example	shows	a	header	for	a	
magnetic	field	dataset	where	the	vector	components	are	assigned	distinct	units	and	labels.	

	 	

{ "HAPI": "3.0",	
 "status": {"code": 1200, "message": "OK"},	
 "startDate": "1998-001Z",	
 "stopDate" : "2017-100Z",	
 "parameters": [
 { "name": "Time",	
 "type": "isotime",	
 "units": "UTC",	
 "fill": null,	
 "length": 24 },	
 { "name": "radial_position",	
 "type": "double",	
 "units": "km",	
 "fill": null,	
 "description": "radial position of the spacecraft",	
 "label": "R Position"},	
 { "name": "quality_flag",	
 "type": "integer",	
 "units": "none",	
 "fill": null,	
 "description ": "0=OK and 1=bad " },	
 { "name": "mag_GSE",	
 "type": "double",	
 "units": ["nT","degrees", "degrees"],	
 "fill": "-1e31",	
 "size" : [3],	
 "description": "B field as magnitude and two angles theta
(colatitude) and phi (longitude)",	
 "label": ["B Magnitude", "theta", "phi"] }	
]	
}	

This	example	is	nearly	the	same	as	the	previous	info	header,	but	the	mag_GSE	parameter	is	
different.	It	is	given	as	a	magnitude	and	two	direction	angles,	and	it	also	illustrates	the	use	
of	an	array	of	strings	for	the	units	and	label.	Each	element	in	the	string	array	applies	to	
the	corresponding	element	in	the	mag_GSE	data	array.	

When	a	scalar	units	value	is	given	for	an	array	parameter,	the	scalar	is	assumed	to	apply	to	
all	elements	in	the	array	--	a	kind	of	broadcast	application	of	the	single	value	to	all	values	in	
the	array.	For	multi-dimensional	arrays,	the	broadcast	applies	to	all	elements	in	every	
dimension.	A	partial	broadcast	to	only	one	dimension	in	the	array	is	not	allowed.	Either	a	
full	set	of	unit	strings	are	given	to	describe	every	element	in	the	multi-dimensional	array,	
or	a	single	value	is	given	to	apply	to	all	elements.	This	allows	for	the	handling	of	special	
cases	while	keeping	the	specification	simple.	The	same	broadcast	rules	govern	labels.	

Here	are	some	example	fragments	from	a	parameter	definition	showing	what	is	allowed	
and	not	allowed	for	units	and	label	values.	

	 	

OK	(scalar	units	applied	to	all	6	elements	in	the	array;	unique	label	for	each	element)	

"type": "double",	
"size": [2,3],	
"units": "m/s",	
"label": [["V1x","V1y","V1z"],["V2x","V2y","V2z"]]	

Also	OK	(array	of	length	1	is	treated	like	scalar;	not	preferred	but	allowed)	

"type": "double",	
"size": [2,3]	
"units": ["m/s"],	
"label": [["V1x","V1y","V1z"],["V2x","V2y","V2z"]]	

OK	(scalar	for	units	and	for	label	applies	to	all	elements	in	the	array)	

"type": "double",	
"size": [2,3]	
"units": "m/s",	
"label": "velocity",	

Not	OK	(array	size	does	not	match	parameter	size	--	must	specify	all	units	elements	if	not	
just	giving	a	scalar)	

"type": "double",	
"size": [2,3],	
"units": ["m/s","m/s","km/s"],	
"label": [["V1x","V1y","V1z"],["V2x","V2y","V2z"]]	

OK	(all	elements	are	properly	given	their	own	units	string)	

"type": "double",	
"size": [2,3],	
"units": [["m/s","m/s","km/s"],["m/s","m/s","km/s"]],	
"label": [["V1x","V1y","V1z"],["V2x","V2y","V2z"]]	

Not	OK	(units	array	size	does	not	match	parameter	size)	

"type": "double",	
"size": [2,3]	
"units": ["m/s",["m/s","m/s","km/s"]],	
"label": [["V1x","V1y","V1z"],["V2x","V2y","V2z"]]	

3.6.8 Subsetting Parameters

Clients	may	request	an	info	response	that	includes	only	a	subset	of	the	parameters,	or	a	
data	stream	for	a	subset	of	parameters	(via	the	data	endpoint,	described	next).	The	logic	on	
the	server	is	the	same	for	info	and	data	requests	in	terms	of	what	dataset	parameters	are	
included	in	the	response.	The	primary	time	parameter	(always	required	to	be	the	first	
parameter	in	the	list)	is	always	included,	even	if	not	requested.	These	examples	clarify	the	
way	a	server	must	respond	to	various	types	of	dataset	parameter	subsetting	requests:	

• request:	do	not	ask	for	any	specific	parameters	(i.e.,	there	is	no	request	parameter	
called	parameters);	
example:	
http://server/hapi/data?dataset=MY_MAG_DATA&start=1999Z&stop=2000Z	
response:	all	columns	

• request:	ask	for	just	the	primary	time	parameter;	
example:	
http://server/hapi/data?dataset=MY_MAG_DATA¶meters=Epoch&start=1999
Z&stop=2000Z	response:	just	the	primary	time	column	

• request:	ask	for	a	single	parameter	other	than	the	primary	time	column	(like	
parameters=Bx);	
example:	
http://server/hapi/data?dataset=MY_MAG_DATA¶meters=Bx&start=1999Z&s
top=2000Z	
response:	primary	time	column	and	the	one	requested	data	column	

• request:	ask	for	two	or	more	parameters	other	than	the	primary	time	column;	
example:	
http://server/hapi/data?dataset=MY_MAG_DATA¶meters=Bx,By&start=1999
Z&stop=2000Z	
response:	primary	time	column	followed	by	the	requested	parameters	in	the	order	
they	occurred	in	the	original,	non-subsetted	dataset	header	(note	that	the	
parameter	ordering	in	the	request	must	match	the	original	ordering	anyway	-	see	
just	below)	

• request:	including	the	parameters	option,	but	not	specifying	any	parameter	names;	
example:	
http://server/hapi/data?dataset=MY_MAG_DATA¶meters=&start=1999Z&sto
p=2000Z	
response:	the	is	an	error	condition;	server	should	report	a	user	input	error	

Note	that	the	order	in	which	parameters	are	listed	in	the	request	must	not	differ	from	the	
order	that	they	appear	in	the	response.	For	a	data	set	with	parameters	
Time,param1,param2,param3	this	subset	request	

?dataset=ID¶meters=Time,param1,param3	

is	acceptable,	because	param1	is	before	param3	in	the	parameters	array	(as	determined	by	
the	/info	response).	However,	asking	for	a	subset	of	parameters	in	a	different	order,	as	in	

?dataset=ID¶meters=Time,param3,param1	

is	not	allowed,	and	servers	must	respond	with	an	error	status.	See	HAPI	Status	Codes	for	
more	about	error	conditions	and	codes.	

3.6.9 JSON References

If	the	same	information	appears	more	than	once	within	the	info	response,	it	is	better	to	
represent	this	in	a	structured	way,	rather	than	to	copy	and	paste	duplicate	information.	
Consider	a	dataset	with	two	parameters	--	one	for	the	measurement	values,	and	one	for	the	
uncertainties.	If	the	two	parameters	both	have	bins	associated	with	them,	the	bin	
definitions	would	likely	be	identical.	Having	each	bins	entity	refer	back	to	a	pre-defined,	
single	entity	ensures	that	the	bins	values	are	indeed	identical,	and	it	also	more	readily	
communicates	the	connection	to	users,	who	otherwise	would	have	to	do	a	value-by-value	
comparison	to	see	if	the	bin	values	are	indeed	the	same.	

JSON	has	a	built-in	mechanism	for	handling	references.	HAPI	utilizes	a	subset	of	these	
features,	focusing	on	the	simple	aspects	that	are	implemented	in	many	existing	JSON	
parsers.	Also,	using	only	simple	features	makes	it	easier	for	users	to	implement	custom	
parsers.	Note	that	familiarity	with	the	full	description	of	JSON	references	(5),	is	helpful	in	
understanding	the	use	of	references	in	HAPI	described	below.	

JSON	objects	placed	within	a	definitions	block	can	be	pointed	to	using	the	$ref	notation.	
We	begin	with	an	example.	This	definitions	block	contains	this	object	called	angle_bins	
that	can	be	referred	to	using	the	JSON	syntax	#/definitions/angle_bins	

{	
 "definitions" : {	
 "pitch_angle_bins": {	
 "name" : "angle_bins",	
 "ranges": [[0, 30],	
 [30, 60],	
 [60, 90],	
 [90, 120],	
 [120, 150],	
 [150, 180]	
],	
 "units": "degrees",	
 "label": "Pitch Angle"	
 }	
 }	
}	

	 	

Here	is	a	parameter	fragment	showing	the	reference	used	in	two	places:	

{	
 "parameters": [
 { "name": "Time",	
 "type": "isotime",	
 "units": "UTC",	
 "fill": null,	
 "length": 24	
 },	
 { "name": "Protons_10_to_20_keV_pitch_angle_spectrogram",	
 "type": "double",	
 "units": "1/(cm^2 s^2 ster keV)",	
 "fill": "-1.0e38",	
 "size": [6],	
 "bins": [
 {"$ref" : "#/definitions/angle_bins"}	
]	
 },	
 { "name": "Uncert_for_Protons_10_to_20_keV_pitch_angle_spectrogram",	
 "type": "double",	
 "units": "1/(cm^2 s^2 ster keV)",	
 "fill": "-1.0e38",	
 "size": [6],	
 "bins": [
 {"$ref" : "#/definitions/angle_bins"}	
]	
 	
 }	
]	
}	

The	following	rules	govern	the	use	of	JSON	references	a	HAPI	info	response.	

1. Anything	referenced	must	appear	in	a	top-level	node	named	definitions	(this	is	a	
JSON	Schema	convention	[5]	but	a	HAPI	requirement).	

2. Objects	in	the	definitions	node	may	not	contain	references	(JSON	Schema	[5]	
allows	this,	HAPI	does	not)	

3. Referencing	by	id	is	not	allowed	(JSON	Schema	[5]	allows	this,	HAPI	does	not)	
4. name	may	not	be	a	reference	(names	must	be	unique	anyway	-	this	would	make	HAPI	

info	potentially	very	confusing).	
	 	

By	default,	a	server	resolves	these	references	and	excludes	the	definitions	node.	Stated	
more	directly,	a	server	should	not	return	a	definitions	block	unless	the	request	URL	
includes	

resolve_references=false	

in	which	case	the	response	metadata	should	contain	references	to	items	in	the	
definitions	node.	Note	these	constraints	on	what	can	be	in	the	definitions:	

1. Any	element	found	in	the	definitions	node	must	be	used	somewhere	in	the	full	set	
of	metadata.	Note	that	this	full	metadata	can	be	obtained	via	an	info	request	or	by	a	
data	request	to	which	the	header	is	prepended	(using	include=header).	

2. If	an	info	request	or	a	data	request	with	include=header	is	for	a	subset	of	
parameters	(e.g.,	/hapi/info?id=DATASETID¶meters=p1,p2),	the	definitions	
node	may	contain	objects	that	are	not	referenced	in	the	metadata	for	the	requested	
subset	of	parameters;	removal	of	unused	definitions	is	optional	in	this	case.	

Here	then	is	a	complete	example	of	an	info	response	with	references	unresolved,	showing	a	
definitions	block	and	the	use	of	references.	The	units	string	is	commonly	used,	so	it	is	
captured	as	a	reference,	as	is	the	full	bins	definition.	Note	that	this	example	shows	how	just	
a	part	of	the	bins	object	could	be	represented	--	the	centers	object	in	this	case.	The	
example	is	valid	HAPI	content,	but	normally,	it	would	not	make	sense	to	use	both	of	these	
approaches	in	a	single	info	response.	

{	
 "HAPI": "3.0",	
 "status": {	
 "code": 1200,	
 "message": "OK"	
 },	
 "startDate": "2016-01-01T00:00:00.000Z",	
 "stopDate": "2016-01-31T24:00:00.000Z",	
 "definitions": {	
 "spectrum_units": "particles/(sec ster cm^2 keV)",	
 "spectrum_centers": [15, 25, 35, 45],	
 "spectrum_bins": {	
 "name": "energy",	
 "units": "keV",	
 "centers": [15, 25, 35, 45]	
 }	
 },	
 "parameters": [{	
 "name": "Time",	
 "type": "isotime",	
 "units": "UTC",	
 "fill": null,	
 "length": 24	
 },	
 {	

 "name": "proton_spectrum",	
 "type": "double",	
 "size": [4],	
 "units": {"$ref": "#/definitions/spectrum_units"},	
 "fill": "-1e31",	
 "bins": [{	
 "name": "energy",	
 "units": "keV",	
 "centers": {"$ref": "#/definitions/spectrum_centers"}	
 }]	
 },	
 {	
 "name": "proton_spectrum2",	
 "type": "double",	
 "size": [4],	
 "units": {"$ref": "#/definitions/spectrum_units"},	
 "bins": [
 {"$ref": "#/definitions/spectrum_bins"}	
]	
 }	
]	
}	

3.6.10 Time-Varying Bins

In	some	datasets,	the	bin	centers	and/or	ranges	may	vary	with	time.	The	static	values	in	the	
bins	object	definition	for	ranges	or	centers	are	fixed	arrays	and	therefore	cannot	
represent	bin	boundaries	that	change	over	time.	As	of	HAPI	3.0,	the	ranges	and	centers	
objects	can	be,	instead	of	a	numeric	array,	a	string	value	that	is	the	name	of	another	
parameter	in	the	dataset.	This	allows	the	ranges	and	centers	objects	to	point	to	a	
parameter	that	is	then	to	be	treated	as	the	source	of	numbers	for	the	bin	centers	or	
ranges.	The	size	of	the	target	parameter	must	match	that	of	the	bins	being	represented.	
And	of	course,	each	record	of	data	can	contain	a	different	value	for	the	parameter,	
effectively	allowing	the	bin	ranges	and	centers	to	change	potentially	at	every	time	step.	

This	kind	of	complex	data	structure	for	binned	data	will	require	some	corresponding	
complexity	on	clients	reading	the	data,	but	that	it	outside	the	scope	of	this	specification.	

The	following	example	shows	a	dataset	of	multi-dimensional	values:	proton	intensities	
over	multiple	energies	and	at	multiple	pitch	angles.	The	data	parameter	name	is	
proton_spectrum,	and	it	has	bins	for	both	an	energy	dimension	(16	different	energy	bins)	
and	a	pitch	angle	dimension	(3	different	pitch	angle	bins).	For	the	bins	in	both	of	these	
dimensions,	a	parameter	name	is	given	instead	of	numeric	values	for	the	bin	locations.	The	
parameter	energy_centers	contains	an	array	of	16	values	at	each	time	step,	and	these	are	
to	be	interpreted	as	the	time-varying	centers	of	the	energies.	Likewise,	there	is	a	
pitch_angle_centers	parameter	which	serves	as	the	source	of	numbers	for	the	centers	of	
the	other	bin	dimension.	There	are	also	ranges	parameters	that	are	two-dimensional	
elements	since	each	range	consists	of	a	high	and	low	value.	

Note	that	the	comments	embedded	in	the	JSON	(with	a	prefix	of	//)	are	for	human	readers	
only	since	comments	are	not	supported	in	JSON.	

{	
 "HAPI": "3.0",	
 "status": {"code": 1200, "message": "OK"},	
 "startDate": "2016-01-01T00:00:00.000Z",	
 "stopDate": "2016-01-31T24:00:00.000Z",	
 "parameters": 	
 [{ "name": "Time",	
 "type": "isotime",	
 "units": "UTC",	
 "fill": null,	
 "length": 24	
 },	
 { "name": "proton_spectrum",	
 "type": "double",	
 "size": [16,3],	
 "units": "particles/(sec ster cm^2 keV)",	
 "fill": "-1e31",	
 "bins":	
 [
 { "name": "energy",	
 "units": "keV",	
 "centers": "energy_centers",	
 "ranges": "energy_ranges"	
 },	
 { "name": "pitch_angle",	
 "units": "degrees",	
 "centers": "pitch_angle_centers",	
 "ranges": "pitch_angle_ranges"	
 }	
]	
 },	
 {	
 "name": "energy_centers",	
 "type": "double",	
 "size": [16], // Must match product of elements in
#/proton_spectrum/size	
 "units": "keV", // Should match #/proton_spectrum/units	
 "fill": "-1e31" // Clients should interpret as meaning no
measurement made in bin	
 },	
 { "name": "energy_ranges",	
 "type": "double",	
 "size": [16,2],	
 "units": "keV", // Should match #/proton_spectrum/units	
 "fill": "-1e31" // Clients should interpret as meaning no
measurement made in bin	
 },	

 { "name": "pitch_angle_centers",	
 "type": "double",	
 "size": [3], // Must match product of elements in
#/proton_spectrum/size	
 "units": "degrees", // Should match #/proton_spectrum/units	
 "fill": "-1e31" // Clients should interpret as meaning no
measurement made in bin	
 },	
 { "name": "pitch_angle_ranges",	
 "type": "double",	
 "size": [3,2],	
 "units": "degrees", // Should match #/proton_spectrum/units	
 "fill": "-1e31" // Clients should interpret as meaning no
measurement made in bin	
 }	
]	
}	

3.6.11 Time-Varying size

If	the	size	of	a	dimension	in	a	multi-dimensional	parameter	changes	over	time,	the	only	
way	to	represent	this	in	HAPI	is	to	define	the	parameter	as	having	the	largest	potential	
size,	and	then	using	a	fill	value	for	any	data	elements	which	are	no	longer	actually	being	
provided.	

If	this	size-changing	parameter	has	bins,	then	the	number	of	bins	would	also	presumably	
change	over	time.	Servers	can	indicate	the	absence	of	one	or	more	bins	by	using	the	time-
varying	bin	mechanism	described	above	and	then	providing	all	fill	values	for	the	ranges	
and	centers	of	the	records	where	those	bins	are	absent.	

The	following	example	shows	a	conceptual	data	block	(not	in	HAPI	format)	where	there	is	
an	array	parameter	whose	values	are	in	columns	d0	through	d3.	The	corresponding	bin	
centers	are	in	the	columns	c0	through	c3.	The	data	block	shows	what	happens	in	the	data	if	
the	size	of	the	parameter	changes	from	4	to	3	after	the	third	time	step.	The	data	values	
change	to	fill	(-1.0e31	in	this	case),	and	the	values	for	the	centers	also	change	to	fill	to	
indicate	that	the	corresponding	array	elements	are	no	longer	valid	elements	in	the	array.	

time data0 data1 data2 data3 center0 center1 center1 center3 	
2019-01-01T14:10:30.5 1.2 3.4 5.4 8.9 10.0 20.0 30.0 40.0	
2019-01-01T14:10:31.5 1.1 3.6 5.8 8.4 10.0 20.0 30.0 40.0	
2019-01-01T14:10:32.5 1.4 3.8 5.9 8.3 10.0 20.0 30.0 40.0	
2019-01-01T14:10:33.5 1.3 3.1 5.3 -1.0e31 15.0 25.0 35.0 -1.0e31	
2019-01-01T14:10:34.5 1.2 3.0 5.4 -1.0e31 15.0 25.0 35.0 -1.0e31	
2019-01-01T14:10:35.5 1.2 3.0 5.4 -1.0e31 15.0 25.0 35.0 -1.0e31	

Note	that	the	fill	value	in	the	bin	centers	column	indicates	that	this	data3	array	element	is	
gone	in	a	more	permanent	sense	than	just	finding	a	fill	value	in	data3.	Just	finding	some	fill	
values	in	an	array	parameter	would	not	necessarily	indicate	that	the	column	was	
permanently	gone,	while	the	bin	center	being	fill	indicates	that	the	array	size	has	effectively	
changed.	If	a	bin	center	is	fill,	the	corresponding	data	column	should	also	be	fill,	even	
though	this	is	duplicate	information	(since	having	a	fill	center3	in	a	record	already	
indicates	a	non-usable	data3	in	that	record.)	

Recall	that	the	static	centers	and	ranges	objects	in	the	JSON	info	header	cannot	contain	
null	or	fill	values.	

3.7 data

Provides	access	to	a	dataset	and	allows	for	selecting	time	ranges	and	parameters	to	return.	
Data	is	returned	as	a	CSV	[2],	binary,	or	JSON-	stream.	The	Data	Stream	Content	section	
describes	the	stream	structure	and	layout	for	each	format.	

The	resulting	data	stream	can	be	thought	of	as	a	stream	of	records,	where	each	record	
contains	one	value	for	each	of	the	dataset	parameters.	Each	data	record	must	contain	a	data	
value	or	a	fill	value	(of	the	same	data	type)	for	each	parameter.	

3.7.1 Request Parameters

Items	with	a	*	superscript	in	the	following	table	have	been	modified	from	version	2	to	3;	
see	change	notes.	

Name	 Description	
dataset	*		 Required	The	identifier	for	the	dataset.	
start	*		 Required	The	inclusive	begin	time	for	the	data	to	include	in	the	response.	
stop	*		 Required	The	exclusive	end	time	for	the	data	to	include	in	the	response.	
parameters	 Optional	A	comma-separated	list	of	parameters	to	include	in	the	response.	

Default	is	all	parameters.	
include	 Optional	Has	one	possible	value	of	"header"	to	indicate	that	the	info	header	

should	precede	the	data.	The	header	lines	will	be	prefixed	with	the	"#"	
character.	

format	 Optional	The	desired	format	for	the	data	stream.	Possible	values	are	"csv",	
"binary",	and	"json".	

3.7.2 Response

Response	is	in	one	of	three	formats:	CSV	format	as	defined	by	[2]	with	a	mime	type	of	
text/csv;	binary	format	where	floating	points	number	are	in	IEEE	754	[4]	format	and	byte	
order	is	LSB	and	a	mime	type	of	application/octet-stream;	JSON	format	with	the	
structure	as	described	below	and	a	mime	type	of	application/json.	The	default	data	
format	is	CSV.	See	the	Data	Stream	Content	section	for	more	details.	

If	the	header	is	requested,	then	for	binary	and	CSV	formats,	each	line	of	the	header	must	
begin	with	a	hash	(#)	character.	For	JSON	output,	no	prefix	character	should	be	used,	
because	the	data	object	will	just	be	another	JSON	element	within	the	response.	Other	than	
the	possible	prefix	character,	the	contents	of	the	header	should	be	the	same	as	returned	
from	the	info	endpoint.	When	a	data	stream	has	an	attached	header,	the	header	must	
contain	an	additional	"format"	attribute	to	indicate	if	the	content	after	the	header	is	csv,	
binary,	or	json.	Note	that	when	a	header	is	included	in	a	CSV	response,	the	data	stream	is	
not	strictly	in	CSV	format.	

The	first	parameter	in	the	data	must	be	a	time	column	(type	of	isotime)	and	this	must	be	
the	independent	variable	for	the	dataset.	If	a	subset	of	parameters	is	requested,	the	time	
column	is	always	provided,	even	if	it	is	not	requested.	

Note	that	the	start	request	parameter	represents	an	inclusive	lower	bound	and	stop	
request	parameter	is	the	exclusive	upper	bound.	The	server	must	return	data	records	
within	these	time	constraints,	i.e.,	no	extra	records	outside	the	requested	time	range.	This	
enables	the	concatenation	of	results	from	adjacent	time	ranges.	

There	is	an	interaction	between	the	info	endpoint	and	the	data	endpoint	because	the	
header	from	the	info	endpoint	describes	the	record	structure	of	data	emitted	by	the	data	
endpoint.	Thus	after	a	single	call	to	the	info	endpoint,	a	client	could	make	multiple	calls	to	
the	data	endpoint	(for	multiple	time	ranges,	for	example)	with	the	expectation	that	each	
data	response	would	contain	records	described	by	the	single	call	to	the	info	endpoint.	The	
data	endpoint	can	optionally	prefix	the	data	stream	with	header	information,	potentially	
obviating	the	need	for	the	info	endpoint.	But	the	info	endpoint	is	useful	in	that	it	allows	
clients	to	learn	about	a	dataset	without	having	to	make	a	data	request.	

Both	the	info	and	data	endpoints	take	an	optional	request	parameter	(recall	the	definition	
of	request	parameter	in	the	introduction)	called	parameters	that	allows	users	to	restrict	
the	dataset	parameters	listed	in	the	header	and	data	stream,	respectively.	This	enables	
clients	(that	already	have	a	list	of	dataset	parameters	from	a	previous	info	or	data	request)	
to	request	a	header	for	a	subset	of	parameters	that	will	match	a	data	stream	for	the	same	
subset	of	parameters.	The	parameters	in	the	subset	request	must	be	ordered	according	to	
the	original	order	of	the	parameters	in	the	metadata,	i.e.,	the	subset	can	contain	fewer	
parameters,	but	must	not	rearrange	the	order	of	any	parameters.	Duplicates	are	not	
allowed.	

	 	

Consider	the	following	dataset	header	for	a	fictional	dataset	with	the	identifier	
MY_MAG_DATA.	

An	info	request	for	this	dataset*	

http://server/hapi/info?dataset=MY_MAG_DATA	

results	in	a	header	listing	of	all	the	dataset	parameters:	

{ "HAPI": "3.0",	
 "status": { "code": 1200, "message": "OK"},	
 "startDate": "2005-01-21T12:05:00.000Z",	
 "stopDate" : "2010-10-18T00:00:00Z",	
 "parameters": [
 { "name": "Time",	
 "type": "isotime",	
 "units": "UTC",	
 "fill": null,	
 "length": 24 },	
 { "name": "Bx", "type": "double", "units": "nT", "fill": "-1e31"},	
 { "name": "By", "type": "double", "units": "nT", "fill": "-1e31"},	
 { "name": "Bz", "type": "double", "units": "nT", "fill": "-1e31"},	
]	
}	

An	info	request	for	a	single	parameter	has	the	form	

http://server/hapi/info?dataset=MY_MAG_DATA¶meters=Bx	

and	would	result	in	the	following	header:	

{ "HAPI": "3.0",	
 "status": { "code": 1200, "message": "OK"},	
 "startDate": "2005-01-21T12:05:00.000Z",	
 "stopDate" : "2010-10-18T00:00:00Z",	
 "parameters": [
 { "name": "Time",	
 "type": "isotime",	
 "units": "UTC",	
 "fill": null,	
 "length": 24 },	
 { "name": "Bx", "type": "double", "units": "nT", "fill": "-1e31" },	
]	
}	

Note	that	the	time	parameter	is	included	even	though	it	was	not	requested.	

	 	

In	this	request*,	

http://server/hapi/info?dataset=MY_MAG_DATA¶meters=By,Bx	

the	parameters	are	out	of	order.	So	the	server	should	respond	with	an	error	code.	See	HAPI	
Status	Codes	for	more	about	error	conditions.	

3.7.3 Examples

Two	examples	of	data	requests	and	responses	are	given	–	one	with	the	header	and	one	
without.	

3.7.3.1 Data with Header

Note	that	in	the	following	request,	the	header	is	to	be	included,	so	the	same	header	from	
the	info	endpoint	will	be	prepended	to	the	data	but	with	a	‘#’	character	as	a	prefix	for	
every	header	line.	

http://server/hapi/data?dataset=path/to/ACE_MAG&start=2016-01-01Z&stop=2016-
02-01Z&include=header	

Response	

#{	
# "HAPI": "3.0",	
# "status": { "code": 1200, "message": "OK"},	
# "format": "csv",	
# "startDate": "1998-001Z",	
# "stopDate" : "2017-001Z",	
"parameters": [
# { "name": "Time",	
# "type": "isotime",	
# "units": "UTC",	
# "fill": null,	
# "length": 24	
# },	
# { "name": "radial_position",	
# "type": "double",	
# "units": "km",	
# "fill": null,	
# "description": "radial position of the spacecraft"	
# },	
# { "name": "quality flag",	
# "type": "integer",	
# "units ": null,	
# "fill": null,	
# "description ": "0=OK and 1=bad " 	
# },	
# { "name": "mag_GSE",	
# "type": "double",	
# "units": "nT",	

# "fill": "-1e31",	
# "size" : [3],	
# "description":"hourly average Cartesian magnetic field nT in GSE"	
# }	
#]	
#}	
2016-01-01T00:00:00.000Z,6.848351,0,0.05,0.08,-50.98	
2016-01-01T01:00:00.000Z,6.890149,0,0.04,0.07,-45.26	
 ...	
 ... 	
2016-01-01T02:00:00.000Z,8.142253,0,2.74,0.17,-28.62	

3.7.3.2 Data Only

The	following	example	is	the	same,	except	it	lacks	the	request	to	include	the	header.	

http://server/hapi/data?dataset=path/to/ACE_MAG&start=2016-01-01&stop=2016-
02-01	

Response	

Consider	a	dataset	that	contains	a	time	field,	two	scalar	fields,	and	one	array	field	of	length	
3.	The	response	will	have	the	form:	

2016-01-01T00:00:00.000Z,6.848351,0,0.05,0.08,-50.98	
2016-01-01T01:00:00.000Z,6.890149,0,0.04,0.07,-45.26	
...	
...	
2016-01-01T02:00:00.000Z,8.142253,0,2.74,0.17,-28.62	

Note	that	there	is	no	leading	row	with	column	names.	The	RFC	4180	CSV	standard	[2]	
indicates	that	such	a	header	row	is	optional.	Leaving	out	this	row	avoids	the	complication	
of	having	to	name	individual	columns	representing	array	elements	within	an	array	
parameter.	Recall	that	an	array	parameter	has	only	a	single	name.	The	place	HAPI	specifies	
parameter	names	is	via	the	info	endpoint,	which	also	provides	size	details	for	each	
parameter	(scalar	or	array,	and	array	size	if	needed).	The	size	of	each	parameter	must	be	
used	to	determine	how	many	columns	it	will	use	in	the	CSV	data.	By	not	specifying	a	row	of	
column	names,	HAPI	avoids	the	need	to	have	a	naming	convention	for	columns	
representing	elements	within	an	array	parameter.	

3.7.4 Response formats

The	three	possible	output	formats	are	csv,	binary,	and	json.	A	HAPI	server	must	support	
csv,	while	binary	and	json	are	optional.	

3.7.4.1 CSV

The	format	of	the	CSV	stream	should	follow	the	guidelines	for	CSV	data	as	described	by	RFC	
4180	[2].	Each	CSV	record	is	one	line	of	text,	with	commas	between	the	values	for	each	
dataset	parameter.	Any	value	containing	a	comma	must	be	surrounded	with	double	quotes,	
and	any	double-quote	within	a	value	must	be	escaped	by	a	preceding	double	quote.	An	

array	parameter	(i.e.,	the	value	of	a	parameter	within	one	record	is	an	array)	will	have	
multiple	columns	resulting	from	placing	each	element	in	the	array	into	its	own	column.	For	
1-D	arrays,	the	ordering	of	the	unwound	columns	is	just	the	index	ordering	of	the	array	
elements.	For	2-D	arrays	or	higher,	the	right-most	array	index	is	the	fastest	moving	index	
when	mapping	array	elements	to	columns.	

It	is	up	to	the	server	to	decide	how	much	precision	to	include	in	the	ASCII	values	when	
generating	CSV	output.	

Clients	programs	interpreting	the	HAPI	CSV	stream	are	encouraged	to	use	existing	CSV	
parsing	libraries	to	be	able	to	interpret	the	full	range	of	possible	CSV	values,	including	
quoted	commas	and	escaped	quotes.	However,	it	is	expected	that	a	simple	CSV	parser	
would	probably	handle	more	than	90%	of	known	cases.	

3.7.4.2 Binary

The	binary	data	output	is	best	described	as	a	binary	translation	of	the	CSV	stream,	with	full	
numerical	precision	and	no	commas	or	newlines.	Recall	that	the	dataset	header	provides	
type	information	for	each	dataset	parameter,	and	this	definitively	indicates	the	number	of	
bytes	and	the	byte	structure	of	each	parameter,	and	thus	of	each	binary	record	in	the	
stream.	Array	parameters	are	unwound	in	the	same	way	for	binary	as	for	CSV	data	as	
described	above.	All	numeric	values	are	little-endian	(LSB),	integers	are	always	signed	and	
four-byte	and	floating-point	values	are	always	IEEE	754	double-precision	values.	

Dataset	parameters	of	type	string	and	isotime	(which	are	just	strings	of	ISO	8601	dates)	
have	a	maximum	length	specified	in	the	info	header.	This	length	indicates	how	many	bytes	
to	read	for	each	string	value.	If	the	string	content	is	less	than	the	length,	the	remaining	
bytes	must	be	padded	with	ASCII	null	bytes.	If	a	string	uses	all	the	bytes	specified	in	the	
length,	no	null	terminator	or	padding	is	needed.	

3.7.4.3 JSON

For	the	JSON	output,	an	additional	data	element	added	to	the	header	contains	the	array	of	
data	records.	These	records	are	very	similar	to	the	CSV	output,	except	that	strings	must	be	
quoted	and	arrays	must	be	delimited	with	array	brackets	in	standard	JSON	fashion.	An	
example	helps	to	illustrate	what	the	JSON	format	looks	like.	Consider	a	dataset	with	four	
parameters:	time,	a	scalar	value,	a	1-D	array	value	with	an	array	length	of	3,	and	a	string	
value.	The	header	with	the	data	object	might	look	like	this:	

{ "HAPI": "3.0",	
 "status": { "code": 1200, "message": "OK"},	
 "startDate": "2005-01-21T12:05:00.000Z",	
 "stopDate" : "2010-10-18T00:00:00Z",	
 "parameters": [
 { "name": "Time", "type": "isotime", "units": "UTC", "fill": null,
"length": 24 },	
 { "name": "quality_flag", "type": "integer", "description": "0=ok;
1=bad", "fill": null },	
 { "name": "mag_GSE", "type": "double", "units": "nT", "fill": "-
1e31", "size" : [3],	
 "description": "hourly average Cartesian magnetic field in nT in
GSE" },	
 { "name": "region", "type": "string", "length": 20, "fill": "???",
"units" : null}	
],	
"format": "json",	
"data" : [
["2010-001T12:01:00Z",0,[0.44302,0.398,-8.49],"sheath"],	
["2010-001T12:02:00Z",0,[0.44177,0.393,-9.45],"sheath"],	
["2010-001T12:03:00Z",0,[0.44003,0.397,-9.38],"sheath"],	
["2010-001T12:04:00Z",1,[0.43904,0.399,-9.16],"sheath"]	
]	
	
}	

The	data	element	is	a	JSON	array	of	records.	Each	record	is	itself	an	array	of	parameters.	
The	time	and	string	values	are	in	quotes,	and	any	data	parameter	in	the	record	that	is	an	
array	must	be	inside	square	brackets.	This	data	element	appears	as	the	last	JSON	element	
in	the	header.	

The	record-oriented	arrangement	of	the	JSON	format	is	designed	to	allow	a	streaming	
client	reader	to	begin	reading	(and	processing)	the	JSON	data	stream	before	it	is	complete.	
Note	also	that	servers	can	start	streaming	the	data	as	soon	as	records	are	available.	In	
other	words,	the	JSON	format	can	be	read	and	written	without	first	having	to	hold	all	the	
records	in	memory.	This	may	require	some	custom	elements	in	the	JSON	parser,	but	
preserving	this	streaming	capability	is	important	for	keeping	the	HAPI	spec	scalable.	Note	
that	if	pulling	all	the	data	content	into	memory	is	not	a	problem,	then	ordinary	JSON	
parsers	will	also	have	no	trouble	with	this	JSON	arrangement.	

3.7.5 Errors While Streaming

If	the	server	encounters	an	error	while	streaming	the	data	and	can	no	longer	continue,	it	
will	have	to	terminate	the	stream.	The	status	code	(both	HTTP	and	HAPI)	and	message	
will	already	have	been	set	in	the	header	and	is	unlikely	to	represent	the	error.	Clients	will	
have	to	be	able	to	detect	an	abnormally	terminated	stream	and	should	treat	this	aborted	
condition	the	same	as	an	internal	server	error.	See	HAPI	Status	Codes	for	more	about	error	
conditions.	

3.7.6 Representation of Time

Time	values	are	always	strings,	and	the	HAPI	Time	format	is	a	subset	of	the	ISO	8601	date	
and	time	format	[1].	

The	restriction	on	the	ISO	8601	standard	is	that	time	must	be	represented	as	

yyyy-mm-ddThh:mm:ss.sssZ	

or	

yyyy-dddThh:mm:ss.sssZ	

and	the	trailing	Z	is	required.	Strings	with	less	precision	are	allowed	as	per	ISO	8601,	e.g.,	
1999-01Z	and	1999-001Z.	The	HAPI	JSON	schema	lists	a	series	of	regular	expressions	that	
codifies	the	intention	of	the	HAPI	Time	specification.	The	schema	allows	leap	seconds	and	
hour=24,	but	it	should	be	expected	that	not	all	clients	will	be	able	to	properly	interpret	
such	time	stamps.	

The	name	of	the	time	parameter	is	not	constrained	by	this	specification.	However,	it	is	
strongly	recommended	that	the	time	column	name	be	"Time"	or	"Epoch"	or	some	easily	
recognizable	label.	

3.7.6.1 Incoming time values

Servers	must	require	incoming	time	values	from	clients	(i.e.,	the	start	and	stop	values	on	a	
data	request)	to	be	valid	ISO	8601	time	values.	The	full	ISO	8601	specification	allows	many	
esoteric	options,	but	servers	must	only	accept	a	subset	of	the	full	ISO	8601	specification,	
namely	one	of	either	year-month-day	(yyyy-mm-ddThh:mm:ss.sssZ)	or	day-of-year	(yyyy-
dddThh:mm:ss.sssZ).	Any	date	or	time	elements	missing	from	the	string	are	assumed	to	
take	on	their	smallest	possible	value.	For	example,	the	string	2017-01-15T23:00:00.000Z	
could	be	given	in	truncated	form	as	2017-01-15T23Z.	Servers	should	be	able	to	parse	and	
properly	interpret	these	truncated	time	strings.	When	clients	provide	a	date	at	day	
resolution	only,	the	T	must	not	be	included,	so	servers	should	be	able	to	parse	day-level	
time	strings	without	the	T,	as	in	2017-01-15Z.	

Note	that	in	the	ISO	8601	specification,	a	trailing	Z	on	the	time	string	indicates	that	no	time	
zone	offset	should	be	applied	(so	the	time	zone	is	GMT+0).	If	a	server	receives	an	input	
value	without	the	trailing	Z,	it	should	still	interpret	the	time	zone	as	GMT+0	rather	than	a	
local	time	zone.	This	is	true	for	time	strings	with	all	fields	present	and	for	truncated	time	
strings	with	some	fields	missing.	
	

	 	

Example	time	range	request	 comments	
start=2017-01-15T00:00:00.000Z&stop=2017-
01-16T00:00.000Z	

OK	-	fully	specified	time	value	with	
proper	trailing	Z	

start=2017-01-15Z&stop=2017-01-16Z	 OK	-	truncated	time	value	that	assumes	
00:00.000	for	the	time	

start=2017-01-15&stop=2017-01-16	 OK	-	truncated	with	missing	trailing	Z,	
but	GMT+0	should	be	assumed	

There	is	no	restriction	on	the	earliest	date	or	latest	date	a	HAPI	server	can	accept,	but	as	a	
practical	limit,	clients	are	likely	to	be	written	to	handle	dates	only	in	the	range	from	years	
1700	to	2100.	

3.7.6.2 Outgoing time values

Time	values	in	the	outgoing	data	stream	must	be	ISO	8601	strings.	A	server	may	use	one	of	
either	the	yyyy-mm-ddThh:mm:ss.sssZ	or	the	yyyy-dddThh:mm:ss.sssZ	form,	but	must	use	
one	format	and	length	within	any	given	dataset.	The	time	values	must	not	have	any	local	
time	zone	offset,	and	they	must	indicate	this	by	including	the	trailing	Z.	Time	or	date	
elements	may	be	omitted	from	the	end	to	indicate	that	the	missing	time	or	date	elements	
should	be	given	their	lowest	possible	value.	For	date	values	at	day	resolution	(i.e.,	no	time	
values),	the	T	must	be	omitted,	but	the	Z	is	still	required.	Note	that	this	implies	that	clients	
must	be	able	to	parse	potentially	truncated	ISO	strings	of	both	Year-Month-Day	and	Year-
Day-of-year	styles.	

For	binary	and	csv	data,	the	length	of	time	string,	truncated	or	not,	is	indicated	with	the	
length	attribute	for	the	time	parameter,	which	refers	to	the	number	of	printable	characters	
in	the	string.	Every	time	string	must	have	the	same	length	and	so	padding	of	time	strings	is	
not	needed.	

The	data	returned	from	a	request	should	strictly	fall	within	the	limits	of	start	and	stop,	
i.e.,	servers	should	not	pad	the	data	with	extra	records	outside	the	requested	time	range.	
Furthermore,	note	that	the	start	value	is	inclusive	(data	at	or	beyond	this	time	can	be	
included),	while	stop	is	exclusive	(data	at	or	beyond	this	time	shall	not	be	included	in	the	
response).	

The	primary	time	column	is	not	allowed	to	contain	any	fill	values.	Each	record	must	be	
identified	with	a	valid	time	value.	If	other	columns	contain	parameters	of	type	isotime	(i.e.,	
time	columns	that	are	not	the	primary	time	column),	there	may	be	fill	values	in	these	
columns.	Note	that	the	fill	definition	is	required	for	all	types,	including	isotime	
parameters.	The	fill	value	for	a	(non-primary)	isotime	parameter	does	not	have	to	be	a	
valid	time	string	-	it	can	be	any	string,	but	it	must	be	the	same	length	string	as	the	time	
variable.	

Note	that	the	ISO	8601	time	format	allows	arbitrary	precision	on	the	time	values.	HAPI	
servers	should	therefore	also	accept	time	values	with	high	precision.	As	a	practical	limit,	
servers	should	at	least	handle	time	values	down	to	the	nanosecond	or	picosecond	level.	

HAPI	metadata	(in	the	info	header	for	a	dataset)	allows	a	server	to	specify	where	
timestamps	fall	within	the	measurement	window.	The	timeStampLocation	attribute	for	a	
dataset	is	an	enumeration	with	possible	values	of	begin,	center,	end,	or	other.	This	
attribute	is	optional,	but	the	default	value	is	center,	which	refers	to	the	exact	middle	of	the	
measurement	window.	If	the	location	of	the	timestamp	is	not	known	or	is	more	complex	
than	any	of	the	allowed	options,	the	server	can	report	other	for	the	timeStampLocation.	
Clients	are	likely	to	use	center	for	other,	simply	because	there	is	not	much	else	they	can	
do.	Note	that	the	optional	cadence	attribute	is	not	meant	to	be	accurate	enough	to	use	as	a	
way	to	compute	an	alternate	time	stamp	location.	In	other	words,	given	a	
timeStampLocation	of	begin	and	a	cadence	of	10	seconds,	it	may	not	always	work	to	just	
add	5	seconds	to	get	to	the	center	of	the	measurement	interval	for	this	dataset.	This	is	
because	the	cadence	provides	a	nominal	duration,	and	the	actual	duration	of	each	
measurement	may	vary	significantly	throughout	the	dataset.	Some	datasets	may	have	
specific	parameters	devoted	to	accumulation	time	or	other	measurement	window	
parameters,	but	HAPI	metadata	does	not	capture	this	level	of	measurement	window	
details.	Suggestions	on	handling	the	issues	discussed	in	this	paragraph	are	given	on	the	
implementation	notes	page.	

3.7.6.3 Time Range With No Data

If	a	request	is	made	for	a	time	range	in	which	there	are	no	data,	the	server	must	respond	
with	an	HTTP	200	status	code.	The	HAPI	status-code	must	be	either	HAPI 1201	(the	explicit	
no-data	code)	or	HAPI 1200	(OK).	While	the	more	specific	HAPI 1201	code	is	preferred,	
servers	may	have	a	difficult	time	recognizing	the	lack	of	data	before	issuing	the	header,	in	
which	case	the	issuing	of	HAPI 1200	and	the	subsequent	absence	of	any	data	records	
communicates	to	clients	that	everything	worked	but	no	data	was	present	in	the	given	
interval.	Any	response	that	includes	a	header	(JSON	always	does,	and	CSV	and	binary	when	
requested)	must	have	this	same	HAPI	status	set	in	the	header.	For	CSV	or	binary	responses	
without	a	header,	the	message	body	should	be	empty	to	indicate	no	data	records.	

This	example	clarifies	the	ideal	case.	If	servers	have	no	data,	the	OK	header	

HTTP/1.1 200 OK	

is	acceptable,	but	a	more	specific	header	

HTTP/1.1 200 OK HAPI 1201 - no data in the interval	

is	preferred	if	the	server	can	detect	in	time	that	there	is	no	data.	This	allows	clients	to	
verify	that	the	empty	body	was	intended.	

3.7.6.4 Time Range With All Fill Values

If	a	request	is	made	with	a	time	range	in	which	the	response	will	contain	all	fill	values,	the	
server	must	respond	with	all	fill	values	and	not	an	empty	body.	

4 Status Codes
There	are	two	ways	that	HAPI	servers	must	report	errors,	and	these	must	be	consistent.	
Because	every	HAPI	server	response	is	an	HTTP	response,	an	appropriate	HTTP	status	and	
message	must	be	set	for	each	response.	The	HTTP	integer	status	codes	to	use	are	the	
standard	ones	(200	means	OK,	404	means	not	found,	etc),	and	these	are	listed	below.	

The	text	message	in	the	HTTP	status	should	not	just	be	the	standard	HTTP	message	but	
should	include	a	HAPI-specific	message,	and	this	text	should	include	the	HAPI	integer	code	
along	with	the	corresponding	HAPI	status	message	for	that	code.	These	HAPI	codes	and	
messages	are	also	are	described	below.	Note	the	careful	use	of	"must"	and	"should"	here.	
The	use	of	the	HTTP	header	message	to	include	HAPI-specific	details	is	optional,	but	the	
setting	of	the	HTTP	integer	code	status	is	required.	

	As	an	example,	it	is	recommended	that	a	status	message	such	as	

HTTP/1.1 404 Not Found	

is	modified	to	include	the	HAPI	error	code	and	error	message	(as	described	below)	

HTTP/1.1 404 Not Found; HAPI 1402 Bad request - error in start time	

Although	the	HTTP	status	mechanism	is	robust,	it	is	more	difficult	for	some	clients	to	
access	--	a	HAPI	client	using	a	high-level	URL	retrieving	mechanism	may	not	have	easy	
access	to	HTTP	header	content.	Therefore	the	HAPI	response	itself	must	also	include	a	
status	indicator.	This	indicator	appears	as	a	status	object	in	the	HAPI	header.	The	two	
status	indicators	(HAPI	and	HTTP)	must	be	consistent,	i.e.,	if	one	indicates	success,	so	must	
the	other.	Note	that	some	HAPI	responses	do	not	include	a	header,	and	in	these	cases,	the	
HTTP	header	is	the	only	place	to	obtain	the	status.	

	 	

4.1 status Object

The	HAPI	status	object	is	described	as	follows:	

Name	 Type	 Description	
code	 integer	 Specific	value	indicating	the	category	of	the	outcome	of	the	request	-	

see	HAPI	Status	Codes.	
message	 string	 Human	readable	description	of	the	status	-	must	conceptually	match	

the	intent	of	the	integer	code.	

HAPI	servers	must	categorize	the	response	status	using	at	least	the	following	three	status	
codes:	1200 - OK,	1400 - Bad Request,	and	1500 - Internal Server Error.	These	are	
intentionally	analogous	to	the	similar	HTTP	codes	200 - OK,	400 - Bad Request,	and	500
- Internal Server Error.	Note	that	HAPI	code	numbers	are	1000	higher	than	the	HTTP	
codes	to	avoid	collisions.	For	these	three	simple	subtracting	1000.	The	following	table	
summarizes	the	minimum	required	status	response	categories.	

HTTP	code	 HAPI	status	code	 HAPI	status	message	
200	 1200	 OK	
400	 1400	 Bad	request	-	user	input	error	
500	 1500	 Internal	server	error	

The	exact	wording	in	the	HAPI	message	does	not	need	to	match	what	is	shown	here.	The	
conceptual	message	must	be	consistent	with	the	status,	but	the	wording	is	allowed	to	be	
different	(or	in	another	language,	for	example).	If	the	server	is	also	including	the	HAPI	
error	message	in	the	HTTP	status	message	(recommended,	not	required),	the	HTTP	status	
wording	should	be	as	similar	as	possible	to	the	HAPI	message	wording.	

The	about,	capabilities	and	catalog	endpoints	just	need	to	indicate	1200 - OK	or	1500 -
Internal Server Error	since	they	do	not	take	any	request	parameters.	The	info	and	data	
endpoints	do	take	request	parameters,	so	their	status	response	must	include	1400 - Bad
Request	when	appropriate.	

A	response	of	1400 - Bad Request	must	also	be	given	when	the	user	requests	an	endpoint	
that	does	not	exist.	

4.2 status Error Codes

Servers	may	optionally	provide	a	more	specific	error	code	for	the	following	common	types	
of	input	processing	problems.	For	convenience,	a	JSON	object	with	these	error	codes	is	
given	in	the	Appendix.	It	is	recommended	but	not	required	that	a	server	implement	this	
more	complete	set	of	status	responses.	Servers	may	add	their	own	codes	but	must	use	
numbers	outside	the	1200s,	1400s,	and	1500s	to	avoid	collisions	with	possible	future	HAPI	
codes.	

	 	

HTTP	code	 HAPI	status	code	 HAPI	status	message	
200	 1200	 OK	
200	 1201	 OK	-	no	data	for	time	range	
400	 1400	 Bad	request	-	user	input	error	
400	 1401	 Bad	request	-	unknown	API	parameter	name	
400	 1402	 Bad	request	-	error	in	start	time	
400	 1403	 Bad	request	-	error	in	stop	time	
400	 1404	 Bad	request	-	start	time	equal	to	or	after	stop	time	
400	 1405	 Bad	request	-	time	outside	valid	range	
404	 1406	 Bad	request	-	unknown	dataset	id	
404	 1407	 Bad	request	-	unknown	dataset	parameter	
400	 1408	 Bad	request	-	too	much	time	or	data	requested	
400	 1409	 Bad	request	-	unsupported	output	format	
400	 1410	 Bad	request	-	unsupported	include	value	
500	 1500	 Internal	server	error	
500	 1501	 Internal	server	error	-	upstream	request	error	

Note	that	there	is	an	OK	status	to	indicate	that	the	request	was	properly	fulfilled,	but	that	
no	data	was	found.	This	can	be	very	useful	feedback	to	clients	and	users,	who	may	
otherwise	suspect	server	problems	if	no	data	is	returned.	

Note	also	the	response	1408	indicating	that	the	server	will	not	fulfill	the	request	since	it	is	
too	large.	This	gives	a	HAPI	server	a	way	to	let	clients	know	about	internal	limits	within	the	
server.	

For	errors	that	prevent	any	HAPI	content	from	being	returned	(such	as	a	400 - not found	
or	500 - internal server error)	the	HAPI	server	should	return	a	JSON	object	that	is	
basically	a	HAPI	header	with	just	the	status	information.	The	JSON	object	should	be	
returned	even	if	the	request	was	for	non-JSON	data.	Returning	server-specified	content	for	
an	error	response	is	also	how	HTTP	servers	handle	error	messages	--	think	about	custom	
HTML	content	that	accompanies	the	404 - not found	response	when	asking	a	server	for	a	
data	file	that	does	not	exist.	

In	cases	where	the	server	cannot	create	a	full	response	(such	as	an	info	request	or	data	
request	for	an	unknown	dataset),	the	JSON	header	response	must	include	the	HAPI	version	
and	a	HAPI	status	object	indicating	that	an	error	has	occurred.	

{	
 "HAPI": "3.0",	
 "status": { "code": 1401, "message": "Bad request - unknown request
parameter"}	
}	

For	the	data	endpoint,	clients	may	request	data	with	no	JSON	header,	and	in	the	case	of	an	
error,	the	HTTP	status	is	the	only	place	a	client	can	determine	the	response	status.	

4.3 Client Error Handling

Because	web	servers	are	not	required	to	limit	HTTP	return	codes	to	those	in	the	above	
table,	HAPI	clients	should	be	able	to	handle	the	full	range	of	HTTP	responses.	Also,	the	
HAPI	server	code	may	not	be	the	only	software	to	interact	with	a	URL-based	request	from	a	
HAPI	server.	There	may	be	a	load	balancer	or	upstream	request	routing	or	caching	
mechanism	in	place.	Therefore,	it	is	a	good	client-side	practice	to	be	able	to	handle	any	
HTTP	errors.	

Also,	recall	that	in	a	three-digit	HTTP	error	code,	the	first	digit	is	the	main	one	client	code	
should	examine	for	determining	the	response	status.	Subsequent	digits	give	a	finer	nuance	
to	the	error,	but	there	may	be	variability	between	servers	for	the	exact	values	of	the	
seconds	and	third	digits.	HAPI	servers	are	allowed	to	use	more	specific	values	for	these	
second	and	third	digits	but	must	keep	the	first	digit	consistent	with	the	table	above.	

Consider	the	HTTP	204	error	code,	which	represents	"No	data."	A	HAPI	server	is	allowed	to	
return	this	code	when	no	data	was	present	over	the	time	range	indicated,	but	(per	HTTP	
rules)	it	must	only	do	so	in	cases	where	the	HTTP	body	truly	contains	no	data.	A	HAPI	
header	would	count	as	HTTP	data,	so	the	HTTP	204	code	can	only	be	sent	by	a	server	when	
the	clients	requested	CSV	or	binary	data	with	no	header.	Here	is	a	sample	HTTP	response	
for	this	case:	

HTTP/1.1 204 OK - no content; HAPI 1201 OK - no data for the time range	

Regardless	of	whether	the	server	uses	a	more	specific	HTTP	code,	the	HAPI	code	embedded	
in	the	HTTP	message	must	properly	indicate	the	HAPI	status.	

5 Cross-Origin Resource Sharing
Because	of	the	increasing	importance	of	JavaScript	clients	that	use	AJAX	requests,	HAPI	
servers	are	strongly	encouraged	to	implement	Cross-Origin	Resource	Sharing	CORS.	This	
will	allow	AJAX	requests	by	browser	clients	from	any	domain.	For	servers	with	only	public	
data,	enabling	CORS	is	fairly	common,	and	not	implementing	CORS	limits	the	type	of	clients	
that	can	interface	with	a	HAPI	server.	Server	implementors	are	strongly	encouraged	to	
pursue	a	deeper	understanding	before	proceeding	with	CORS.	For	testing	purposes,	the	
following	headers	have	been	sufficient	for	browser	clients	to	HAPI	servers:	

Access-Control-Allow-Origin: *	
Access-Control-Allow-Methods: GET	
Access-Control-Allow-Headers: Content-Type	

6 Security Notes
When	the	server	sees	a	request	parameter	that	it	does	not	recognize,	it	should	throw	an	
error.	

So	given	this	query	

http://server/hapi/data?dataset=DATA&start=T1&stop=T2&fields=mag_GSE&avg=5s	

the	server	should	throw	an	error	with	a	status	of	1400 - Bad Request	with	an	HTTP	status	
of	400.	The	server	could	optionally	be	more	specific	with	1401 - misspelled or invalid
request parameter	with	an	HTTP	code	of	404 - Not Found.	

In	following	general	security	practices,	HAPI	servers	should	carefully	screen	incoming	
request	parameter	name	values.	Unknown	request	parameters	and	values,	including	
incorrectly	formatted	time	values,	should	not	be	echoed	in	the	error	response.	

7 References
1. ISO	8601:2019	Date	Time	Format	Standard,	

https://www.iso.org/standard/70908.html	
2. CSV	format,	https://tools.ietf.org/html/rfc4180	
3. JSON	Format,	https://tools.ietf.org/html/rfc7159;	http://json-schema.org/	
4. IEEE	Standard	for	Floating-Point	Arithmetic,	

http://doi.org/10.1109/IEEESTD.2008.4610935	
5. Understanding	JSON	Schema	-	Structuring	a	Complex	Schema,	https://json-

schema.org/understanding-json-schema/structuring.html	

8 Contact
• Jon	Vandegriff	(jon.vandegriff@jhuapl.edu)	
• Robert	Weigel	(rweigel@gmu.edu)	
• Aaron	Roberts	(aaron.roberts@nasa.gov)	
• Jeremy	Faden	(faden@cottagesystems.com)	
• Todd	King	(tking@igpp.ucla.edu)	
• Robert	Candey	(Robert.M.Candey@nasa.gov)	
• Bernard	Harris	(bernard.t.harris@nasa.gov)	
• Nand	Lal	(nand.lal-1@nasa.gov)	

9 Appendix

9.1 Sample Landing Page

See	https://github.com/hapi-server/server-ui	

9.2 JSON Object of Status Codes
{	
"1200": {"status":{"code": 1200, "message": "HAPI 1200: OK"}},	
"1201": {"status":{"code": 1201, "message": "HAPI 1201: OK - no data"}},	
"1400": {"status":{"code": 1400, "message": "HAPI error 1400: user input error"}},	
"1401": {"status":{"code": 1401, "message": "HAPI error 1401: unknown API parameter name"}},	
"1402": {"status":{"code": 1402, "message": "HAPI error 1402: error in start"}},	
"1403": {"status":{"code": 1403, "message": "HAPI error 1403: error in stop"}},	
"1404": {"status":{"code": 1404, "message": "HAPI error 1404: start equal to or after stop"}},	
"1405": {"status":{"code": 1405, "message": "HAPI error 1405: time outside valid range"}},	
"1406": {"status":{"code": 1406, "message": "HAPI error 1406: unknown dataset id"}},	
"1407": {"status":{"code": 1407, "message": "HAPI error 1407: unknown dataset parameter"}},	
"1408": {"status":{"code": 1408, "message": "HAPI error 1408: too much time or data
requested"}},	
"1409": {"status":{"code": 1409, "message": "HAPI error 1409: unsupported output format"}},	
"1410": {"status":{"code": 1410, "message": "HAPI error 1410: unsupported include value"}},	
"1411": {"status":{"code": 1411, "message": "HAPI error 1411: out-of-order or duplicate
parameters"}},	
"1412": {"status":{"code": 1412, "message": "HAPI error 1412: unsupported resolve_references
value"}},	
"1500": {"status":{"code": 1500, "message": "HAPI error 1500: internal server error"}},	
"1501": {"status":{"code": 1501, "message": "HAPI error 1501: upstream request error"}}	
}	

9.3 Examples

The	following	two	examples	illustrate	two	different	ways	to	represent	a	magnetic	field	
dataset.	The	first	lists	a	time	column	and	three	scalar	data	columns,	Bx,	By,	and	Bz	for	the	
Cartesian	components.	

{	
 "HAPI": "3.0",	
 "status": { "code": 1200, "message": "OK"},	
 "startDate": "2016-01-01T00:00:00.000Z",	
 "stopDate": "2016-01-31T24:00:00.000Z",	
 "parameters": [
 {"name" : "timestamp", "type": "isotime", "units": "UTC", "fill": null,
 "length": 24},	
 {"name" : "bx", "type": "double", "units": "nT", "fill": "-1e31"},	
 {"name" : "by", "type": "double", "units": "nT", "fill": "-1e31"},	
 {"name" : "bz", "type": "double", "units": "nT", "fill": "-1e31"}	
]	
}	

	 	

This	example	shows	a	header	for	the	same	conceptual	data	(time	and	three	magnetic	field	
components),	but	with	the	three	components	grouped	into	a	one-dimensional	array	of	size	
3.	

{	
 "HAPI": "3.0",	
 "status": { "code": 1200, "message": "OK"},	
 "startDate": "2016-01-01T00:00:00.000Z",	
 "stopDate": "2016-01-31T24:00:00.000Z",	
 "parameters": [
 { "name" : "timestamp", "type": "isotime", "units": "UTC", , "fill":
null, "length": 24 },	
 { "name" : "b_field", "type": "double", "units": "nT",, "fill": "-
1e31", "size": [3] }	
]	
}	

These	two	different	representations	affect	how	a	subset	of	parameters	could	be	requested	
from	a	server.	The	first	example,	by	listing	Bx,	By,	and	Bz	as	separate	parameters,	allows	
clients	to	request	individual	components:	

http://server/hapi/data?dataset=MY_MAG_DATA&start=2001Z&stop=2010Z¶meters
=Bx	

This	request	would	just	return	a	time	column	(always	included	as	the	first	column)	and	a	
Bx	column.	But	in	the	second	example,	the	components	are	all	inside	a	single	parameter	
named	b_field	and	so	a	request	for	this	parameter	must	always	return	all	the	components	
of	the	parameter.	There	is	no	way	to	request	individual	elements	of	an	array	parameter.	

The	following	example	shows	a	proton	energy	spectrum	and	illustrates	the	use	of	the	‘bins’	
element.	Note	also	that	the	uncertainty	of	the	values	associated	with	the	proton	spectrum	is	
a	separate	variable.	There	is	currently	no	way	in	the	HAPI	spec	to	explicitly	link	a	variable	
to	its	uncertainties.	

{"HAPI": "3.0",	
 "status": { "code": 1200, "message": "OK"},	
 "startDate": "2016-01-01T00:00:00.000Z",	
 "stopDate": "2016-01-31T24:00:00.000Z",	
 "parameters": [
 { "name": "Time",	
 "type": "isotime",	
 "units": "UTC",	
 "fill": null,	
 "length": 24	
 },	
 { "name": "qual_flag",	
 "type": "int",	
 "units": null,	
 "fill": null	
 },	

 { "name": "maglat",	
 "type": "double",	
 "units": "degrees",	
 "fill": null,	
 "description": "magnetic latitude"	
 },	
 { "name": "MLT",	
 "type": "string",	
 "length": 5,	
 "units": "hours:minutes",	
 "fill": "??:??",	
 "description": "magnetic local time in HH:MM"	
 },	
 { "name": "proton_spectrum",	
 "type": "double",	
 "size": [3],	
 "units": "particles/(sec ster cm^2 keV)",	
 "fill": "-1e31",	
 "bins": [{	
 "name": "energy",	
 "units": "keV",	
 "centers": [15, 25, 35],	
 }],	
 { "name": "proton_spectrum_uncerts",	
 "type": "double",	
 "size": [3],	
 "units": "particles/(sec ster cm^2 keV)",	
 "fill": "-1e31",	
 "bins": [{	
 "name": "energy",	
 "units": "keV",	
 "centers": [15, 25, 35],	
 }]	
 }	
	
]	
}	

	 	

This	shows	how	"ranges"	can	specify	the	bins:	

{	
 "HAPI": "3.0",	
 "status": { "code": 1200, "message": "OK"},	
 "startDate": "2016-01-01T00:00:00.000Z",	
 "stopDate": "2016-01-31T24:00:00.000Z",	
 "parameters": [
 {	
 "length": 24,	
 "name": "Time",	
 "type": "isotime",	
 "fill": null,	
 "units": "UTC"	
 },	
 {	
 "bins": [{	
 "ranges": [
 [0, 30],	
 [30, 60],	
 [60, 90],	
 [90, 120],	
 [120, 150],	
 [150, 180]	
],	
 "units": "degrees"	
 }],	
 "fill": "-1e31",	
 "name": "pitchAngleSpectrum",	
 "size": [6],	
 "type": "double",	
 "units": "particles/sec/cm^2/ster/keV"	
 }	
]	
}	

