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ABSTRACT: Direct iodination of benzothiazoles under strong oxidative/acidic conditions leads to a mixture of iodinated 
heteroarenes with 1-2 major components, which are easily separable and which structures depend on the I2 equivalents used. Among 
unexpected but dominant products were identified 4,7-diiodobenzothiazoles with a rare substitution pattern for SEAr reactions of this 
scaffold. These were employed in the synthesis of 4,7-bis(triarylamine-ethynyl)benzothiazoles  a new class of highly efficient quasi-
quadrupolar  fluorophores displaying large two-photon absorption cross-sections (540−1374 GM) in the near-infrared region.

Halogenated, and especially iodinated, heteroaromatics serve 
as key precursors to π-extended systems, including heteroatom-
doped nanographenes1 or heteroarene acetylenes, emerging as 
active components in organic light-emitting diodes (OLED),2 
organic field-effect transistors (OFET),3 as sensitizers in 
photodynamic therapy4 or fluorescence probes in two-photon 
laser scanning microscopy (bioimaging).5 In addition, iodo-
substituted heteroarenes are common products in the 
pharmaceutical industry and allow rapid access to diversified 
compound libraries.6 The great demand for (hetero)aryl iodides 
stems particularly from their frequently higher reactivity in Pd-
catalyzed cross-coupling reactions in comparison with lighter 
(hetero)aryl-halogenated analogues (bromides, chlorides), 
allowing for facile carbon-carbon bond formation and extension 
of π-conjugation.7 

In this regard, 6-iodobenzothiazoles (1-R; Scheme 1)8 were 
found as very useful intermediates, since they pave the way to 
highly efficient two-photon absorbing (TPA) fluorophores,9 
comprising the benzazole unit at periphery of dipolar (D--A, 
Dbtz) or octupolar (triphenylamine-cored, Obtz) push-pull 

structures10 or in the center of quadrupolar (D--A--D) archi-
tecture (Qbtz)11 with potential application in bioimaging due to 
their high TPA cross-sections and emission quantum-yields.  

Scheme 1. 6-Iodobenzothiazoles and products thereof with use-
ful applications 

 



 

The structural motif of 6-iodobenzothiazoles is also a part of 
125I-labeled ß-amyloid imaging tracer TZDM (Scheme 1) – a 
neutral thioflavin T analogue used for the detection of early 
signatures of Alzheimer’s disease by positron emission 
tomography (PET)12 – and can be used in the synthesis of 6-
(arylethynyl)benzothiazoles as promising liquid crystal 
compounds,13 antiparasitic agents14 or protein inhibitors.15  
The hitherto described synthesis of iodinated benzothiazoles 
consists of several steps (usually nitration, reduction of the NO2 
group, diazotization, and subsequent Sandmeyer reaction) 
providing 1-R in 14−46 % yields with respect to the starting 2-
R-benzothiazoles (btz-R; R = H10 or R = Me16). 1-Me can be 
alternatively prepared by 4-step synthesis involving Jacobson’s 
cyclization of N-(4-iodophenyl)thioacetamide, affording 1-Me 
in 38% yield when referenced to the starting aniline.10 Both 
synthetic routes are, however, disadvantaged by the sensitivity 
of key steps (diazotization and oxidative cyclization) to small 
temperature changes, the rate of addition and the concentration 
of reagents, providing lower yields when going to a larger scale, 
and require extensive purification due to side-products. 
While the introduction of iodine to the reactive C-2 position of 
benzothiazole proceeds smoothly via reaction of C-2 metalated 
benzazoles with I2

17 or N-iodosuccinimide (NIS) (see SI), aro-
matic Finkelstein-type nucleophilic substitution of benzothia-
zole-2-chlorides with NaI11 and Sandmeyer-type reactions of 2-
aminobenzothiazoles18 (all with yields exceeding 50%), direct 
electrophilic iodinations19 at the benzene ring of benzazoles are 
challenging to achieve owing to their π-deficient nature.20  

Our initial attempts to introduce iodine to the benzene ring of 
2-methylbenzothiazole (btz-Me) in one-step using equimolar 
amounts or two-fold excess of reactive iodinating agents,21 such 
as I2/AgOTf, I2/SbCl5 and ICl in various solvents failed due to 
none or a very poor conversion of the starting heteroarene or 
because of curious aliphatic chlorination (ICl/DMF) instead of 
iodination, leading to the isolation of 2-(chloromethyl)-
benzothiazole in 85% yield. 
Therefore, we turned to more powerful I+ sources21 such as 
I2/KMnO4, I2/H5IO6 or NIS in concentrated sulfuric acid,22 
whose action on readily accessible but electron-deficient 
benzothiazoles btz-R (R = Me, H, Cl) leads to complex 
mixtures with the composition depending on the equivalents of 
the iodine source. When using 0.5−1.5 mmol of I+ per 1 mmol 
of btz-Me, the main components were identified as 6-iodo-2-
methylbenzothiazole (1-Me) and 4,7-diiodo-2-methyl-
benzothiazole (2-Me, featuring a rare substitution pattern for 
SEAr reaction of this heteroaromatic scaffold),23 accompanied 
by other mono-, di- and triiodinated isomers as minor 
byproducts (Scheme 2). 
Scheme 2. Iodinations of readily accessible benzothiazoles 
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 We found that these complex mixtures can be, however, easily 
separated by pouring the reaction mixture comprising concd. 
H2SO4 into an optimal amount of ice: the precipitate formed 
from a strongly acidic solution contains a mixture of diiodo- and 
triiodo-substituted derivatives, whereas monoiodinated prod-
ucts (with dominant 6-iodinated regioisomer, 1-R) remain in 
the yet acidic filtrate and can be precipitated by further dilution 
of supernatant with ice water (R=Cl) or neutralization (R=Me, 
H) with aqueous NaOH.24 On the contrary, highly regioselective 
C-6 iodination with only traces of diiodinated byproducts was 
observed for benzothiazolinone (btz-OH)25, affording 1-OH in 
85% yield when using NIS in H2SO4.  

The number and positions of iodine atoms on the benzothiazole 
moiety in major and minor products were unambiguously de-
termined by 1H, 13C NMR spectroscopies and comparison of 
experimental and DFT computed 13C NMR shifts (see Tables 
S5-S6 in SI for the library of NMR shifts for various iodinated 
benzothiazoles). These were found to be very sensitive/different 
for various regioisomers, also due to the large spin-orbit 
induced heavy-atom on light-atom (HALA)26 shieldings 
(σSO=30-36 ppm) typical for iodine compounds. The structure 
of 2-Me was also confirmed by X-ray diffraction, which 
revealed notably short halogen−halogen contacts, d(I…I)avrgd = 
3.816 Å, shorter than the sum of the van der Waals radii (3.96 
Å), hinting at non-covalent σ-hole interactions27 in the solid-
state, as evident from the electrostatic potential map (Figure 1). 

 
Figure 1. a) Molecular structure and b) intermolecular I…I interac-
tions in the unit cell of 2-Me (each iodine atom forms a bifurcated 
halogen bond). c) A view of the I…I interaction. Red and blue 
regions indicate negative and positive electrostatic potentials, 
respectively. d) Molecular structure of Qbtz-H (see SI for details). 

Observing 4,7-diiodobenzothiazoles (2-R) among the major 
products for R=Me, H, Cl, we were curious whether these rare 
substrates can be isolated in higher yields and purity – with 
special emphasis on the very low content of triiodinated 
byproduct (3-R), which is difficult to remove from 2-R due to 
its limited solubility and similar Rf values. The optimal balance 
between the yield and purity of 2-Me was achieved using 0.65 
mmol of I2 and 0.52 mmol of KMnO4 per 1 mmol of btz-Me.28 
Employing this iodination protocol and the two-stage workup 
mentioned above, we isolated 2-Me as a precipitate from the 
acidic solution in 28 % yield, while 1-Me was obtained by facile 
purification of the neutralized fraction in 35 % yield. 1-Me can 
be prepared in a higher yield (43 %) using NIS in H2SO4, but 
this reagent is not suitable for the preparation of 2-Me.28 

Application of the I2/KMnO4 procedure optimized for mono- 
and diiodinated products to btz-Cl afforded 2-Cl as a precipitate 
from the strongly acidic solution in 24 % yield, while 1-Cl was 



 

isolated in 42 % yield by substantial dilution of the filtrate 
(supernatant after isolation of 2-Cl) with ice water and 
subsequent crystallization of the obtained precipitate from 
cyclohexane. 

Similarly, we prepared rare 2-H (25% yield) upon direct io-
dination of btz-H with I2/KMnO4/H2SO4 and subsequent 
workup of the reaction mixture with the exact amount of ice. 
Although 6-iodobenzothiazole (1-H) was identified as the ma-
jor product of the reaction, its isolation in pure form turn out to 
be problematic due to the higher content of other monoiodinated 
regioisomers. Therefore we developed an alternative route, 
where 1-H is prepared by a reductive hydrodehalogenation of 
1-Cl with KI/H3PO2 (97% yield), while 1-Cl can be obtained 
easily by direct iodination of btz-Cl or by chlorination of 6-
iodobenzothiazolinone (1-OH) with POCl3 (Scheme 2). This 
procedure affords 1-H from btz-OH in the overall 72% yield. 

Furthermore, iodination experiments in H2SO4 can be easily 
adjusted to provide 4,5,6,7-tetraiodobenzothiazoles (4-R, 
R=Me, H, Cl), as potential building blocks for S,N-doped 
nanographenes, with I2/KMnO4 system providing the highest 
yields (75 % for 4-Me). 

4,7-Diiodobenzothiazoles, 2-R (easily separable from concom-
itant 1-R) represent an expedient and more reactive alternative 
to 4,7-dibromo-2-methylbenzothiazole,29 which serves as an in-
termediate in the synthesis of dyes with potential application in 
dye-sensitized solar cells30 and metal-ion sensing,31 but its prep-
aration requires a 5-step synthetic route. Having a rapid and fac-
ile one-step access to valuable 2-R in reasonable yields, we 
wondered whether these substrates can be employed in the con-
struction of a new class of D--A--D benzothiazole-cored 
TPA fluorophores with reactive C-2 position available for mod-
ulation of linear and nonlinear optical properties (Scheme 3). 
This was not possible in the previously characterized quadrupo-
lar dyes with the C-2 position occupied by one of the two elec-
tron-donating branches (cf. Qbtz-2,6 in Scheme 1).  

Computer-aided study of 4,7-bis(triphenylamine-ethynyl)-2-R-
benzothiazoles (Qbtz-R) by means of the quadratic response 
time-dependent DFT method32 at the CAM-B3LYP/6-
311++G** level revealed large TPA cross-sections (400−1800 
GM) for this series, which are comparable or higher than that of 
Qbtz-2,6 with C-2/C-6 disubstitution (685 GM), but with a 
possibility to achieve TPA enhancement and red-shift of 
absorption/emission peaks upon introduction of auxiliary 
electron-withdrawing substituents to the C-2 position and 
electron-donating substituents to the periphery of 
triphenylamine units (Scheme 3 and Table S8 in SI). On the 
contrary, derivatives with three or four triarylamine arms linked 
to the benzothiazole core (products of coupling reactions with 
3-R and 4-R) are computed to display smaller TPA activities 
than Qbtz-R due to lower transition dipole moments between 
the excited states (cf. Table S8 in SI). 

Encouraged by this finding, we prepared a set of 4,7-
bis(triphenylamine-ethynyl)benzothiazoles with D-π-A-π-D 
setup by Sonogashira-type cross-coupling of 2-R with 4-(N,N-
diphenylamino)phenylacetylene (6a) and its congener end-
capped with two methoxy groups (6b). Since the C-2 position 
in 2-Cl is prone to nucleophilic substitutions, we employed this 
derivative in the synthesis of 2-NH2, 2-OH and 2-CN, while 2-
CHO was prepared by formylation of the heteroaryllithium salt 
derived from 2-H (Scheme 3). 

Structures of all target chromophores Qbtz-R were confirmed 
spectroscopically, while Qbtz-H was also characterized by 
single crystal X-ray diffraction (Figure 1d). 

Scheme 3. Transformations of 2-R derivatives and synthesis of 
target Qbtz-R fluorophores 
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Qbtz-R dyes were subjected to measurements of UV-vis 
absorption and emission spectra, as well as to TPA cross-
sections, δTPA, via a two-photon excited fluorescence (TPEF) 
method with femtosecond laser excitation at wavelengths of 
730−850 nm (Figure 2). One-photon and two-photon spectral 
characteristics are summarized in Table 1. 

Table 1. Photophysical Properties of Quasi-Quadrupolar 
4,7-Bis(Triarylamine-Ethynyl)Benzothiazoles in Toluene 

dye λabs 
[nm] 

εabs 
[M-1cm-1] 

λf 
[nm] 

f 
 

λTPA 
[nm] 

TPA f 
[GM] 

TPA 
[GM] 

Qbtz-2,6 405 61 500 450 0.83 740 542 653 

Qbtz-NH2 388 68 300 428 0.76 730 415 547 

Qbtz-OH 399 52 400 437 0.95 740 513 540 

Qbtz-Me 399 62 500 439 0.88 740 563 641 

Qbtz-H 401 60 100 444 0.89 740 702 788 

Qbtz-CHO 444 32 900 575 0.27 820 229 848 

Qbtz-CN 442 41 300 516 0.68 800 632 930 

Qbtz’-CN 458 44 500 552 0.47 820 646 1374 

Following the trends computed by quantum-chemical 
calculations (Tables S8, S9 and Figure S18 in SI), the 
absorption spectra of Qbtz-R dyes feature an intense 
intramolecular charge-transfer (ICT) band in the visible region 
with maxima λabs in the range of 388−458 nm, which are 
generally red-shifted for derivatives with stronger electron 
acceptors. The fluorescence is observed in the blue spectral 
region for derivatives with electron-donating (R=NH2, OH, Me) 
and neutral (R=H) substituents, while electron-withdrawing 
groups (EWGs) cause a substantial bathochromic shift of 
emission into green (Qbtz-CN), yellow (Qbtz’-CN) and orange 
(Qbtz-CHO) region. 



 

 

Figure 2. (a,c) UV−vis absorption (c=1×10-5 M) and (b,d) emission 
of Qbtz-R dyes in toluene; e) TPA action cross sections δTPAꞏΦf 
and f) TPA cross-sections δTPA of Qbtz-R dyes in toluene. 

Most importantly, Qbtz-R chromophores exhibit high TPA 
cross-sections (540−1374 GM) – roughly an order of magnitude 
higher than most of the conventional one-photon fluorophores, 
with TPEF maxima λTPA positioned at 740−820 nm. These 
positions are less than twice that of the single-photon absorption 
λabs (S0→S1), implying a deeper (S0→S2 or S0→S3) transition as 
expected for quadrupolar dyes due to parity selection rules 
(Table S8 and Figure S6 in SI). While already Qbtz-H exhibits 
somewhat higher activity than regioisomeric Qbtz-2,6, the 
introduction of small EWG substituents to the C-2 position of 
Qbtz-R leads to further TPA enhancement and red-shift of TPA 
maxima beyond 800 nm, both effects being reinforced upon 
introduction of pendant alkoxy groups to triphenylamine 
moieties. These changes, together with only a moderate drop of 
emission quantum yield upon ICT enhancement, are beneficial 
for bioimaging applications, making Qbtz-CN platform 
particularly attractive for further functionalizations and 
preparation of diagnostic agents for TPEF microscopy. 

To conclude, we developed simple synthetic procedures 
allowing rapid access to known (1-R) as well as to hitherto 
unknown (2-R, 4-R) valuable iodo-substituted benzothiazoles 
as key precursors for a variety of functional materials and active 
pharmaceutical ingredients. The one-pot iodinations using 
inexpensive and readily available reagents are also applicable 
to multigram-scale synthesis and do not suffer from the 
drawbacks appearing at diazotization of benzothiazolamines or 
oxidative cyclization of iodinated N-arylthioacetamides. 
Readily accessible 4,7-diiodobenzothiazoles (2-R) were 
employed in the synthesis of a new class of highly emissive 
quadrupolar benzothiazole-derived fluorophores Qbtz-R with 
tunable heteroaromatic core and exceptionally large TPA cross-
sections (930−1374 GM) in the near-IR region (800−820 nm) 
for Qbtz-CN derivatives. Qbtz-R dyes with weak EWG 
substituents in the C-2 position provide thus a low-cost and 
more efficient alternative to regioisomeric quadrupolar dyes 

with donor branches attached to C-2 and C-6 positions of the 
benzothiazole scaffold. In addition, Qbtz-R represents a useful 
platform, which modular structure and reactivity of the C-2 
position allow further study of the influence of various 
bioorthogonal functional groups on linear/nonlinear optical 
properties in an endeavor to construct highly efficient TPA dyes 
for in vivo bioimaging. 
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