Is Flux Tube a Bosonic String? What Does Lattice Say?

Xmas Theoretical Physics Workshop @ Athens 2019

Andreas Athenodorou Marie Skłodowska-Curie Individual Fellow University of Pisa

Courtesy to D. Leinweber

Work in collaboration with Mike Teper, Based on arXiv:1103.5854, 1007.4720, 1702.03717, 1602.07634 and new upcoming results...

Question: Is Flux Tube a bosonic string?

In QCD quarks are confined in bound states by forming flux-tubes of chromo-magnetic and chromo-electric flux

 $E \approx \sigma r$ Long flux tubes behave pretty much like strings At some point they break (string breaking)

Let us think... there are D - 2 obvious massless modes

Goldstone modes arising from the broken translation invariance in the D-2 directions transverse to the flux tube

There should be a Low Energy Effective String Theory model describing the energy spectrum of the flux tube - In addition to string modes are there other kind of (massive) excitations?

Question: Is Flux Tube a bosonic string?

• Is there a theoretical description for the confining flux-tube in D=3+1 & D=2+1?

• Confining flux-tube:

- Pure gauge phenomena are also present...
 - Glueball Flux-Tube mixing
 - Flux-tube anti-Flux-Tube mixing
- Possible low-energy effective string theoretical description?
 - Cannot capture pure gauge phenomena!
 - Might be possible in the Large-N limit!
- Investigate Closed Flux tubes in the Large-N limit

Have a look at S. Coleman's (Aspects of Symmetry)

Effective String Theory for (long) strings

• Contributions by

M. Lüscher '81, J. Polchinski & A. Strominger '90, M. Lüscher & P. Weisz '04, O. Aharony et al '07 – 11, S. Dubovski et al '12 – 19

• Quantize the Bosonic String (Nambu-Goto String)

$$S_{\rm NG} = -\ell_s^{-2} \int d^2 \sigma \sqrt{-\det \gamma} \qquad \gamma_{\alpha\beta} = \frac{\partial X^{\mu}}{\partial \sigma^{\alpha}} \frac{\partial X^{\nu}}{\partial \sigma^{\beta}} \eta_{\mu\nu}$$

The spectrum of a closed bosonic string compactified around a torus is:

$$E_{N_L,N_R,q,w}^2 = (\sigma l \boldsymbol{w})^2 + 8\pi\sigma \left(\frac{N_L + N_R}{2} - \frac{D-2}{24}\right) + \left(\frac{2\pi q}{l}\right)^2$$

The spectrum is described by:

- 1. The winding number w (w=1, 2, ...),
- **2.** The winding momentum $p_{\parallel} = 2\pi q/l$ with $q = 0, \pm 1, \pm 2, \ldots$
- **3.** The transverse momentum p_{\perp} $(p_{\perp} = 0)$,
- **4.** $N_L = \sum_{k>0} n_L(k)k$ and $N_R = \sum_{k'>0} n_R(k')k'$
- **5.** Level-matching constrain: $N_L N_R = qw$.

$$(\alpha_{-k_1}^{i_1})^{n_L(k_1)} \dots (\alpha_{-k_m_L}^{i_m_L})^{n_R(k_m_L)} (\bar{\alpha}_{-k'_1}^{i'_1})^{n_R(k'_1)} \dots (\bar{\alpha}_{-k'_m_R}^{i'_m_R})^{n_R(k'_m_R)} |0\rangle$$

• Example: $\alpha_{-2}\alpha_{-1}\bar{\alpha}_{-1}|0\rangle$ * $N_L = 3$ * $N_R = 1$ * q = 2

Effective String Theory for (long) strings

- Nambu-Goto string is Lorentz invariance only in D = 26
- Gauge-Theory flux tubes must be described by a worldsheet theory that respects Lorentz in D = 4
- We can perturbatively calculate the spectrum of the flux-tube with Lorentz Invariance

linear confinement

Lüscher 1980, Polchinski&Strominger 1991

Lüscher&Weisz 2004, Drummond 2004

Aharony&Karzbrun 2009

The Nambu-Goto energy for w = 1 and q = 0, in dimensionless units is written as:

$$\frac{E_n(l)}{\sqrt{\sigma}} = l\sqrt{\sigma} \left(1 + \frac{8\pi}{\sigma l^2} \left(n - \frac{1}{12}\right)\right)^{\frac{1}{2}} \quad \text{with} \quad n = \frac{N_L + N_R}{2}$$

becomes tachyonic for $\sigma l^2 < 2\pi/3 \equiv (1.45)^2$.

The above expression can be expanded in
$$1/l\sqrt{\sigma}$$
 for:

$$l\sqrt{\sigma} > l_c^{N.G}\sqrt{\sigma} = \left\{8\pi \left(n - \frac{1}{12}\right)\right\}^{\frac{1}{2}}$$

 $-\frac{8\pi^2}{\sigma l^3}\left(n-\frac{D-2}{24}\right)^2$

 $+ \frac{32\pi^3}{\sigma^{2l^5}} \left(n - \frac{D-2}{24}\right)^3$

Relation to Nambu-Goto:

 $E_n \stackrel{l \to \infty}{=} \qquad \sigma l \\ + \frac{4\pi}{l} \left(n - \frac{D-2}{24} \right)$

$$\frac{E_n\left(l\right)}{\sqrt{\sigma}} \stackrel{l \to \infty}{=} l\sqrt{\sigma} + \frac{c_1^{N.G}}{l\sqrt{\sigma}} + \frac{c_2^{N.G}}{\left(l\sqrt{\sigma}\right)^3} + \frac{c_3^{N.G}}{\left(l\sqrt{\sigma}\right)^5} + \mathcal{O}\left(\frac{1}{\left(l\sqrt{\sigma}\right)^7}\right)$$

$$S_{eff} = \sigma r\tau + \int_0^\tau dt \int_0^r dx \frac{1}{2} \partial h \partial h + \sum_{n=2} c_n \int_0^\tau dt \int_0^r dx (\partial h)^{2n} + \dots$$

The Lattice

- Lattice is a mathematical trick
 - We discretised the Space time to a Hyper Cubic Lattice
 - We obtain physics at lattice spacing a
 ightarrow 0
 - *a* is the minimum length (cutoff)
- It defines Quantum Field Theory as a limiting process
- Allows numerical calculations:
 - In hadron scales $g^2/4\pi{\sim}0(10)$ while $e^2/4\pi{\sim}1/137$
 - There is no small parameter for expansion

Lattice Calculation: Correlation Function

$$C(t) = \langle \Phi^{\dagger}(t)\Phi(0) \rangle$$

= $\langle \Phi^{\dagger}(0)e^{-Ht}\Phi(0) \rangle$
= $|\langle 0|\Phi(0)|vac \rangle|^{2}e^{-E_{0}t}$
+ $\sum_{n=1} |\langle n|\Phi(0)|vac \rangle|^{2}e^{-E_{n}t}$
 $t \rightarrow \infty |\langle 0|\Phi(0)|vac \rangle|^{2}e^{-E_{0}t}$

- Construct a large basis of Operators $\Phi_i: i = 1, 2, ...$ **RIGHT QUANTUM NUMBERS**
- Calculate the correlation function (Matrix) $C_{ij}(t) = \langle \Phi_i^{\dagger}(t) \Phi_j(0) \rangle$
- Diagonalize the matrix $C^{-1}(t=0)C(t=a)$
- Extract the eigenvectors
- Extract the correlator for each state $(\sim e^{-E_n t})$
- By fitting the results, we extract the mass (energy) for each state

Operators Building

We build the path order product of links along the spatial direction \rightarrow Polyakov Loop

As N increases computational time increases as N^3

 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$ For N = 3, we have N^3 multiplications

 $= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} & a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} & a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} & a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33} \end{bmatrix}$

What Quantum Numbers Can we give to this Object???

Parity

Translation to Strings (phonons) in D=2+1

$P_{\mathcal{P}}$ Parity:

• Under $P_{\mathcal{P}}$ parity $(x_{||}, x_{\perp}) \rightarrow (x_{||}, -x_{\perp})$ and, therefore,

 $\alpha_{-k} \longleftrightarrow -\alpha_{-k} \text{ and } \bar{\alpha}_{-k} \longleftrightarrow -\bar{\alpha}_{-k}.$

• The parity of a state is given:

 $P_{\mathcal{P}} = (-1)^{number \ of \ phonons}$

• For instance:

- Even number of phonons, for example $\alpha_{-2}\bar{\alpha}_{-1}|0\rangle$, transforms as $P_{\mathcal{P}} = +$. - Odd number of phonons, for example $\alpha_{-1}|0\rangle$, transforms as $P_{\mathcal{P}} = -$.

$P_{\mathcal{R}}$ Parity:

- Under $P_{\mathcal{R}}$ Parity: $\alpha_{-k} \longleftrightarrow \bar{\alpha}_{-k}$
- Only useful in the q = 0 sector
- The only non-null pair of states with $P_{\mathcal{R}} = \pm$ is for $P_{\mathcal{P}} = -$:
 - $\{\alpha_{-2}\bar{\alpha}_{-1}\bar{\alpha}_{-1}\pm\alpha_{-1}\alpha_{-1}\bar{\alpha}_{-2}\}|0\rangle$
- This is quite heavy!
- In practice this Quantum Number is of minor utility.

Spin – Intrinsic Angular Momentum

On the Lattice things are a bit different....

- $\rightarrow\,$ Lattice Symmetry of Rotations about the string axis.
- $\rightarrow C_{4\nu} \bigotimes Z(\mathcal{R})$ for zero longitudinal momentum.
 - Rotations of $\pi/2 \rightarrow$ angular momentum J
 - Reflections in orthogonal plane (\mathcal{P} -Parity)
 - Reflections about the mid-point on the principal axis (\mathcal{R} -Parity)
 - \rightarrow 10 irreducible representations \equiv 10 correlation matrices
- $\rightarrow C_{4\nu}$ for non-zero longitudinal momentum.
 - Rotations of $\pi/2 \rightarrow$ angular momentum J
 - Reflections in orthogonal plane (\mathcal{P} -Parity)

→ 5 irreducible representations \equiv 5 correlation matrices → $A_1 \equiv (J = 0, 4, ..., 4N, P_P = +), A_2 \equiv (J = 0, 4, ..., 4N, P_P = -)$ → $E \equiv (J = 1, 3, ..., 2N + 1)$ → $B_1 \equiv (J = 2, 6, ..., 4N + 2, P_P = +), B_2 \equiv (J = 2, 6, ..., 4N + 2, P_P = -)$ Imposing Spin in an operator i.e $U_{\mu}^{b}(x)$

 \rightarrow We can then form an operator of spin J:

Continuum : $\phi(J) = \int d\theta e^{iJ\theta} \phi_{\theta}$

Lattice : $\phi_L(J) = \sum_n e^{iJn\frac{\pi}{2}} \phi_n \frac{\pi}{2}$

 \rightarrow Example J = 1:

$$\phi_L(J=1) = i\phi_{\frac{\pi}{2}} - \phi_{\pi} - i\phi_{\frac{3\pi}{2}} + \phi_{2\pi}$$

Parity & Spin

- Translation to Strings (phonons) in D=3+1 We have two transverse directions
- \rightarrow Define α^+_{-k} and α^-_{-k} as (x, y are the transverse directions): $-\alpha^+_{-k} = \alpha^x_{-k} + i\alpha^y_{-k}$ $-\alpha_{-k}^{-} = \alpha_{-k}^{x} - i\alpha_{-k}^{y}$ \rightarrow Spin J. - J = | #(+) - #(-) | $\rightarrow \mathcal{P}$ -Parity - Under \mathcal{P} -Parity: $\alpha^+_{-k} \xleftarrow{P_{\mathcal{P}}} \alpha^-_{-k} \& \bar{\alpha}^+_{-k} \xleftarrow{P_{\mathcal{P}}} \bar{\alpha}^-_{-k}$ $\rightarrow \mathcal{R}$ -Parity - Under \mathcal{R} -Parity: $\alpha_{-k}^{\pm} \xleftarrow{P_{\mathcal{R}}} \bar{\alpha}_{-k}^{\pm}$ • Example: $(\alpha_{-1}^+ \bar{\alpha}_{-1}^+ \pm \alpha_{-1}^- \bar{\alpha}_{-1}^-) \mid 0)$ -J=2 $-P_{\mathcal{P}}=\pm$ $-P_{\mathcal{R}} = +$

Parity & Spin Example of Operators

Example $J = 0, P_{\mathcal{P}} = +, P_{\mathcal{R}} = +$

 $\frac{1}{2} \int d^{3} - \frac{1}{2} \int$

Example $J = 0, P_{\mathcal{P}} = +, P_{\mathcal{R}} = -$

 $-2 \int z + z_{14} \int + z_{14} \int + z_{14} \int z + z_{14} \int z$ $-\left[-\sqrt{2}\right] + \left[-\sqrt{2}\right] + \left[+\left[-4\sqrt{2}+2\sqrt{2}\sqrt{2}+\sqrt{2}\sqrt{2}\right]$

Example $J = 0, P_{\mathcal{P}} = -, P_{\mathcal{R}} = +$

 $-2 \int z + z_{14} \int z + z_{14}$ $+\left[-\sqrt{2}\right] + \left[-\sqrt{2}\right] + \left[-$

Example $J = 0, P_{\mathcal{P}} = -, P_{\mathcal{R}} = -$

 $-2 \int z + z_{14} \int z + z_{14}$ $+\left[-7_{41}-+-\sqrt{2}-+-7_{41}+-7_{42}-+\sqrt{2}\right]$

Parity & Spin Example of Operators

$$C_{ij}(t) = \langle \Phi_i^{\dagger}(t)\Phi_j(0)\rangle =$$

Examples of transverse deformations in 2 & 3 spatial dimensions:

Quantum numbers	Ground state	1 st excited state	2 nd excited state	3 rd excited state	4 th excited state
	•				

Quantum numbers	Ground state	1 st excited state	2 nd excited state	3 rd excited state	4 th excited state
	•				

Quantum numbers	Ground state	1 st excited state	2 nd excited state	3 rd excited state	4 th excited state
	•				

Quantum numbers	Ground state	1 st excited state	2 nd excited state	3 rd excited state	4 th excited state
	•				

Quantum numbers	Ground state	1 st excited state	2 nd excited state	3 rd excited state	4 th excited state
	•	•			

Lattice Channels:

Quantum numbers	Ground state	1 st excited state	2 nd excited state	3 rd excited state	4 th excited state
	•	•			

Quantum numbers	Ground state	1 st excited state	2 nd excited state	3 rd excited state	4 th excited state
	•	•			

Quantum numbers	Ground state	1 st excited state	2 nd excited state	3 rd excited state	4 th excited state
	•	•	•	•	

Lattice Channels:

Quantum numbers	Ground state	1 st excited state	2 nd excited state	and excited state 3 rd excited state	
	•	•	•	•	•

Quantum numbers	Ground state	1 st excited state	2 nd excited state 3 rd excited state		4 th excited state
	•	•	•	•	•

Lattice Channels:

Quantum numbers	Ground state	1 st excited state	1 st excited state 2 nd excited state 3 rd excit		4 th excited state
	•	•	•	•	•
	•	•			

Latt	ice	Ch	an	ne	s:
Latt		CII	an		5.

Quantum numbers	Ground state	1 st excited state	2 nd excited state	3 rd excited state	4 th excited state
	•	•	•	•	•
	•	•	•		

Results for SU(6)

Negative Parity, q=1

Positive Parity, q=1

Results for SU(6)

Negative Parity, q=2

Positive Parity, *q*=2

String S	String States & Quantum Numbers									
N_L, N_R	J	P_t	P_l	String State						
$N_L = N_R = 0$	0	+	+	0>						
$N_L = 1, N_R = 0$	1	±		$\left(a_{1}^{+}\pm a_{1}^{-} ight)\left 0 ight angle$						
$N_L = N_R = 1$	0	+	+	$\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left 0 ight angle$						
$N_L = N_R = 1$	0		—	$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+} ight)\left 0 ight angle$						
$N_L = N_R = 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right)\left 0 ight angle$						
$N_L = N_R = 1$	2	_	+	$\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$						
$N_L = 2, N_R = 0$	0	+		$a_1^+a_1^- 0 angle$						
$N_L = 2, N_R = 0$	1	±		$\left(a_{2}^{+}\pm a_{2}^{-} ight)\left 0 ight angle$						
$N_L = 2, N_R = 0$	2	+		$\left(a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-}\right)\left 0 ight angle$						
$N_L = 2, N_R = 0$	2	-		$\left(a_{1}^{+}a_{1}^{+}-a_{1}^{-}a_{1}^{-}\right)\left 0\right\rangle$						
$N_L = 2, N_R = 1$	0	+		$\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$						
$N_L = 2, N_R = 1$	0	<u></u>		$\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+} ight)\left 0 ight angle$						
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right) 0\rangle$						
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right) 0\rangle$						
$N_L = 2, N_R = 1$	2	+		$\left(a_{2}^{+}a_{-1}^{+}+a_{2}^{-}a_{-1}^{-}\right) 0\rangle$						
$N_L = 2, N_R = 1$	2	-		$\left(a_{2}^{+}a_{-1}^{+}-a_{2}^{-}a_{-1}^{-}\right) 0\rangle$						
$N_L = 2, N_R = 1$	3	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right) 0\rangle$						

Results for SU(3) and ground states for several values of *q*

Absolute Ground State $J = 0, P_{\mathcal{P}} = +, P_{\mathcal{R}} = +, q = 0$. 108 6 Ŧ $E/\sqrt{\sigma_f}$ 4 $J = 0, P_{\mathcal{P}} = +, P_{\mathcal{R}} = +, q = 0$ $\mathbf{2}$ 0 $\mathbf{2}$ 3 4 $\mathbf{5}$ $\overline{7}$ 1 6 $l\sqrt{\sigma_f}$

String	States	s & C	luant	um Numbers	Results for SU(3) and ground states for several values
N_L, N_R	J	P_t	P_l	String State	
$N_L = N_R = 0$	0	+	+	0>	Absolute Ground State $J = 0, P_{\mathcal{P}} = +, P_{\mathcal{R}} = +, q =$
$N_L = 1, N_R = 0$	1	±		$\left(a_{1}^{+}\pm a_{1}^{-} ight)\left 0 ight angle$	
$N_L = N_R = 1$	0	+	+	$\begin{pmatrix} a_{1}^{+}a_{-1}^{-} + a_{1}^{-}a_{-1}^{+} \\ + - & - & + \end{pmatrix} 0\rangle$	
$N_L = N_R = 1$ $N_L = N_R = 1$	$\begin{array}{c} 0\\ 2 \end{array}$	-+	-+	$ \begin{pmatrix} a_1^+ a_{-1}^ a_1^- a_{-1}^+ \\ a_1^+ a_{-1}^+ + a_1^- a_{-1}^- \end{pmatrix} 0\rangle $	
$N_L = N_R = 1$	2	_	+	$ \begin{pmatrix} a_1^+ a_{-1}^+ - a_1^- a_{-1}^- \\ a_1^+ a_{-1}^+ - a_1^- a_{-1}^- \end{pmatrix} 0\rangle $	6
$N_L = 2, N_R = 0$ $N_L = 2, N_R = 0$	0	+		$\begin{array}{c}a_1^+a_1^- 0\rangle\\\left(a_2^+\pm a_2^-\right) 0\rangle\end{array}$	$E/\sqrt{\sigma_f}$
$N_L = 2, N_R = 0$		+	đ	$\left(a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-}\right)\left 0\right\rangle$	4 N.G: $N_L = N_R = 0$ $J = 0, P_{\mathcal{P}} = +, P_{\mathcal{R}} = +, q = 0$
$N_L = 2, N_R = 0$	2			$\left(a_{1}^{+}a_{1}^{+}-a_{1}^{-}a_{1}^{-}\right) 0\rangle$	
$N_L = 2, N_R = 1$	0.00	+		$\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$	
$N_L = 2, N_R = 1$	0	-		$ \begin{pmatrix} a_{2}^{+}a_{-1}^{-} - a_{2}^{-}a_{-1}^{+} \\ a_{2}^{-}a_{-1}^{-} \end{pmatrix} 0\rangle $	$E^{2} = (\sigma l)^{2} + 8\pi\sigma \left(\frac{N_{L} + N_{R}}{2} - \frac{1}{12}\right) + \left(\frac{2\pi q}{l}\right)^{2}$
$N_L = 2, N_R = 1$		±		$ \begin{pmatrix} a_1^+ a_1^+ a_{-1}^- \pm a_1^- a_1^- a_{-1}^+ \\ + & - & - & + & + \\ \end{pmatrix} 0\rangle $	$0 \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$N_L = 2, N_R = 1$	1	±		$\begin{pmatrix} a_{1}^{+}a_{1}^{-}a_{-1}^{-} \pm a_{1}^{-}a_{1}^{+}a_{-1}^{+} \\ (a_{1}^{+}a_{1}^{-}a_{-1}^{-} \pm a_{1}^{-}a_{1}^{+}a_{-1}^{+} \\ (a_{1}^{+}a_{1}^{-}a_{-1}^{-} \pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}) \mid 0 \rangle$	1 2 3 4 5 6 l
$N_L = 2, N_R = 1$	2	+		$ \begin{pmatrix} a_{2}^{+}a_{-1}^{+} + a_{2}^{-}a_{-1}^{-} \\ + + & - & - \\ + & - & - \\ \end{pmatrix} 0\rangle $	$\nabla \nabla$
$N_L = 2, N_R = 1$		-		$\begin{pmatrix} a_{2}^{+}a_{-1}^{+} - a_{2}^{-}a_{-1}^{-} \\ (a_{2}^{+}a_{-1}^{+} - a_{2}^{-}a_{-1}^{-} \\ (a_{2}^{+}a_{-1}^{$	
$N_L = 2, N_R = 1$	3	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right) 0\rangle$	1

es of q

String S	tates	s & Q	uant	um Numbers	Results for SU(3) and ground states for several values
N_L, N_R	J	$ P_t$	P_l	String State	
$N_L = N_R = 0$	0	+	+	0>	Absolute Ground State $J = 1, q = 1$.
$N_L = 1, N_R = 0$	1) ±		$\left(a_{1}^{+}\pm a_{1}^{-} ight)\left 0 ight angle$	
$N_{L} = N_{R} = 1$ $N_{L} = 2, N_{R} = 0$	$ \begin{array}{c c} 0 \\ 0 \\ 2 \\ 2 \\ 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ \end{array} $	+ - + - + ± + -	+ + + +	$ \begin{vmatrix} a_{1}^{+}a_{-1}^{-} + a_{1}^{-}a_{-1}^{+} \\ a_{1}^{+}a_{-1}^{-} - a_{1}^{-}a_{-1}^{+} \\ a_{1}^{+}a_{-1}^{-} - a_{1}^{-}a_{-1}^{-} \\ a_{1}^{+}a_{-1}^{+} + a_{1}^{-}a_{-1}^{-} \\ a_{1}^{+}a_{-1}^{+} - a_{1}^{-}a_{-1}^{-} \\ \end{vmatrix} \begin{vmatrix} a_{1}^{+}a_{1}^{+} - a_{1}^{-}a_{-1}^{-} \\ a_{1}^{+}a_{1}^{+} + a_{1}^{-}a_{1}^{-} \\ a_{1}^{+}a_{1}^{+} + a_{1}^{-}a_{1}^{-} \\ \end{vmatrix} \begin{vmatrix} a_{1}^{+}a_{1}^{+} + a_{1}^{-}a_{1}^{-} \\ a_{1}^{+}a_{1}^{+} - a_{1}^{-}a_{1}^{-} \\ \end{vmatrix} \begin{vmatrix} a_{1}^{+}a_{1}^{+} - a_{1}^{-}a_{1}^{-} \\ a_{1}^{+}a_{1}^{+} - a_{1}^{-}a_{1}^{-} \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} a_{1}^{+}a_{1}^{+} - a_{1}^{-}a_{1}^{-} \\ a_{1}^{+}a_{1}^{+} - a_{1}^{-}a_{1}^{-} \\ \end{vmatrix} \end{vmatrix} \begin{vmatrix} a_{1}^{+}a_{1}^{+} - a_{1}^{-}a_{1}^{-} \\ a_{1}^{+}a_{1}^{+} - a_{1}^{-}a_{1}^{-} \\ \end{vmatrix} \end{vmatrix} \end{vmatrix} \end{vmatrix} \end{vmatrix} $	8 6 $E/\sqrt{\sigma_f}$ 4 $N.G: N_L = N_R = 0$ $J = 0, P_{\mathcal{P}} = +, P_{\mathcal{R}} = +, q = 0$
$N_L = 2, N_R = 1$ $N_L = 2, N_R = 1$	0 0 1 1 2 2 3	+ - ± + - ±		$ \begin{vmatrix} \left(a_{2}^{+}a_{-1}^{-} + a_{2}^{-}a_{-1}^{+}\right) 0\rangle \\ \left(a_{2}^{+}a_{-1}^{-} - a_{2}^{-}a_{-1}^{+}\right) 0\rangle \\ \left(a_{1}^{+}a_{1}^{+}a_{-1}^{-} \pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right) 0\rangle \\ \left(a_{1}^{+}a_{1}^{-}a_{-1}^{-} \pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right) 0\rangle \\ \left(a_{2}^{+}a_{-1}^{+} + a_{2}^{-}a_{-1}^{-}\right) 0\rangle \\ \left(a_{2}^{+}a_{-1}^{+} - a_{2}^{-}a_{-1}^{-}\right) 0\rangle \\ \left(a_{1}^{+}a_{1}^{+}a_{-1}^{+} \pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right) 0\rangle \end{vmatrix} $	$2 \\ 0 \\ 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ l\sqrt{\sigma_f}$

es of q

String States & Quantum Numbers					Results for SU(3) and ground states for several value
N_L, N_R	J	P_t	P_l	String State	
$N_L = N_R = 0$	0	+	+	0>	Absolute Ground State $J = 1, q = 1$.
$N_L = 1, N_R = 0$	1	±		$\left(a_{1}^{+}\pm a_{1}^{-} ight)\left 0 ight angle$	
$N_L = N_R = 1$	0	+	+	$\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left 0\right\rangle$	I
$N_L = N_R = 1$	0		-		
$N_L = N_R = 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-} ight)\left 0 ight angle$	
$N_L = N_R = 1$	2	-	+	$\left(a_{1}^{+}a_{-1}^{+} - a_{1}^{-}a_{-1}^{-}\right) 0\rangle$	
$N_L = 2, N_R = 0$	0	+		$a_1^+a_1^- 0\rangle$	$E/\sqrt{\sigma_f}$
$N_L = 2, N_R = 0$	1	±		$\left(a_{2}^{+}\pm a_{2}^{-}\right)\left 0 ight angle$	
$N_L = 2, N_R = 0$	2	+		$\left(a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-} ight)\left 0 ight angle$	4 N.G: $N_L = N_R = 0$ $J = 0, P_P = +, P_R = +, q = 0$
$N_L = 2, N_R = 0$	2	_	C.	$\left(a_1^+a_1^+ - a_1^-a_1^-\right)\left 0\right\rangle$	
$N_L = 2, N_R = 1$	0	+		$\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$	
$N_L = 2, N_R = 1$	0			$\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$	
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right) 0\rangle$	$E^{2} = (\sigma l)^{2} + 8\pi\sigma \left(\frac{N_{L} + N_{R}}{2} - \frac{1}{12}\right) + \left(\frac{2\pi q}{l}\right)^{2}$
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right) 0\rangle$	1 2 3 4 5 6 7
$N_L = 2, N_R = 1$	2	+		$\left(a_{2}^{+}a_{-1}^{+}+a_{2}^{-}a_{-1}^{-}\right) 0\rangle$	$l\sqrt{\sigma_f}$
$N_L = 2, N_R = 1$	2			$\left(a_{2}^{+}a_{-1}^{+}-a_{2}^{-}a_{-1}^{-}\right) 0\rangle$	
$N_L = 2, N_R = 1$	3	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right) 0\rangle$	
	1	1			

String States & Quantum Numbers N_L, N_R |J| $P_t \mid P_l$ String State Absolute Ground States for $N_L = 2, N_R = 0$. $N_L = N_R = 0$ $|0\rangle$ 0 + + $N_L = 1, N_R = 0$ $\left(a_{1}^{+}\pm a_{1}^{-}\right)\left|0\right\rangle$ ± 10 $\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_{L} = N_{R} = 1$ 0 ++ $\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_{L} = N_{R} = 1$ 0 _ _ 8 $\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right)|0\rangle$ $N_L = N_R = 1$ 2 ++N.G: $N_L = 2, N_R = 0$ $\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = N_R = 1$ 2 +_ 6 N.G: $N_L = 1, N_R = 0$ $N_L = 2, N_R = 0$ J = 1, q = $a_{1}^{+}a_{1}^{-}|0\rangle$ 0 + $E/\sqrt{\sigma_f}$ $\left(a_{2}^{+}\pm a_{2}^{-}\right)\left|0\right\rangle$ $N_L = 2, N_R = 0$ \pm 1 4 $\left(a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-}\right)\left|0\right\rangle$ N.G: $N_L = N_R = 0$ $N_L = 2, N_R = 0$ $J=0, P_{\mathcal{P}}=+, P_{\mathcal{R}}=+, q=0$ 2 + $\left(a_{1}^{+}a_{1}^{+}-a_{1}^{-}a_{1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 0$ 2 $\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $\mathbf{2}$ $N_L = 2, N_B = 1$ 0 + $\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_L = 2, N_R = 1$ 0 _ $E^{2} = (\sigma l)^{2} + 8\pi\sigma \left(\frac{N_{L} + N_{R}}{2} - \frac{1}{12}\right) + \left(\frac{2\pi q}{l}\right)^{2}$ $\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right)|0\rangle$ $N_L = 2, N_R = 1$ 1 \pm 0 $\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right)|0\rangle$ $\mathbf{2}$ 3 4 5 6 7 $N_L = 2, N_R = 1$ \pm 1 $l\sqrt{\sigma_f}$ $\left(a_{2}^{+}a_{-1}^{+}+a_{2}^{-}a_{-1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 1$ 2 + $\left(a_{2}^{+}a_{-1}^{+}-a_{2}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = 2, N_R = 1$ 2 _ $\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 1$ 3 \pm

Results for SU(3) and ground states for several values of q

String States & Quantum Numbers N_L, N_R |J| $P_t \mid P_l$ String State $N_L = N_R = 0$ $|0\rangle$ 0 + + $N_L = 1, N_R = 0$ $\left(a_{1}^{+}\pm a_{1}^{-}\right)\left|0\right\rangle$ ± 10 $\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_{L} = N_{R} = 1$ 0 ++ $\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_L = N_R = 1$ 0 _ _ 8 $\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = N_R = 1$ 2 ++ $\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_{L} = N_{B} = 1$ 2 +_ 6 $N_L = 2, N_R = 0$ 0 $a_{1}^{+}a_{1}^{-}|0\rangle$ + $E/\sqrt{\sigma_f}$ $\left(a_{2}^{+}\pm a_{2}^{-}\right)\left|0\right\rangle$ $N_L = 2, N_R = 0$ 1 \pm 4 $\left(a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 0$ 2 + $\left(a_{1}^{+}a_{1}^{+}-a_{1}^{-}a_{1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 0$ 2 $\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $\mathbf{2}$ $N_L = 2, N_R = 1$ 0 + $\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_L = 2, N_R = 1$ 0 _ $\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right)|0\rangle$ $N_L = 2, N_R = 1$ 1 \pm 0 $\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right)|0\rangle$ $N_L = 2, N_R = 1$ \pm 1 $\left(a_{2}^{+}a_{-1}^{+}+a_{2}^{-}a_{-1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 1$ 2 + $\left(a_{2}^{+}a_{-1}^{+}-a_{2}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = 2, N_R = 1$ 2 _ $\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 1$ 3 \pm

Results for SU(3) and ground states for several values of q

String States & Quantum Numbers N_L, N_R |J| $P_t \mid P_l$ String State $N_L = N_R = 0$ $|0\rangle$ 0 + + $N_L = 1, N_R = 0$ $\left(a_{1}^{+}\pm a_{1}^{-}\right)\left|0\right\rangle$ ± $\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_{L} = N_{R} = 1$ 0 ++ $\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_{L} = N_{R} = 1$ 0 _ _ $\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = N_R = 1$ 2 ++ $\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = N_R = 1$ 2 +_ $N_L = 2, N_R = 0$ 0 $a_{1}^{+}a_{1}^{-}|0\rangle$ + $\left(a_{2}^{+}\pm a_{2}^{-}\right)\left|0\right\rangle$ $N_L = 2, N_R = 0$ \pm 1 $\left(a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 0$ 2 + $\left(a_{1}^{+}a_{1}^{+}-a_{1}^{-}a_{1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 0$ 2 $\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_L = 2, N_B = 1$ 0 + $\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_L = 2, N_R = 1$ 0 _ $\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right)|0\rangle$ $N_L = 2, N_R = 1$ 1 \pm $\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right)|0\rangle$ $N_L = 2, N_R = 1$ \pm 1 $\left(a_{2}^{+}a_{-1}^{+}+a_{2}^{-}a_{-1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 1$ 2 + $\left(a_{2}^{+}a_{-1}^{+}-a_{2}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = 2, N_R = 1$ 2 _ $\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 1$ 3 \pm

Results for SU(3) and ground states for several values of q

String States & Quantum Numbers N_L, N_R |J| $P_t \mid P_l$ String State $N_L = N_R = 0$ $|0\rangle$ 0 + + $N_L = 1, N_R = 0$ $\left(a_{1}^{+}\pm a_{1}^{-}\right)\left|0\right\rangle$ ± $\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_{L} = N_{R} = 1$ 0 ++ $\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_{L} = N_{R} = 1$ 0 _ _ $\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = N_R = 1$ 2 ++ $\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = N_R = 1$ 2 +_ $N_L = 2, N_R = 0$ 0 $a_{1}^{+}a_{1}^{-}|0\rangle$ + $\left(a_{2}^{+}\pm a_{2}^{-}\right)\left|0\right\rangle$ $N_L = 2, N_R = 0$ \pm 1 $\left(a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 0$ 2 + $N_L = 2, N_R = 0$ $\left(a_{1}^{+}a_{1}^{+}-a_{1}^{-}a_{1}^{-}\right)|0\rangle$ 2 $\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_L = 2, N_B = 1$ 0 + $\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_L = 2, N_R = 1$ 0 _ $\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right)|0\rangle$ $N_L = 2, N_R = 1$ 1 \pm $\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right)|0\rangle$ $N_L = 2, N_R = 1$ \pm 1 $\left(a_{2}^{+}a_{-1}^{+}+a_{2}^{-}a_{-1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 1$ 2 + $\left(a_{2}^{+}a_{-1}^{+}-a_{2}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = 2, N_R = 1$ 2 _ $\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 1$ 3 \pm

Results for SU(3) and ground states for several values of q

String States & Quantum Numbers N_L, N_R |J| $P_t \mid P_l$ String State $N_L = N_R = 0$ $|0\rangle$ 0 + + $\left(a_1^+ \pm a_1^-\right) \left|0\right\rangle$ $N_L = 1, N_R = 0$ ± $\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_{L} = N_{R} = 1$ 0 ++ $\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_{L} = N_{R} = 1$ 0 _ _ $\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right)|0\rangle$ $N_{L} = N_{R} = 1$ 2 ++ $\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = N_R = 1$ 2 +_ $N_L = 2, N_R = 0$ 0 $a_{1}^{+}a_{1}^{-}|0\rangle$ + $\left(a_{2}^{+}\pm a_{2}^{-}\right)\left|0\right\rangle$ $N_L = 2, N_R = 0$ \pm 1 $\left(a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 0$ 2 + $N_L = 2, N_R = 0$ $\left[a_{1}^{+}a_{1}^{+}-a_{1}^{-}a_{1}^{-}\right)\left|0\right\rangle$ 2 $\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_L = 2, N_B = 1$ 0 + $\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)|0\rangle$ $N_L = 2, N_R = 1$ 0 _ $\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right)|0\rangle$ $N_L = 2, N_R = 1$ 1 \pm $\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right)|0\rangle$ $N_L = 2, N_R = 1$ \pm 1 $\left(a_{2}^{+}a_{-1}^{+}+a_{2}^{-}a_{-1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 1$ 2 + $\left(a_{2}^{+}a_{-1}^{+}-a_{2}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = 2, N_R = 1$ 2 _ $\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right)|0\rangle$ $N_L = 2, N_R = 1$ 3 \pm

Results for SU(3) and ground states for several values of q

String States & Quantum Numbers $P_t \mid P_l$ String State N_L, N_R |J| $N_L = N_R = 0$ $|0\rangle$ + 0 + $\left(a_1^+ \pm a_1^-\right) \left|0\right\rangle$ $N_L = 1, N_R = 0$ ± $\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_L = N_R = 1$ 0 ++ $\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left|0\right\rangle$ $N_L = N_R = 1$ 0 _ _ $\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = N_R = 1$ 2 ++ $\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right)\left|0\right\rangle$ $N_L = N_R = 1$ 2 + $N_L = 2, N_R = 0$ 0 $a_{1}^{+}a_{1}^{-}|0\rangle$ + $\left(a_{2}^{+}\pm a_{2}^{-}\right)\left|0\right\rangle$ $N_L = 2, N_R = 0$ \pm 1 $\left[a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-}\right)\left|0\right\rangle$ $N_L = 2, N_R = 0$ 2 + $N_L = 2, N_R = 0$ $a_1^+a_1^+ - a_1^-a_1^-) |0\rangle$ 2

Results for SU(3) and q=0

String States & Quantum Numbers

N_L, N_R	J	P_t	P_l	String State
$N_L = N_R = 0$	0	+	+	0
$N_L = 1, N_R = 0$	1	±		$\left(a_{1}^{+}\pm a_{1}^{-}\right)\left 0\right\rangle$
$N_L = N_R = 1$	0	+	+	$\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right) 0\rangle$
$N_L = N_R = 1$	0		—	$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left 0 ight angle$
$N_L = N_R = 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right) 0\rangle$
$N_L = N_R = 1$	2	_	+	$\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
$N_L = 2, N_R = 0$	0	+		$ a_1^+a_1^- 0\rangle$
$N_L = 2, N_R = 0$	1	±		$\left(a_2^+ \pm a_2^-\right) \left 0\right\rangle$
$N_L = 2, N_R = 0$	2	+		$\left(a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-}\right) 0\rangle$
$N_L = 2, N_R = 0$	2		7	$\left(a_1^+a_1^+ - a_1^-a_1^-\right) 0\rangle$
$N_L = 2, N_R = 1$	0	+		$\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = 2, N_R = 1$	0	_		$\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right) 0\rangle$
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right) 0\rangle$
$N_L = 2, N_R = 1$	2	+		$\left(a_{2}^{+}a_{-1}^{+}+a_{2}^{-}a_{-1}^{-}\right) 0\rangle$
$N_L = 2, N_R = 1$	2	_		$\left(a_{2}^{+}a_{-1}^{+}-a_{2}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
$N_L = 2, N_R = 1$	3	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right) 0\rangle$

Results for SU(3) and q=0

String States & Quantum Numbers

N_L, N_R	J	P_t	P_l	String State
$N_L = N_R = 0$	0	+	+	$ $ $ 0\rangle$
$\boxed{N_L = 1, N_R = 0}$	1	±		$\left \left(a_{1}^{+} \pm a_{1}^{-} \right) \left 0 \right\rangle \right.$
$ N_L = N_R = 1 $	0	+	+	$\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right) 0\rangle$
$N_L = N_R = 1$	0		-	$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = N_R = 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right) 0\rangle$
$N_L = N_R = 1$	2	_	+	$\left(a_{1}^{+}a_{-1}^{+} - a_{1}^{-}a_{-1}^{-}\right) 0\rangle$
$N_L = 2, N_R = 0$	0	+		$ a_1^+a_1^- 0\rangle$
$N_L = 2, N_R = 0$	1	±		$\left(a_{2}^{+}\pm a_{2}^{-} ight)\left 0 ight angle$
$N_L = 2, N_R = 0$	2	+		$\left(a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-}\right) 0\rangle$
$N_L = 2, N_R = 0$	2		2	$\left(a_1^+a_1^+ - a_1^-a_1^-\right) 0\rangle$
$N_L = 2, N_R = 1$	0	+		$\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = 2, N_R = 1$	0			$\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right) 0\rangle$
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right) 0\rangle$
$N_L = 2, N_R = 1$	2	+		$\left \begin{array}{c} \left(a_{2}^{+}a_{-1}^{+} + a_{2}^{-}a_{-1}^{-} \right) \left 0 \right\rangle \right.$
$N_L = 2, N_R = 1$	2			$\left(a_{2}^{+}a_{-1}^{+}-a_{2}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
$N_L = 2, N_R = 1$	3	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right) 0\rangle$

Results for SU(3) and q=0

String States & Quantum Numbers

N_L, N_R	J	P_t	P_l	String State
$N_L = N_R = 0$	0	+	+	$ $ $ 0\rangle$
$igg[N_L=1, N_R=0$	1	±		$\left \left(a_{1}^{+} \pm a_{1}^{-} \right) \left 0 \right\rangle \right.$
$ N_L = N_R = 1 $	0	+	+	$\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right) 0\rangle$
$N_L = N_R = 1$	0	-	-	$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = N_R = 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right) 0\rangle$
$N_L = N_R = 1$	2		+	$\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right) 0\rangle$
$N_L = 2, N_R = 0$	0	+		$ a_1^+a_1^- 0\rangle$
$N_L = 2, N_R = 0$	1	±		$\left(a_{2}^{+}\pm a_{2}^{-} ight)\left 0 ight angle$
$N_L = 2, N_R = 0$	2	+		$\left(a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-}\right) 0\rangle$
$N_L = 2, N_R = 0$	2		2	$\left(a_1^+a_1^+ - a_1^-a_1^-\right) 0\rangle$
$N_L = 2, N_R = 1$	0	+	[]	$\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = 2, N_R = 1$	0			$\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right) 0\rangle$
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right) 0\rangle$
$N_L = 2, N_R = 1$	2	+		$\left(a_{2}^{+}a_{-1}^{+}+a_{2}^{-}a_{-1}^{-}\right) 0\rangle$
$N_L = 2, N_R = 1$	2			$\left(a_{2}^{+}a_{-1}^{+}-a_{2}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
$N_L = 2, N_R = 1$	3	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right) 0\rangle$

Results for SU(3) and q=0

String States & Quantum Numbers

N_L, N_R	J	P_t	P_l	String State
$N_L = N_R = 0$	0	+	+	$ $ $ 0\rangle$
$\boxed{N_L = 1, N_R = 0}$	1	±		$\left(a_{1}^{+}\pm a_{1}^{-}\right)\left 0\right\rangle$
$N_L = N_R = 1$	0	+	+	$\left \left(a_{1}^{+}a_{-1}^{-} + a_{1}^{-}a_{-1}^{+} \right) 0 \right\rangle \right $
$N_L = N_R = 1$	0			$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left 0 ight angle$
$N_L = N_R = 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right) 0\rangle$
$N_L = N_R = 1$	2		+	$\left(a_{1}^{+}a_{-1}^{+}-a_{1}^{-}a_{-1}^{-}\right) 0\rangle$
$N_L = 2, N_R = 0$	0	+		$ a_1^+a_1^- 0\rangle$
$N_L = 2, N_R = 0$	1	±		$\left(a_2^+ \pm a_2^-\right) 0\rangle$
$N_L = 2, N_R = 0$	2	+		$\left(a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-}\right) 0\rangle$
$N_L = 2, N_R = 0$	2		2	$\left(a_1^+a_1^+ - a_1^-a_1^-\right) 0\rangle$
$N_L = 2, N_R = 1$	0	+		$\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = 2, N_R = 1$	0			$\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right) 0\rangle$
$N_L = 2, N_R = 1$	2	+		$\left(a_{2}^{+}a_{-1}^{+}+a_{2}^{-}a_{-1}^{-}\right) 0\rangle$
$N_L = 2, N_R = 1$	2			$\left(a_{2}^{+}a_{-1}^{+}-a_{2}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
$N_L = 2, N_R = 1$	3	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right) 0\rangle$

Results for SU(3) and q=0

String States & Quantum Numbers

N_L, N_R		P_t	P_l	String State
$N_L = N_R = 0$	0	+	+	0>
$N_L = 1, N_R = 0$	1	±		$\left(a_{1}^{+}\pm a_{1}^{-} ight)\left 0 ight angle$
$N_L = N_R = 1$	0	+	+	$\left(a_{1}^{+}a_{-1}^{-}+a_{1}^{-}a_{-1}^{+}\right)\left 0\right\rangle$
$N_L = N_R = 1$	0	<u> </u>		$\left(a_{1}^{+}a_{-1}^{-}-a_{1}^{-}a_{-1}^{+}\right)\left 0 ight angle$
$N_L = N_R = 1$	2	+	+	$\left(a_{1}^{+}a_{-1}^{+}+a_{1}^{-}a_{-1}^{-}\right)\left 0\right\rangle$
$N_L = N_R = 1$	2		+	$\left(a_{1}^{+}a_{-1}^{+} - a_{1}^{-}a_{-1}^{-}\right) 0\rangle$
$N_L = 2, N_R = 0$	0	+		$ a_1^+a_1^- 0\rangle$
$N_L = 2, N_R = 0$	1	±		$\left(a_2^+ \pm a_2^-\right) \left 0\right\rangle$
$N_L = 2, N_R = 0$	2	+		$\left(a_{1}^{+}a_{1}^{+}+a_{1}^{-}a_{1}^{-}\right) 0\rangle$
$N_L = 2, N_R = 0$	2		7	$\left(a_1^+a_1^+ - a_1^-a_1^-\right) 0\rangle$
$N_L = 2, N_R = 1$	0	+		$\left(a_{2}^{+}a_{-1}^{-}+a_{2}^{-}a_{-1}^{+}\right)\left 0 ight angle$
$N_L = 2, N_R = 1$	0			$\left(a_{2}^{+}a_{-1}^{-}-a_{2}^{-}a_{-1}^{+}\right)\left 0 ight\rangle$
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{+}\right)\left 0 ight angle$
$N_L = 2, N_R = 1$	1	±		$\left(a_{1}^{+}a_{1}^{-}a_{-1}^{-}\pm a_{1}^{-}a_{1}^{+}a_{-1}^{+}\right) 0\rangle$
$N_L = 2, N_R = 1$	2	+		$\left(a_{2}^{+}a_{-1}^{+}+a_{2}^{-}a_{-1}^{-}\right) 0\rangle$
$N_L = 2, N_R = 1$	2			$\left(a_{2}^{+}a_{-1}^{+}-a_{2}^{-}a_{-1}^{-}\right)\left 0 ight>$
$N_L = 2, N_R = 1$	3	±		$\left(a_{1}^{+}a_{1}^{+}a_{-1}^{+}\pm a_{1}^{-}a_{1}^{-}a_{-1}^{-}\right) 0\rangle$

Results for SU(3) and q=0

S. Dubovsky, R. Flauger, V. Gorbenko '13

- Calculating the energy shifts from the S matrix of colliding winding phonons
- Using approximate integrability as well as the Thermodynamic Bethe Ansatz
- Test what happens when we have both left and right movers energy levels cannot explain the anomalous state
- the most straightforward way to explain this level is the introduction of a massive pseudoscalar particle φ on the worldsheet

$$S_{int} = \frac{\alpha}{8\pi} \int d^2 \sigma \phi K^i_{\alpha\gamma} K^{j\gamma}_\beta \epsilon^{\alpha\beta} \epsilon_{ij}$$

- field ϕ as the worldsheet axion
- By fitting the two free parameters:

$$m\ell_s = 1.85^{+0.02}_{-0.03} \quad \alpha = 9.6 \pm 0.1$$

Results for SU(3) and q=0

Outline

- The flux tube looks pretty much like a bosonic string even for short flux tubes
- Looks like there is a massive "axion" particle on the worldsheet of the flux tube in D=3+1
- However we would like to know what happens for higher excitations in D=3+1
- How does the "axion" behaves in the existence of a θ -vacuum?
- What happens for long flux tubes (level crossing)?