A metric relation on the triangle and the circle

Paul Goron

Abstract. In this short note we study a metric relation between the triangle and the circle.

Keywords. triangle, circle, tangent, metric relation.

Introduction. As the Pythagorean theorem is a metric relation in a right triangle, the following theorem is a metric relation between a circle and a triangle of which one of the sides is tangent to the circle and the opposite vertex belonging to the circle. We use the coordinate method to prove this relation.

Theorem. Let ABC be a triangle in the plane such that the line passing through the point A and the point C is tangent to a circle with center O, and the point B and the point C belonging to this same circle. Let a, b, c, $r \in \mathbb{R}^*_+$ such that AB = c, AC = b, BC = a and r the radius of the center circle O. Then, the following relation hold,

$$r = \sqrt{\frac{a^4 b^2}{2 \left(a^2 b^2 + a^2 c^2 + b^2 c^2\right) - a^4 - b^4 - c^4}}$$

Proof. Let be the Cartesian coordinate system of the plane P given by (G, i, j). The point G is the origin of the coordinate system, the two vectors \vec{i}, \vec{j} are orthogonal and unitary.

Let $d, f, p, q \in R$ such that, $d \neq 0, f \neq 0$. Let C_1 be the circle with center O. The point B and C belonging to the circle C_1 . By rotation and translation, which are isometries, we have the point O(0,0), the point C(d,0) and the point B(p,q).

Let d_1 be the line tangent to the circle C_1 passing through the point C, the equation of the line d_1 is,

$$x = d$$

The point A belong to the line d_1 , therefore A(d, f). Let $a, b, c, r \in \mathbb{R}^*_+$ such that AB = c, AC = b, BC = a and OB = OC = r.

$$a^{2} = (d - p)^{2} + q^{2}$$

 $b^{2} = f^{2}$
 $c^{2} = (d - p)^{2} + (f - q)^{2}$

$$r^2 = d^2$$

Then,

$$c^{2} = a^{2} + b^{2} - 2fq$$
$$\frac{c^{2} - a^{2} - b^{2}}{-2f} = q$$
$$\frac{\left(c^{2} - a^{2} - b^{2}\right)^{2}}{4b^{2}} = q^{2}$$

And $|\boldsymbol{q}|$ is the height from B in the triangle OCB, as shown in [1], by Heron's formula,

$$q^{2} = \left(\frac{2\sqrt{\left(\frac{2r+a}{2}\right)\left(\frac{2r+a}{2}-a\right)\left(\frac{2r+a}{2}-r\right)\left(\frac{2r+a}{2}-r\right)}}{r}\right)^{2}$$
$$q^{2} = a^{2} - \frac{a^{4}}{4r^{2}}$$

Then,

$$\frac{\left(c^2 - a^2 - b^2\right)^2}{4b^2} = a^2 - \frac{a^4}{4r^2}$$

Then,

$$r = \sqrt{\frac{a^4 b^2}{2 \left(a^2 b^2 + a^2 c^2 + b^2 c^2\right) - a^4 - b^4 - c^4}}$$

References

[1] John Roe. Elementary geometry. Clarendon Press, 1993.