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Abstract—Autonomous underwater vehicles (AUVs) are in-
strumental for data offloading in underwater sensor networks
(USNs). With high data rate capacity at transmission ranges in
the order of several tens of meters, visible light communication
(VLC) is well-positioned to serve as a wireless link between
the AUV and sensor nodes. In this paper, we consider a USN
network where an AUV is used for data retrieval from the
sensors through VLC link. We formulate the design of optimal
AUV trajectory as an optimization problem to minimize the
AUV energy consumption under data rate constraints imposed
by the VLC link and in the presence of ocean currents. Our
numerical results demonstrate that our proposed trajectory is
reactive to ocean currents and brings significant reductions
in energy consumption and mission time of the AUVs, in
particular for USN scenarios with a large number of sensor
nodes.

Index Terms—Visible light communication, AUV trajectory,
underwater sensor network.

I. INTRODUCTION

Underwater sensor networks (USNs) have been increas-
ingly deployed in various maritime applications including
pollution monitoring, tsunami warnings, underwater oil field
detection, and valuable minerals explorations among others
[1]. Autonomous underwater vehicles (AUVs) are partic-
ularly instrumental in USNs to retrieve data from sensor
nodes [2]. In AUV-assisted USNs, the AUV travels around
to gather data from sensor nodes, stores it and transfers the
information to the surface buoy. For data transfer between
the AUV and sensors, the common choice is acoustic sig-
naling [3] and acoustic modems are already available from
a number of vendors [4]. While acoustic communication
enables transmission over long ranges (in the order of
several kilometers), it suffers from several disadvantages
such as low data rates (in the order of tens of Kb/s) and
low propagation speed (1500 m/s) [5]. To address such
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challenges associated with acoustic transmission, visible
light communication (VLC) has emerged as an alternative
underwater wireless connectivity solution. VLC offers high
data rates in the order of Gb/s, albeit at short and medium
distances in the order of several tens of meters [6]. Such a
transmission range and high data rate capability makes VLC
a strong candidate for AUV-to-sensor communication.

In AUV operations, the major limiting constraint is
power consumption since they rely on batteries with limited
lifetimes. Therefore, the choice of efficient trajectories
directly impacts the mission planning of AUVs. Predefined
trajectories, as the name implies, are planned before the
AUV starts its mission. In [2], [7]–[10], elliptical, circular,
and lawnmower patterns were investigated as predefined
AUV trajectories in acoustic USNs. Since the AUV must
complete the defined trajectory, whether or not there are
sensors around, the energy efficiency of predefined trajec-
tories remains low in particular for large mission areas with
randomly distributed sensor nodes.

Another choice is reactive trajectories where the AUV
path is corrected and refined in real-time to cope with the
sudden changes during the operation. In the literature, there
have been some works on reactive trajectory optimization
assuming both acoustic [11]–[14] and VLC [15] signaling.
In [11], [12], trajectory planning of the AUV is formulated
as a traveling salesman problem (TSP) to minimize the
AUV travel time, and the ant colony algorithm is applied to
solve the TSP. In [13], [14] TSP algorithm is proposed to
define the path of the AUV with the objective of maximizing
the value of information (VoI) from the sensors. In [15],
the trajectory finding problem of the AUV is solved using
a greedy algorithm under VoI constraints.

The abovementioned papers on reactive trajectories [11]–
[15] simply assume that the AUV follows a straight path
between each two sensor nodes without any deviations.
However, in real-life conditions, due to ocean currents, that
might not be possible. Trajectory optimization of stand-
alone AUVs in the presence of ocean currents was addressed
in [16]–[18]. However, these papers focus on stand-alone



AUVs which move from a pre-defined start point to an end-
point. They do not take into account either the distribution
of sensors in USN or signaling aspects between the AUV
and the sensor.

In this paper, we consider a VLC-based USN network
where the AUV is used for data retrieval from the sensors.
Our objective is to determine the optimal trajectory of the
AUV in the presence of ocean currents under the con-
straints of communication requirements. For trajectory def-
inition, we formulate an optimization problem to minimize
the energy consumption of the AUV. The communication
constraint imposes a minimum required data rate for the
VLC link between the AUV and each sensor node. This,
therefore, dictates that the AUV needs to be at a certain
distance from the sensor node. The optimal solution for the
general case (i.e., where the order of sensor node visits is
not defined) is very difficult, if not impossible. Therefore,
we resort to a sub-optimal solution where we first determine
the optimum sequence order of the sensor nodes to be
visited, then optimize the trajectory between each pair of
adjacent nodes for the given order of node visits. Our
numerical results demonstrate that the proposed trajectory
brings energy savings and decreases mission time in the
presence of ocean currents.

The rest of the paper is organized as follows: In Section
II, we present the system model. In Section III, we formu-
late the trajectory optimization problem to minimize energy
consumption. In Section IV, we provide numerical results
and finally conclude in Section V.

II. SYSTEM MODEL

As illustrated in Fig.1, we consider a USN with F sensors
located at a depth of Zs in an area of GKm × H Km.
The location of the sensor Si, i = 1, 2, ..., F is defined by
the position vector pSi

= (xSi
, ySi

, zSi
). AUV visits each

sensor node once to retrieve data and returns to the initial
point to transmit the aggregated data to a central node.

Let Ti denote the travel time of the AUV from the
sensor Si to the sensor Si+1. This is divided into N equal-
length time slots with a duration of ∆ti = Ti/N . If ∆ti
is chosen sufficiently small, the location of the AUV can
be assumed to be fixed during each time slot. Thus, the
position of the AUV at the nth slot, n = 1, 2, ..., N ,
during its travel from Si to Si+1 can be described by
the vector pAi

[n] = (xAi
[n] , yAi

[n] , zAi
[n]). Under the

assumption that the AUV moves at a fixed depth, we can
set zAi [n] = ZA < Zs. Furthermore, we assume that
the AUV moves with a constant speed at the horizontal
plane [6]. Therefore, the velocity of the AUV is given
by νA [n] =

(
vAx

[n] , vAy
[n] , vAz

[n]
)
. Accordingly, we

formulate the discrete AUV state as

pAi
[n] = pAi

[n− 1]+(νo [n] + νA [n]) ∆ti [n] , ∀n (1)

where νo [n] =
[
νox [n] , νoy [n]

]
is the random vector

quantifying the ocean current speed in 2-dimensional space.
Specifically, νox [n] and νoy [n] are modeled as independent

Fig. 1. AUV-assisted USN

Gaussian random variables with the mean value of αm/s
and variance of β [18].

Each sensor is equipped with a VLC transmitter while
the AUV is equipped with a photodetector as the VLC
receiver. We assume an intensity modulation-direct detec-
tion (IM/DD) system. The transmitted optical signal goes
through the underwater propagation medium and reaches
the destination. Based on the Beer-Lambert formula [19],
the path loss term between the AUV and Si is given by

hi [n] = exp (−cdi [n]) (2)

where c is the extinction coefficient and di [n] =
‖pAi [n]− pSi‖ is the link distance between the AUV and
Si in the nth time slot.

A closed-form expression for information rate in IM/DD
systems is not available in the literature [20]. A lower bound
of the information rate (in bits/s/Hz) is expressed as [21]

Ri [n] ≥ 1

2
log2

(
1 +

e

2πσ2
(rhi [n]Pt)

2
)

(3)

where r is the detector’s responsivity, Pt is the transmit
power, and σ2 = N0B is the noise variance. Here, B
is bandwidth of the receiver, and N0 is the noise power
spectral density.

III. PROBLEM FORMULATION

In this section, we aim to determine the optimal trajectory
of the AUV in the sense of minimizing its energy consump-
tion. The power consumption of an AUV in each time slot
can be calculated by the summation of propulsion power
Φpropand hotel load ΦH as [22]

ΦA [n] = Φprop [n] + ΦH (4)

Hotel load is the power consumed by all subsystems other
than propulsion and is typically negligible in comparison
with Φprop [23]. Propulsion power can be calculated as [24]

Φprop [n] =
ρ

2ηp
CDAs‖νA [n]‖3 (5)



where ‖.‖ denotes the Euclidean vector norm and ρ is the
density of water, ηp is the efficiency of the propulsion
system, and CD is the drag coefficient of the AUV. As is
the wetted surface area of the AUV and is given by [22]

As = 2πDs
2

4

(
1 + L

Ds

√
1−Ds

2/L2
sin−1

(√
1−Ds

2/L2

))
+Awings

(6)
where Ds =

√
6m/ρπL is the diameter of the AUV, m is

the mass, L is the length of the AUV, and Awings is the
surface area of the AUV’s wings.

The total energy consumption of the AUV to complete
the mission (i.e., visiting F sensors in the mission area) can
be calculated as

Etot =

F∑
i=1

N∑
n=1

ΦA [n] ∆ti [n] (7)

Replacing (1) and (4) in (7), we obtain

Etot =
(

ρ
2ηp

CDAs‖νA‖3 + ΦH

) F∑
i=1

N∑
n=1

‖pAi
[n]−pAi

[n−1]‖
‖νo+νA‖

(8)
Since the AUV’s speed is assumed to be constant,

the energy-optimal trajectory is equal to time-optimal
trajectory [18]. In other words, our optimization problem
reduces to the minimization of mission time. Let
T =

∑F
i=1

∑N
n=1 ∆ti [n] denote the mission time

which defines the total travel time starting from
the first sensor node S1 and returning to it after
completing the mission. Let PA = [pA1

[1]pA1
[2] ...

pA1 [N ]pA2 [1]pA2 [2] ...pA2 [N ] .....pAF
[1]pAF

[2] ...
pAF

[N ] pA1 [1]] denote the AUV trajectory. Accordingly,
we can express the optimization problem as

min
p
A

T

s.t. Ri [n] ≥ Rth

(9)

The constraint imposes a minimum required data rate
(denoted by Rth) for transfer between the AUV and each
sensor node. Therefore, the AUV needs to be at a certain
distance dth from the sensor nodes to satisfy this condition,
i.e., ‖pAi [n]− pSi‖ ≤ dth . Based on (2) and (3), we can
obtain dth as

dth ≤
1

2c
ln

[(
2πσ2

er2Pt

(
2Rth − 1

))−1]
(10)

Unfortunately, the optimal solution of (9) for the general
case (i.e., where the order of sensor node visits is not
defined) is very difficult, if not impossible. Therefore,
we resort to a sub-optimal solution. First, we determine
the optimum sequence order of the sensor nodes to be
visited, which can be considered as a large-scale trajectory
optimization. Once the order of sensor node visits is deter-
mined, we deal with the small-scale optimization problem
that optimizes the path between each pair of adjacent nodes
to minimize the overall mission time. It should be noted

TABLE I
SYSTEM AND CHANNEL PARAMETERS

Parameter Variable Value
Mission area G × H 20 × 20 Km2 [21]
Number of sensor nodes F 20
Depth of the sensors Zs 250 m
Number of time slots N 100
Mean of ocean current speed α 0.6 m/s [19]
Variance of ocean current speed β 0.01 [18]
Transmit power Pt 0.01 W [28]
Detector responsivity r 0.5 [28]
Noise power spectral density N0 10−19 W/Hz [28]
Bandwidth of the receiver B 100 MHz
Extinction coefficient for clear ocean c 0.15 [28]

TABLE II
SPECIFICATIONS OF THE AUV [29]

Parameter Variable Value
Length of the AUV L 1.8 m
Mass of the AUV m 50 Kg
Diameter of the AUV Ds 0.2 m
Wetted surface area As 47.18m2

Drag coefficient CD 0.0064
Efficiency of the propulsion system ηp 100%
Velocity of the AUV ‖νA‖ 0.5 m/s
Depth of the AUV ZA 220 m
Water density ρ 997Kg/m3

that if ocean currents are ignored, our solution reduces to
large-scale optimization.

For large-scale optimization, we formulate the problem as
a TSP to minimize the mission time assuming direct paths
between each two nodes [25]. For the solution of TSP, we
use the genetic algorithm (GA) toolbox in MATLAB [26]
which yields the order of sensor node visits. Then, for the
determined order of sensor nodes, we numerically solve
(9) using fmincon function of the MATLAB optimization
toolbox [27]. This function is based on the trust-region
algorithm and is defined to carry out the optimization by
using the present information and then to repeat the process
over and over. Accordingly, with knowledge of the start and
the endpoints of the movement and the underwater current
speed in each time slot, the best trajectory between two
sensor nodes is determined.

IV. NUMERICAL RESULTS

In this section, we present our numerical results for the
optimal trajectory and discuss the energy and time savings
made possible through the optimization. We consider an
area of G × H = 20 Km × 20 Km where the sensors
are located at the seabed with a depth of Zs = 250 m
and the AUV swims at a fixed depth of ZA = 220 m.
Unless otherwise stated, system and channel parameters are
provided in Table I. AUV specifications are further provided
in Table II. For the solution of TSP algorithm, the number
of populations and the number of iterations in the genetic
algorithm are set as 100 and 10000, respectively.

In Fig.2, we consider a USN where F = 20 sensor
nodes are uniformly distributed on a rectangular grid pat-



(a)

(b)

Fig. 2. AUV trajectories for uniformly distributed sensors: a) Straight
trajectory (i.e., only large-scale optimization), b) Optimum trajectory

tern. As a benchmark, we include the case where AUV
follows a straight trajectory between every two nodes as
illustrated in Fig.2.a (i.e., this is simply based on the large-
scale optimization results). Under the assumption of AUV
velocity of ‖νA‖ = 0.5 m/s, it takes T = 60 hours to
complete the mission, which means Etot = 4.06 MJ of
energy consumption. Our proposed trajectory found from
the solution of (9) is presented in Fig.2.b. It is observed
that the AUV does not any longer follow a straight path
because the AUV selects its path reactive to ocean currents.
In particular, for most cases, the AUV avoids to swim
towards the opposite direction of ocean currents whenever
possible to save energy. Using the proposed trajectory, it
takes T = 57.5 hours and Etot = 3.91 MJ of energy
consumption to complete the mission. Comparison with the
benchmark in Fig.2.a demonstrates that the AUV saves 2.5
hours to complete its mission, which means 169 KJ of
saving energy. This obviously indicates the superiority of
the proposed trajectory.

In Fig.3, we consider a USN where F = 20 sensors

are randomly distributed. The results in the following are
obtained based on averaging over 100 trials while the figure
shows only one trial as an example. In each trial, we change
the location of randomly distributed sensor nodes while
the ocean currents distribution remains the same. For the
AUV velocity of ‖νA‖ = 0.5 m/s, it takes T = 57.5 hours
and Etot = 3.89 MJ of energy consumption to complete
the mission for straight trajectory (i.e., only large-scale
optimization which effectively ignores the ocean currents).
This reduces to T = 54.9 hours and Etot = 3.72 MJ for the
proposed trajectory. This indicates an average of 2.6 hours
reduction in the mission time and an average energy saving
of 180 KJ.

(a)

(b)

Fig. 3. AUV trajectories for randomly distributed sensors: a) Straight
trajectory (i.e., only large-scale optimization), b) Optimum trajectory

In Fig.4, we investigate the number of sensor nodes
on the energy consumption and mission time. Results are
averaged of 100 trials and the same conditions in Fig.3
are considered. The number of sensor nodes ranges from
F = 5 toF = 50. For F = 5 sensor nodes, the mission
time and the corresponding energy consumption for the
straight trajectory are respectively T = 27.6 hours and



Fig. 4. Effect of the number of sensor nodes on the mission time and
energy consumption

Fig. 5. Effect of AUV velocity on the mission time and energy consump-
tion (Only optimal trajectory is considered.)

Etot = 1.86 MJ. These reduce to T = 26.7 hours and
Etot = 1.81 MJ for the proposed trajectory. This indicates
an improvement of 3.3 % in travel time and 2.7 % in
energy consumption. For F = 50 sensor nodes, it requires
T = 117.3 hours and T = 100.1 hours respectively for
straight and optimum trajectories, indicating an improve-
ment of 14.7 % in travel time. We have Etot = 7.94 MJ and
Etot = 6.7 MJ for straight and proposed trajectories which
yields an improvement of 15.6 % in energy consumption.
It can be readily checked that the improvement increases as
the number of sensor nodes increases.

In Fig.5, we investigate the effect of AUV’s velocity
on the energy consumption and mission time. Other as-
sumptions are the same as in those in Fig.3. It is observed
that as the velocity increases, the mission time decreases
while the energy consumption increases. For example, the

mission time for ‖νA‖ = 4 m/s is T = 6.2 hours which
is 48.3 hours less than that in ‖νA‖ = 0.5 m/s (considered
in Fig.3). Accordingly, the energy consumption reaches to
Etot = 213 MJ from Etot = 3.72 MJ. This also indicates
the need to determine a trade-off between the energy and
mission time requirements. For the given scenario under
consideration, it can be readily checked from Fig. 5 that
‖νA‖ = 1.8 m/s gives such a good trade-off where the
plots of mission time and energy consumption intersect.

V. CONCLUSION

In this paper, we considered a USN network where the
AUV visits sensor nodes for data retrieval through a VLC
link. We formulated the design of optimal AUV trajectory
as an optimization problem to minimize the AUV energy
consumption (equivalently, to minimize mission time for
constant speed). The optimization problem was numerically
solved under data rate constraints imposed by the VLC
link and in the presence of ocean currents. Our results
demonstrated that the proposed trajectory is reactive to
ocean currents and brings energy savings and decreases
mission time. These improvements are more pronounced
for larger number of sensor nodes. We further investigated
the effect of AUV speed on the trajectory and demonstrated
that proper choice of the speed is important to find the best
trade-off between mission time and energy consumption.
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