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Rodrı́guez-Rivas2, and Francisco Vega Reyes1,*

1Departamento de Fı́sica and Instituto de Computación Cientı́fica Avanzada (ICCAEx), Universidad de
Extremadura, 06071 Badajoz, Spain
2Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013, Sevilla, Spain
*fvega@eaphysics.xyz

ABSTRACT

Supplementary Material file with theory and additional data.

1 Theoretical expressions
We denote the single particle distribution function, at a given time t, as f (r,v,w; t), where r is the particle position, v is the
particle velocity and w the particle spin (angular velocity).

The marginal distribution functions, used in Figure 1 are defined as

fr,w(v) = (1/n(r))
∫

dr
∫

dv
∫

dw f (r,v,w)δ (|v− v|)

fr,v(w) = (1/n(r))
∫

dr
∫

dv
∫

dw f (r,v,w)δ (wz−w), (1)

where n(r) is the particle density field. The relevant fields are defined as

n(r) =
∫

dv
∫

dw f (r,v,w), u(r) = (1/n(r))
∫

dv
∫

dw f (r,v,w)v, ΩΩΩ(r) = (1/n(r))
∫

dv
∫

dw f (r,v,w)w (2)

Tt(r) =
m

2n(r)

∫
dv
∫

dw f (r,v,w)(v−u(r))2, Tr(r) =
I

2n(r)

∫
dv
∫

dw f (r,v,w)w2, (3)

with w≡ |w|= |wz| and m, I are particle mass and moment of inertia, respectively. We also define the spin thermal fluctuations

T ∗r (r) =
I

2n(r)

∫
dv
∫

dw f (r,v,w)(w−ΩΩΩ)2, (4)

The scale of thermal fluctuations for translations (Tt) and rotations (T ∗r ) in our system will in general be different. For
convenience, we define V = v−u(r), W = w−ΩΩΩ(((rrr))). Let us also define the bivariate Maxellian

f2M(r,V,W ) = (n(r)mI/(4π
2Tt(r)T ∗r (r)))e

− V 2
2Tt m e−

W2
2T∗r I ≡ (n/(4π

2Tt(r)T ∗r (r)))e
−V ∗2

e−W ∗2
. (5)

Henceforth, we use the notation: A∗ j = A j/(2Tt/m) j/2 ≡ A j/〈V 2〉 j/2, B∗ j = B/(2T ∗r /I) ≡ B j/〈W 2〉 j/2 for j-th powers of
translational velocities and angular velocities, respectively. We can write the distribution function as a polynomial expansion
around f2M(r,V,W ).

f (r,v,w) =
n(r)
π2

(
mI

4Tt(r)T ∗r (r)

)
e−V ∗2

e−W ∗2 ∞

∑
j,k,`=0

a(`)jk L(`+`0)
j (V ∗2)L

(`+`′0)
k (W ∗2)(V ∗W ∗)2`P̀ (cosα) = (6)

f2M(r,V,W )
∞

∑
j,k,`=0

a(`)jk L(`)
j (V ∗2)L(`)

k (W ∗2)(V ∗2W ∗2)`P̀ (cosα), (7)



where `0, `
′
0 are constants to be chosen later, and cosα ≡ (v×w) · êϕ/|v×w|. Symbols L(`)

j (x), with ` being an integer, stand
for the associated Laguerre polynomials of order ( j, `), and with x ∈ [0,∞]. They are also commonly denoted, in the context
of kinetic theory, as Sonine polynomials1, 2. Also, P̀ are the Legendre polynomials. The product of Associated Laguerre
and Legendre polynomials both configure the set of orthogonal polynomials L(`)

j (V ∗2L(`)
k (W ∗2)(V ∗W ∗)2p`P̀ (cosα) in (7).

Specifically, from the orthogonality conditions of the Associated Laguerre and Legendre follows trivially

∫
∞

0
dv
∫

∞

0
dw
∫ +1

−1
d(cosα)

(
L(`)

j (V ∗2)L(`)
k (W ∗2)P̀ (cosα)

)(
L(`′)

j′ (V ∗2)L(`′)
k′ (W ∗2)P̀ ′(cosα)

)
e−V ∗2

e−W ∗2
(V ∗2W ∗2)`

=
Γ( j+ `+1)

j!
Γ(k+ `+1)

k!
2

2`+1
δ j, j′δk,k′δ`,`′ , (8)

and therefore

∫
dvdwL(`0)

1 (V ∗2)L
(`′0)
0 (W ∗2)P0(cosα) f (r,v,w) =

∫
dvdw(1+`0−V ∗2) f (r,v,w) =

(
1+ `0−

〈V 2〉
2Tt(r)n(r)/m

)
n(r), (9)

where we have taken into account (3) and that V ∗2 ≡V 2/(2Tt/m).
On the other hand, from the polynomial expansion (7)

∫
dvdwL(`0)

1 (V ∗2)L
(`′0)
0 (W ∗2)P0(cosα) f (r,v,w) =

n(r)mI
4π2Tt(r)T ∗r (r)

×

∞

∑
j,k,`=0

a(`)jk

∫
dvdwL(`′)

1 (V ∗2))L(`0)
j (V ∗2)L(`′)

0 (W ∗2)L
(`′0)
k (W ∗2)e−V ∗2

e−W ∗2
(V ∗W ∗)2`P0(cosα)P̀ (cosα) =

n(r)
∞

∑
j,k,`=0

a(`)jk
Γ(1+ `0 +1)

1!
Γ(0+ `′0 +1)

0!
2

2`+1
δ j, j′δk,k′δ`,`′ = Γ(`0 +2)Γ(`′0 +1)n(r)a(`)10 , (10)

and, therefore, combining (9), (10)

Γ(`0 +2)Γ(`′0 +1)a(`)10 = 1+ `0−
〈V 2〉

2n(r)Tt(r)/m
. (11)

The equation above makes evident the convenient choice `0, `
′
0 = 0, for which (11) yields

a(`)10 = 1− 〈V
2〉

2Tt/m
= 0, (12)

since the definition of average translational kinetic energy Tt in (3) implies that (m/2)〈V 2〉= Tt . Moreover, the choice `0, `
′
0 = 0

implies that all a(`)j,k = 0 except the zeroth order contribution a(0)00 , if the particle distribution function is the 2D Maxwellian
(i.e., f = f2M) thus these constants (usually called cumulants or Sonine coefficients in the context of kinetic theory) measure
deviations from the Maxwellian (i.e., from the thermodynamic equilibrium state).

For this reason, we write the distribution function as

f (r,v,w) = f2M(r,V,W )
∞

∑
j,k,`=0

a(`)jk L(`)
j (V ∗2)L(`)

k (W ∗2)(V ∗W ∗)2`P̀ (cosα). (13)

Notice that for `0, `
′
0 = 0 the first three associated Laguerre polynomials are L`

0(x) = 1, L(`)
1 (x) = 1− x, L(`)

2 (x) = x2/2−
2x + 1. On the other hand, the first two Legendre polynomials are P0(y) = 1, P1(y) = y. By replacing x → V ∗2,W ∗2

and y → cosα we repeating the procedure in (10), (11) for the polynomial combinations L(0)
2 (V ∗2)L(0)

0 (W ∗2)P0(cosα),
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L(0)
0 (V ∗2)L(0)

2 (W ∗2)P0(cosα), L(0)
1 (V ∗2)L(0)

1 (W ∗2)P0(cosα) and L(1)
0 (V ∗2)L(1)

0 (W ∗2)P1(cosα) we obtain, respectively, the
first four cumulants

a(0)20 (r) =
1
2
〈V 4〉
〈V 2〉2

−1, a(0)02 (r) =
1
2
〈W 4〉
〈W 2〉2

−1, a(0)11 (r) =
1
2

(
〈V 2W 2〉
〈V 2〉〈W 2〉

−1
)
, a(1)00 (r) =

3
2
〈(v×w) · êϕ〉√
〈V 2〉〈W 2〉

. (14)

Notice that the expression for that would result from (13) actually is a(1)00 = 3
2

〈
V ∗2W ∗2 (v×w)·êφ

|v×w|

〉
= 3

2

〈
V ∗W ∗(v∗×w∗) · êφ

〉
.

However, we choose a rescaled version of a(1)00 without the factor V ∗W ∗, so that represents a closer analog of the bend coefficient
in liquid crystals3.

2 Additional Information
In this work we have recorded a total 120 movies covering a wide range of densities, going from φ = 0.03 to φ = 0.70. We
could not represent all our results in the main text; therefore, here we include additional figures, complementary movies and
experimental data.

• Additional figures: The first supplementary figure is analog to Figure 1 in the main text, covering the φ = 0.55 density
case, in this figure one can see that the bimodal behavior of the spin distribution function is stronger than in the lower
density case (shown in the main text). Also, from panels c-j we now see that particle cover the entire area of the system.
The second supplementary figure includes data for the cumulants defined in Eq. 2 (main text) that are not covered by
Figure 4 in the article.

• Supplementary movies: We included two additional videos in order to help the reader understand the most relevant
results. In supplementary video 1, we show three configurations with constant density but an increasing thermalization
level (Tt = {0.63, 1.16, 2.65} mp(σ/s)2), this movie illustrate the chirality reversal caused by interaction with the
system boundaries, we display the trajectories of three representative particles for each case. Supplementary video 2 in
turn displays the temporal evolution of the vorticity field for a sample experiment, there we show a situation of complex
chirality with several vortexes of opposite directions, these vortexes evolve with time.

• Experimental data: The experimental data used for generating all figures are included in a repository4. These files
contain the full trajectories of all particles in a given experiment and the angular velocity of the disks. Additional data
and the processing code is also available upon request to the authors.
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Additional Figure 1. a Traslational particle velocity distribution (v), fr,w(v) for a system with φ = 0.55; b particle spin
distribution (w), fr,v(w). c-f Reduced particle speed fluctuations U∗(x,y)≡ vth(x,y)/V0. g-j Reduced average spin
Ω∗(x,y)≡ 〈w(x,y)〉/w0. In both U∗(x,y) and Ω∗(x,y) color maps, brighter is higher and darker is lower; and black stands for
U∗(x,y),Ω∗(x,y) = 0 and white for U∗(x,y),Ω∗(x,y) = 1. Tt is in units of mpσ2/s2. The system boundary is marked with a
thick yellow line.
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Additional Figure 2. In this figure we plot the cumulants a(0)20 (blue, Y axis at the left), a(0)02 (red, Y axis at the right in
logarithmic scale) for the spin and velocity distributions. Each point represents the value for a single experiment, we show that,
besides the systems being clearly not Maxwellian (values far from zero), there is no clear trend in their value as we change the
thermalization level.
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