
Data Freshness in Mixed-Memory
Intermittently-Powered Systems

James Scott Broadhead and Przemysław Pawełczak
Embedded and Networked Systems, EEMCS, Delft University of Technology, The Netherlands

Email: {J.S.Broadhead, P.Pawelczak}@tudelft.nl

Abstract—Age of Information (AoI) is a key metric to un-
derstand data freshness in Internet of Things (IoT) devices. In
this paper we analyse an intermittently-powered IoT sensor—
with mixed-memory (volatile and non-volatile) architecture—that
uses a Time-Dependent Checkpointing (TDC) scheme. We derive
the average Peak Age of Information (PAoI) and average AoI
of the system, and use these metrics to understand which device
parameters most significantly influence performance. We go on to
consider how the average PAoI of a mixed-memory system com-
pares with entirely volatile or entirely non-volatile architecture,
and also introduce an alternative TDC strategy to improve system
resilience in unpredictable environmental conditions.

I. INTRODUCTION

With an increasing paradigm shift towards battery-free en-
ergy harvesting-based design in low-powered embedded sys-
tems, new methods of operation have been developed to
address the inherent intermittency of available harvested en-
ergy. Current intermittent computing techniques [1]–[5] seek
to minimise the time and energy impact of power failure
by strategically checkpointing—effectively saving—the system
state from Volatile Memory (VM) to Non-Volatile Memory
(NVM) in mixed-memory systems [6] (such as the popular
Texas Instruments MSP430 micro-controller [1, Section 3.1] [7,
Section 2.1.1]). Whilst much work has been done to develop
new checkpointing strategies, there is still opportunity to better
describe these systems mathematically [7, Section 3.2.2], in
particular from a data freshness perspective.

A relevant metric to measure data freshness is the Age
of Information (AoI) [8]–[14], which will form the basis of
our analysis. We seek to model an Intermittently-Powered
Device (IPD), implementing Time-Dependent Checkpointing
(TDC) [15, Fig. 3], [16] where the VM system state is saved
to NVM after a certain number of clock ticks have passed,
and observe how fundamental system parameters (failure rate,
checkpointing overhead, etc.) affect the freshness of locally
sensed data. We also look to compare the mixed-memory
architecture of our IPD with single-type VM and single-type
NVM memory structures. We go on to introduce an alternative
TDC scheme, Split-Frequency Checkpointing (SFC), and con-
sider how this can improve system resilience in unpredictable
environmental conditions.

Our work builds on [17] by accounting for the mixed-
memory nature of many battery-free devices and the check-
pointing schemes used to move data between memory types.
To the best of our knowledge, this is the first evaluation and
comparison of AoI in IPDs with mixed-memory architecture.

Sense
Processing

Volatile Memory

Checkpointed Device State
Non-Volatile Memory

Transmit

Checkpoint Restoration

Figure 1. System model for an IPD that checkpoints its internal system
state to protect from data corruption. The device performs sensing, on-board
processing (that takes Pi clock ticks to complete), and transmission. Sensing
and transmission occur instantaneously. Data stored in VM is checkpointed to
NVM taking Di clock ticks, and system state restoration from NVM to VM
takes Vi clock ticks. The system suffers frequent power failures.

The efficiency of TDC has been considered in other areas
of research, notably for distributed stream processing [18]
(which looked to minimise system utilization) and also in
High Performance Computing (HPC) applications [19] (which
used wall-clock length as the objective). However, this form of
checkpointing has not been analysed for transiently-operating
embedded devices, or with system freshness as the core tenet
of consideration—which forms the premise of our work.

In this paper we identify the average Peak Age of Information
(PAoI) and average AoI for an IPD that uses TDC. These
results allow us to better understand the role of mixed-memory
architecture in IPDs and how the inter-checkpointing time
can be best adjusted to minimise AoI. We also show that
mixed-memory architecture can improve the system freshness
of an IPD compared with single-type VM, however it cannot
surpass entirely NVM architecture. We further show that SFC
can improve system performance in unpredictable environmen-
tal conditions compared to inappropriately assigned single-
frequency checkpoint intervals.

II. SYSTEM MODEL

We consider a communication device, presented in Fig. 1,
which is powered by an intermittent energy source (sun, vibra-
tions, temperature gradient, etc.) and consequently suffers fre-
quent power failure. The device has mixed-memory architecture
(VM and NVM) and checkpoints the system state (processor
registers, hardware registers, main memory, etc.) from VM to
NVM after a fixed number of clock ticks, where clock ticks
act as a base unit for the system’s on-board clock. The sensed
data is then processed and transmitted, e.g. wirelessly through
a low-powered LED [7], to a central collecting unit.

Packet Generation/Sensing. Packets containing data from
an on-board sensor are produced as required in a generate-at-



will type policy—where sensing only occurs when processing
of the preceding packet is complete—as considered in [17]. We
assume that sensing is instantaneous and that this data is then
immediately processed, from which a packet is created. Packets
are not dropped due to power failure, since the last computation
state can always be restored from NVM to VM.

System Operation. Data processing occurs in the volatile
memory of Fig. 1 and encompasses a number of possible steps;
such as peripheral control, filtering, and packet framing. To
reduce unnecessary system complexity we have considered all
processing as one stage that takes Pi clock ticks to complete.
The time between data sensing and packet transmission, the
completion time, is Si clock ticks and the time between two
sequential packet transmissions, the inter-completion time, is Yi
clock ticks, where the idle time between a packet transmission
and the next generated packet is Ii clock ticks.

System Failure. IPDs suffer frequent power failures due to a
lack of available harvested energy. We do not explicitly consider
energy as part of our system model, as in [9, Section V], [17],
[20], rather assuming that the depleted energy will cause a
number of random power failures. An amount of processing
time Li,j clock ticks, where the i represents the overall cycle
number and j the fail number within the cycle, will be wasted
for each fail (since the updated system state including this
processing has not been checkpointed from VM to NVM before
failure). Our system will also be inactive for a period of Ri,j
clock ticks after failure. During power failure no new data is
generated since the device cannot perform sensing. Once power
is restored the system takes Vi,j clock ticks to restore the last
checkpointed system state from NVM to VM. For simplicity
of analysis we assume that Vi,1 = Vi,j = V for all j. In practice
this term would likely be fixed by design.

Checkpointing Strategy. The system will save the current
device state stored in VM to NVM with a pre-determined
regularity. This inter-checkpoint time is given by Ki,n clock
ticks where n is the checkpoint number within cycle i. The
action of checkpointing will also take a fixed amount of Di,n

clock ticks to complete. Here, for simplicity of analysis, we
assume that Di,1 =Di,n =D for all n. This is consistent with,
for example, [15, Fig. 3]. We also assume that Pi is a multiple
of the inter-checkpointing time.

Transmission. Our model considers the transmissions of
packets to be instantaneous and occurring after a final check-
point.

III. AGE OF INFORMATION BACKGROUND

Let us now re-introduce several previously derived results
that form the basis of our analysis. Canonically we define AoI
as [17, Eq. (1)] [9, Section II]

∆(t) = t − u(t), (1)

where ∆(t) is the AoI of data sensed by the device, t is the
current time, and u(t) is the time stamp of the last completed
packet. The AoI time evolution for our proposed system model
is depicted in Fig. 2. Using this graphical representation we

Time

AoI

⨉ ● ⨉ ● ⨉ ●

QA,i QA,i+1

Si−1 Ii Si Ii+1

Yi Yi+1

Si+1

⨉ ☆☀ ‡ △▲ ☆ ● ⨉

Ki,n

D

Li,j

Si−1

Ri,j V

Ki,n+1

D

Ii

Figure 2. AoI evolution for an IPD that checkpoints its state with a fixed
regularity. Symbol notation: ⨉ denotes the start of sensing, ‡ denotes device
failure, ● denotes the end of the final checkpoint and instantaneous packet
transmission, ☆ denotes the start of checkpointing from VM to NVM, ☀
denotes the end of checkpointing from VM to NVM, △ denotes start of
restoration from NVM to VM, and ▲ denotes the end of restoration from
NVM to VM. All variables are defined in Section II.

can calculate the expectation of (1) as follows. Let us denote
a trapezium QA,i, whose area is given by

QA,i =
1

2
((Si−1 + Yi)

2
− S2

i ) . (2)

This is the isosceles triangle created by Si−1 + Yi minus the
smaller isosceles triangle with base Si. The area QA,i+1 is
highlighted in Fig. 2 as an example. Given that Si−1 and Yi
are independent and Si−1 and Si are identically distributed, as
considered in [17, Eq. (5)], the expectation of (2) becomes

E[QA,i] =
1

2
E[Y 2

i ] +E[Si−1]E[Yi]. (3)

As argued in [17, Eq. (6)], and in concordance with the
geometry presented in Fig. 2, the average AoI is

E[∆] = λE[QA,i], (4)

where λ is the interarrival time of packets to the device. Since
our system model considers packet generation, rather than
packet arrival, the distribution of λ will be predicated on the
distribution of time between sensing (which is equivalent to
the distribution of time between transmission) hence λ = 1

E[Y ]
.

Here we introduce Y and S for the inter-completion time
and completion time, respectively, when taking their expected
values, E[Y ] and E[S], as time tends to infinity. This is
possible due to the ergodicity of the system. As such (4)
simplifies to [17, Eq. (6)]

E[∆] =
E[Y 2]

2E[Y ]
+E[S]. (5)

The average PAoI, a more manageable measure of data fresh-
ness compared to average AoI, is given by [17, Eq. (7)] [9, Eq.
(8)]

E[∆Peak
] = E[Y ] +E[S]. (6)



IV. COMPLETION AND INTER-COMPLETION TIME

Given (5) and (6) it is imperative that we find expressions for
Yi and Si from which we can calculate their expected values,
E[Y ] and E[S], over many cycles. From Fig. 2 we see that
the inter-completion time for cycle i is

Yi = Ii

®
Idle time

+

f

∑
j=1

(Li,j +Ri,j + V )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Events associated with failure

+
h

∑
n=1

Ki,n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Processing ≜ Pi

+ Dh,

±
Checkpointing

(7)

where f and h are the number of system fails and the number of
successfully performed checkpoints during the period of time
Yi, respectively. The time between data being sensed and a
packet being transmitted, the completion time, for cycle i is

Si = Yi − Ii. (8)

V. EXPECTATION OF COMPLETION AND
INTER-COMPLETION TIME

To identify the expected values of AoI in (5) and (6),
and hence understand the freshness of data produced by the
modelled IPD, we must first find the expected values of (7)
and (8) over many cycles. We assume that all variables in (7)
and (8) have well-defined means and known variance. Due to
the assumed ergodicity of the system we can also simplify
notation when taking the expected values of variables (for
example, the expectation of Ii is E[I] as t tends to infinity).
By following the approach of [17, Eq. (10)], we use Wald’s
identity [21, Proposition 1.8.1] to find that the expected values
of inter-completion time and completion time are

E[Y ] = E[I] +E[f] (E[L] +E[R] + V )

+E[h]E[K] +DE[h], (9)
E[S] = E[Y ] −E[I], (10)

respectively. By definition, the amount of wasted processing per
failure will take a value Li,j ∈ [1 . . Ki,θ+D] clock ticks where
Li,j ∈ N+ and θ is the checkpoint number of the processing
cycle started but interrupted in Li,j . For instance in Fig. 2,
θ = n + 1 since the Ki,n+1 cycle was initially started in Li,j ,
however could not finish before failure. We also assume that all
possible values of Li,j are equally likely. Therefore, based on
these assumptions, the expectation of wasted processing time
per failure is

E[L] =
E[K] +D + 1

2
. (11)

Given the definition of processing time Pi, given in the third
summand of (7), its expected value will be

E[P ] = E[h]E[K]. (12)

Substituting (11) and (12) into (9) yields

E[Y ] = E[f] (C1 +
E[P ]

2E[h]
) +C2 +DE[h], (13)

where C1 = E[R]+V + D+1
2

, and C2 = E[I]+E[P ] are defined
for compactness of presentation.

VI. EXPECTATION OF AVERAGE PAOI

Given (6) and expressions (10) and (13) the average PAoI
for our mixed-memory IPD is therefore

E[∆Peak
]MM = 2E[f] (C1 +

E[P ]

2E[h]
) +C2

+E[P ] + 2DE[h]. (14)

We can see from this expression the clear conflict between
over and under checkpointing. If failure occurs, which is a
core phenomenon associated with an IPD, then an increase
in the checkpointing frequency (meaning an increase in E[h])
increases E[∆Peak]MM through the final 2DE[h] term—i.e. the
overhead associated with checkpointing. In contrast, an increase
in E[h] also reduces the E[P ]

2E[h] term, since more frequent
checkpointing reduces the expected wasted processing time per
power failure. From (14) we also observe that the constant C1

(and hence the constants V and D) increase the average PAoI,
so these should be minimised by systems designers. Further,
increases in E[I] and E[R] will also increase E[∆Peak]MM,
however we consider these to be outside the control of the
designer.

Minimising the Average PAoI. Due to the conflict of over
and under checkpointing we can find a value of E[h] to
minimise the average PAoI as follows. Taking the derivative
of (14), with respect to E[h] we have

dE[∆Peak]MM

dE[h]
= 2D −

E[f]E[P ]

E[h]2
. (15)

Then, letting (15) equal to zero and solving for E[h], we find
that (14) is minimised when

E[h] =

√
E[f]E[P ]

2D
. (16)

This expression is comparable to [19, Eq. (7)] and shows that
checkpoint optimisation is not inherently changed by the unique
characteristics of the sensor device. Expression (16) shows that
the optimum number of checkpoints in a cycle is based on
three fundamental parameters of the system; E[f], E[P ], and
E[D]. This is consistent with intuition since a decrease in
the expected number of failures would mean fewer required
checkpoints, an increase in processing time would necessitate
more checkpoints, and an increase in the checkpoint overhead
would reduce its desirability.

VII. EXPECTATION OF AVERAGE AOI

From (5) we can find an expression for the average AoI of
our system by substituting in (13) and (10), and by finding
E[Y 2]. Since we have assumed that the variance of each term
in Y is known, we are able to use the definition of variance to
find E[Y 2] from

E[Y 2
] = Var(Y ) +E[Y ]

2. (17)



By substituting (17) into (5) the expression for the average AoI
becomes

E[∆] =
Var(Y )

2E[Y ]
+

3E[Y ]

2
−E[I]. (18)

As such, by substitution, we find that the average AoI of the
system is

E[∆]MM =
Var(Y )

2C3 +
C4

E[h] + 2DE[h]
−E[I]

+
3

2
(C3 +

C4

2E[h]
+DE[h]) , (19)

where C3 = E[f]C1 +C2 and C4 = E[f]E[P ] are defined for
compactness of presentation. From (19) we see that the average
AoI, as with the average PAoI, is dependent on E[f] and E[h].
Whilst minimisation of this expression with respect to E[h] is
not presented here, a tractable solution can be found by setting
the derivative of (19) to zero and solving for E[h].

VIII. PEAK AGE OF INFORMATION: MIXED-MEMORY
VERSUS SINGLE-MEMORY ARCHITECTURE

Having identified an expression for the average PAoI of
our model in (14) we proceed to examine to what extent
checkpointing in mixed-memory architecture has affected the
performance of our IPD compared to a single-memory device.
Whilst in practice, typical commercially available devices are
mixed-memory [1, Section 1], we can consider two possible
alternatives, a single-memory IPD entirely comprised of NVM
[23], [24], or a single-memory IPD entirely comprised of VM.
We assume that both types of memory are able to perform
processing at the same rate.

Lemma 1. An entirely NVM IPD will have a lower or equal
average PAoI than a checkpointing mixed-memory IPD.

Proof. Using the same formulation as (7), the inter-completion
time for such an NVM IPD would be

Yi = Ii +
f

∑
j=1

Ri,j + Pi, (20)

since the device does not checkpoint and the only impact of
failure is the system off-time. The completion time would take
the same form as (8). Following the same steps as Sections V
and VI, the average PAoI of the device would be

E[∆Peak
]NVM = E[I] + 2E[f]E[R] + 2E[P ]. (21)

We can compare the above expression with the average PAoI
of our system by finding the difference between (14) and (21),
i.e.

E[∆Peak
]MM −E[∆Peak

]NVM = 2DE[h]

+E[f] (2V +D + 1 +
E[P ]

E[h]
) , (22)

which shows that

E[∆Peak
]NVM ≤ E[∆Peak

]MM∀E[f],E[h], (23)

and hence a system comprised of entirely NVM would perform
better than or equal to the mixed-memory system.

Lemma 2. Under certain environmental conditions a mixed-
memory IPD will have a lower average PAoI than a (single-
memory) VM IPD.

Proof. A single-memory device comprised of entirely VM,
following the same formulation as (7), would have an inter-
completion time of

Yi = Ii +
f

∑
j=1

(Ri,j + Γi,j + Ii,j) + Pi, (24)

where Γi,j is the amount of wasted processing that occurs due
to failure j in cycle i and the system does not checkpoint or
restore (rather it re-senses after failure). Ii,j is the idle time
before the system re-senses after failure j. The expected value
of Γi,j will be E[Γ] =

E[P ]+1
2

since the system could waste
up to Pi clock ticks of processing per fail and each amount of
wasted processing time is equally likely. The completion time
would take the same form as (8). Following the same steps as
Sections V and VI, the average PAoI of a single VM IPD is

E[∆Peak
]VM = 2E[f] (E[R] +

E[P ] + 1

2
+E[I])

+E[I] + 2E[P ]. (25)

The above expression can be greater than or smaller than (14)
depending on the selected system parameters, hence

∃E[f],E[h] ∋ E[∆Peak
]VM > E[∆Peak

]MM, (26)

and thus there is a set of environments in which checkpointing
in mixed-memory architecture is more efficient than not check-
pointing in single-memory VM architecture. This improvement
is most evident when the mixed-memory IPD has a low
checkpointing overhead and high failure rate.

IX. IMPROVING SYSTEM RESILIENCE IN VARIABLE
ENVIRONMENTAL CONDITIONS

Thus far we have considered a checkpointing system that can
be optimised based on a known expected number of failures, yet
in reality IPDs are often placed in environments with variable
and unpredictable failure rates—making it difficult to pre-
determine an optimum rate of checkpointing. We now propose
an alternative method of TDC for mixed-memory devices
to improve system resilience—Split-Frequency Checkpointing
(SFC)—in which the inter-checkpointing time varies between
predefined intervals α and β. Here we once again use the
framework devised in Sections II and III. We now assume
that the duration of processing between checkpoints, previously
Ki,n, varies between two fixed amounts, Ki,α and Ki,β . Then,
the processing time Pi = ∑hαα=1Ki,α +∑

hβ
β=1Ki,β . Additionally,

the expected wasted processing per fail would be E[L] =

pαE[Lα] + pβ E[Lβ] where pα and pβ are the probabilities
of failure during an α and β checkpoint, respectively, such that
pα =

E[Kα]
E[Kα]+E[Kβ] and pβ =

E[Kβ]
E[Kα]+E[Kβ] . E[Lα] and E[Lβ]

are the expected wasted processing due to a failure in an α
and β checkpoint, respectively, where E[Lα] =

E[Kα]+D+1
2

and
E[Lβ] =

E[Kβ]+D+1
2

. This can also be expressed as

E[L] =
E[Ki,α]

2 +E[Ki,β]
2

2(E[Ki,α] +E[Ki,β])
+
D + 1

2
. (27)



0 20 40 60 80 100

Expected number of checkpoints E[h]

2000

4000

6000

8000

10000

A
v
er

ag
e 

P
A

o
I 

[c
lo

ck
 t

ic
k
s]

Average peak AoI [RF 1]

Average peak AoI [RF 2]

Minimum AoI values

(a) Impact of Harvested Energy

0 2 4 6 8 10

Expected number of system failures E[f]

10
3

10
4

A
v
er

ag
e 

P
A

o
I 

[c
lo

ck
 t

ic
k
s]

MM

NVM

VM

(b) Impact of Memory Structure

0 20 40 60 80 100

Expected number of system failures E[f]

10
3

10
4

A
v
er

ag
e 

P
A

o
I 

[c
lo

ck
 t

ic
k
s]

E[K
i,n

] = 25

E[K
i,n

] = 5

E[K
i,

] = 5, E[K
i,

] = 20

(c) Impact of Checkpointing Strategy

Figure 3. Set of example numerical result (its source code is available at [22]). (a) Scenario RF 2 conditions require fewer checkpoints than Scenario RF 1.
Under-checkpointing causes significant increase in average PAoI. (b) Mixed-memory performs better than VM for most failure conditions. (c) SFC is better than
inaccurately selected single-frequency.

Following the same derivation of average PAoI as in Sections V
and VI, the average PAoI of a SFC system with two frequencies
is

E[∆Peak
]MM(split) = C2 + 2D(E[hα] +E[hβ])

+E[P ] + 2E[f] (C1 +
E[Ki,α]

2 +E[Ki,β]
2

2([E[Ki,α] +E[Ki,β])
) . (28)

From this expression we observe that the average PAoI is
dependent on a number of system parameters (including E[P ],
E[f], and D), however most interesting is the dependence
on inter-checkpointing times E[Ki,α] and E[Ki,β], which is
notably different to the E[P ]

2E[h] →
E[K]
2

term in (14).

X. NUMERICAL RESULTS

We now provide a set of example numerical results in Fig. 3
using Scenario RF 1 and Scenario RF 2 energy harvesting
conditions, with data taken from [25, Fig. 1] and summarized
in Table I—we note that we have converted ms to our base
units of clock ticks herein.

Impact of Harvested Energy. We present the average PAoI
of our considered mixed-memory IPD system (expression (14))
in Fig. 3a using the parameters of Table I. From Fig. 3a we see
that the average PAoI varies under different energy conditions
and that the decrease in E[f] between RF 1 and RF 2 decreases
the value of E[h] that minimises average PAoI. We also see
that under-checkpointing has a far more significant impact of
data freshness than over-checkpointing.

Impact of Memory Structure. We also consider the re-
lationship between memory architecture and data freshness.
Fig. 3b presents plotted expressions (14), (21), and (25) as
a function of the expected number of failures E[f] (using
Table I RF 1 parameters and E[h] = 10 for MM). From
Fig. 3b it is evident that, whilst not universally true, for an
expected checkpointing overhead and above a low number of
failures E[∆Peak]VM > E[∆Peak]MM > E[∆Peak]NVM. This shows
that whilst entirely NVM architecture will always produce the
best possible average PAoI, mixed-memory structures using
checkpointing can provide significant improvements in data
freshness compared with entirely volatile IPDs.

Impact of Checkpointing Strategy. Finally we show the
impact of checkpoining strategy by plotting expressions (14)
and (28). Results are presented in Fig. 3c. We see that the
system using two inter-checkpointing times (E[Ki,α] = 5

Table I
SYSTEM PARAMETER VALUES USED FOR NUMERICAL RESULTS

E[P ]◇ E[R]∗ E[f]∗ E[I]⊲ D≀ V †

Scenario RF 1 500 50 15 200 5 10
Scenario RF 2 500 75 6 200 5 10

◇Set as a baseline for the system. This value varies significantly based on
processing needs. ∗Representative of the dynamic variation of off-time for
the first two scenarios in [25, Fig.1] where failure occurs approximately
every 50ms and 100ms, respectively. ⊲Approximate boot time of TinyOS
from [25, Section 2]. ≀Overhead can vary significantly in real-world
system, 5ms is of the order of magnitude expected compared with on-
time in [25, Fig.1]. †Restoration overhead is typically around twice the
checkpoint overhead due to additional management and fixed boot costs.

and E[Ki,β] = 20) is the most efficient for a range 30 ⪅

E[f] ⪅ 50 and also provides reasonable performance for all
E[f]. Whilst SFC cannot exceed the theoretical optimum for
a single frequency (expression (16)) it can provide additional
resilience by reducing the risk of a very high average PAoI
due to an inappropriately chosen inter-checkpoint interval in
an environment with unknown or variable failure rate.

XI. CONCLUSION

In this paper we have considered an Intermittently-Powered
Device (IPD) with mixed-memory architecture that periodically
checkpoints the system state from volatile memory to non-
volatile memory—from which it can be restored should power
failure occur. We have identified expressions for the average
Age of Information (AoI) and average Peak Age of Information
(PAoI) of the system, and found a relationship for the expected
checkpointing rate that minimises the expected PAoI. We have
also shown that a mixed-memory IPD using Time-Dependent
Checkpointing (TDC) can reduce the system PAoI compared
with a single volatile memory IPD for selected system param-
eters. Further, we have proposed an alternative TDC scheme,
Split-Frequency Checkpointing, which can improve IPD per-
formance compared with inaccurately selected single-frequency
checkpoint intervals.

ACKNOWLEDGEMENT

This work has been funded by the European Union’s Horizon
2020 research and innovation programme under the Maria
Skłodowska-Curie grant agreement ENLIGHTEM No. 814215.



REFERENCES

[1] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermittent
computing: Challenges and opportunities,” in Proc. SNAPL, Asilomar,
CA, USA, May 2017.

[2] K. Ganesan, J. San Miguel, and N. Enright Jerger, “The what’s next
intermittent computing architecture,” in Proc. IEEE HPCA, Washington,
DC, USA, Feb. 2019.

[3] M. Surbatovich, B. Lucia, and L. Jia, “Towards a formal foundation of
intermittent computing,” in Proc. ACM OOPSLA, Chicago, IL, USA, Nov.
2020.

[4] V. Kortbeek, K. S. Yıldırım, A. Bakar, J. Sorber, J. Hester, and
P. Pawełczak, “Time-sensitive intermittent computing meets legacy soft-
ware,” in Proc. ACM ASPLOS, Lausanne, Switzerland, Mar. 2020.

[5] J. de Winkel, C. Delle Donne, K. S. Yıldırım, P. Pawełczak, and
J. Hester, “Reliable timekeeping for intermittent computing,” in Proc.
ACM ASPLOS, Lausanne, Switzerland, Mar. 2020.

[6] J. Hester and J. Sorber, “The future of sensing is batteryless, intermittent,
and awesome,” in Proc. ACM SenSys, Delft, The Netherlands, Nov. 2017.

[7] J. S. Broadhead and P. Pawełczak, “Position paper: Why intermittent
computing could unlock low-power visible light communication,” in Proc.
Workshop on Light Up the IoT (ACM MobiCom 2020 Workshop), London,
United Kingdom, Sep. 2020.

[8] S. Kaul, R. D. Yates, and M. Gruteser, “Real-time status: How often
should one update?” in Proc. IEEE INFOCOM, Orlando, FL, USA, Mar.
2012.

[9] R. D. Yates, Y. Sun, D. R. Brown III, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” Jul. 2020,
arXiv:2007.08564.

[10] C. Kam, S. Kompella, and A. Ephremides, “Age of information under
random updates,” in Proc. IEEE ISIT, Istanbul, Turkey, Jul. 2013.

[11] A. Behrouzi-Far, E. Soljanin, and R. D. Yates, “Data freshness in leader-
based replicated storage,” in Proc. IEEE ISIT, Los Angeles, CA, USA,
Jun. 2020.

[12] S. Kaul and R. D. Yates, “Age of information: Updates with priority,” in
Proc. IEEE ISIT, Vail, CO, USA, May 2018.

[13] A. Baknina, S. Ulukus, O. Ozel, J. Yang, and A. Yener, “Sending
information through status updates,” in Proc. IEEE ISIT, Vail, CO, USA,
Jun. 2018.

[14] Y. Hsu, E. Modiano, and L. Duan, “Age of information: Design and
analysis of optimal scheduling algorithms,” in Proc. IEEE ISIT, Aachen,
Germany, Jun. 2017.

[15] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-
Hashimi, G. V. Merrett, and L. Benini, “Hibernus++: A self-calibrating
and adaptive system for transiently-powered embedded devices,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 12, Mar.
2016.

[16] O. Subasi, G. Kestor, and S. Krishnamoorthy, “Toward a general theory of
optimal checkpoint placement,” in Proc. IEEE International Conference
on Cluster Computing, Honolulu, HI, USA, Sep. 2017.

[17] O. Ozel, “Timely status updating through intermittent sensing and trans-
mission,” in Proc. IEEE ISIT, Los Angeles, CA, USA, Jun. 2020.

[18] S. Jayasekara, A. Harwood, and S. Karunasekera, “A utilization model
for optimization of checkpoint intervals in distributed stream processing
systems,” Future Generation Computer Systems, vol. 110, Apr. 2020.

[19] S. Di, M. S. Bouguerra, L. Bautista-Gomez, and F. Cappello, “Optimiza-
tion of multi-level checkpoint model for large scale HPC applications,”
in Proc. IEEE Int. Parallel and Distributed Processing Symp., Phoenix,
AZ, USA, Aug. 2014.

[20] P. Rafiee and O. Ozel, “Active status update packet drop control in an
energy harvesting node,” in Proc. IEEE SPAWC, Atlanta, GA, USA, May
2020.

[21] S. I. Resnick, Adventures in Stochastic Processes. Birkhäuser, 1992.
[22] J. S. Broadhead and P. Pawełczak, “Source code for numerical results

of this paper,” https://github.com/tudssl/intermittency-aoi, Feb. 2021, last
accessed: May. 8, 2021.

[23] F. Su, K. Ma, X. Li, T. Wu, Y. Liu, and V. Narayanan, “Nonvolatile
processors: Why is it trending?” in Proc. ACM/IEEE DATE, Lausanne,
Switzerland, Mar. 2017.

[24] T.-K. Chien, L. Chiou, C.-C. Lee, Y.-C. Chuang, S.-H. Ke, S.-S. Sheu,
H.-Y. Li, P.-H. Wang, T.-K. Ku, M.-J. Tsai, and C.-I. Wu, “An energy-
efficient nonvolatile microprocessor considering software-hardware in-
teraction for energy harvesting applications,” in Proc. IEEE VLSI-DAT,
Hsinchu, Taiwan, Apr. 2016.

[25] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long-
running computation on RFID-scale devices,” in Proc. ACM ASPLOS,
Newport Beach, CA, USA, Mar. 2011.


