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1. Executive Summary 

Understanding the applicability of NISQ-era devices for a variety of problems is of the utmost 
importance to better develop and utilise these devices for real-world use-cases. In this document we 
motivate the use of quantum computing models for natural-language processing tasks, focussing on 
comparison with existing methods in the classical natural language processing (NLP) community. We 
define the current state of these NISQ devices, and define methods of interest that will allow us to 
exploit the resources to implement NLP tasks, by encoding and processing data in a hybrid classical-
quantum workflow. For this, we outline the high-level architecture of the solution, and provide a 
modular design for ease of implementation and extension. 
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2. Context 

2.1. QNLP project introduction 

The goal of the QNLP project is to define the required processes and mappings for natural language 
processing tasks on quantum computing devices. Given the infancy of quantum technologies, allowing 
for the exploration of valid methods and new algorithms to exploit the computational space these 
platforms offer is essential. Natural language processing (NLP) in the language of quantum mechanics 
has seen a large amount of work in recent years (Coecke, Felice, Meichanetzidis, & Toumi, 2020) 
(Coecke, Sadrzadeh, & Clark, 2010) (O’Riordan, Doyle, Baruffa, & Kannan, 2020), and in this 
deliverable we will define the steps to explore the solution of NLP tasks on near-term quantum 
devices. 
 
Here, we aim to define the background material, and current state of quantum hardware and 
architectures in the noisy-intermediate scale quantum (NISQ) device era (Preskill, 2018).This 
motivates the operations and processes that can be defined to work on such noisy machines, of which 
will differ from fully fault-tolerant devices. Following this, we will discuss the current state of (classical) 
NLP methods, from the point of view of techniques, uses and challenges. 
 
Given these two preceding sections, we infer the best algorithms that can be built using the NISQ-
compatible methods for NLP, motivated by the current state-of-the-art methods and theories available. 

2.2. Quantum background 

2.2.1. Current state of quantum computing 

Advances in qubit architecture, noise control, and the proliferation of quantum algorithms has led to 
the exploration of a variety of new topics for quantum devices. With several platforms in the cloud, and 
more on-premise in research labs worldwide, end-users can interact with quantum computers via a 
variety of interfaces, as well as carrying out simulations through highly used programming languages 
such as Python, C++ and Julia. With this growth in accessibility, researchers from all over the world 
can access the latest quantum devices and use them in their work. As a result, quantum computing 
has found immediate application or a faster assimilation in fields outside their original use-cases.  
 
Current generation gate based quantum computers have on order of 10s of qubits, which are 
expected to dramatically increase in the coming years (IBM, 2020) (IonQ, 2020). This, in addition to 
the fact that the circuit depths and coherence times are still restrictive, means we are yet far to 
achieve fault-tolerant quantum computing, which would allow to experimentally confirm the speedup of 
certain algorithms such as Shor’s algorithm, run advanced quantum chemistry computations, or carry 
out other practical applications. Instead, we are now in the so-called Noisy Intermediate-Scale 
Quantum (NISQ) era (Preskill, 2018), and while the aforementioned applications are still not available, 
a different approach to quantum computing has been proposed.  
 
The idea for the current devices is to use them in tandem with classical machines in hybrid algorithms. 
Classical optimization is made on the classical computers, as current quantum devices cannot 
outperform classical machines in this task. On the other hand, state preparation is left to quantum 
computer to leverage the unique properties of quantum states. This approach is currently undergoing 
a significant research investment, and is being widely explored for applications in the field known as 
quantum machine learning (QML), as well as in academic research, and we can mention as an 
example the successful application of quantum algorithms in computational chemistry (McArdle, 
2020).  
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2.2.2. Available quantum devices 

The circuit model, consisting of sequential application of reversible quantum transformations acting on 
a qubit register, is the dominant model in quantum computing. Several qubit technologies have been 
developed in the last decades, with different performance regarding noise, coherence time, etc. 
Among these technologies, the most common are superconducting (Kjaergaard, et al., 2020) (charge, 
flux or phase) qubits made out of Josephson junctions, photon polarization qubits, spin qubits or 
quantum dots. Ion or atom arrays is another qubit architecture that has been recently implemented 
with great expectations for the forthcoming years. Usually magnetic fields are use to manipulate them 
and gates are implemented through the use of microwaves or lasers. 
 
Among the pioneering companies building quantum computers, stand out IBM, with a 65 
superconducting qubits quantum computer and an announced 1000-qubit machine by 2023 
(Gambetta, 2020).  
 
Other companies such as Rigetti or Xanadu offer cloud computing services operating quantum 
computers. This kind of services is having a rapid growth, and we can mention for example the 
recently announced Azure Quantum, a collaboration of Microsoft with partners such as IonQ or 
Honeywell, both companies working with trapped-ion quantum computers. 
 
Some European companies are also putting effort into the development of quantum computing. AQT, 
for example, use ion-trap quantum computers with single charged atoms as qubits trapped inside 
vacuum chambers. They were able to implement a scalable Shor algorithm (Monz, 2016), or perform 
topologically encoded quantum error correction  (Nigg, 2014), among other achievements. 
Furthermore, they are actively developing a 50-qubit quantum computing demonstrator based on 
trapped ions, a technology where temperature is not as restrictive as for superconducting qubits 
(Pogorelov, 2021). Pasqal, on the other hand, explores quantum simulators and works towards the 
commercialization of neutral atoms-based hardware, that can reach quantum registers with a larger 
number of qubits and higher connectivity (Henriet, 2020).  
 
One point of note is that all of these devices are currently well within the realm of NISQ, wherein errors 
inherent in the devices prevent their use for large-depth quantum circuits. 
 
In addition to these, alternative models of computation have been proposed and well studied, such as 
quantum annealers, boson samplers, both of which are not universal quantum computers, and 
topological quantum computers, which if experimentally realised have built in fault tolerance. In fact, a 
quantum annealer has been the first quantum device to be commercially distributed by D-Wave. 
However, a general purpose error-corrected quantum computer is still far from realised, and so we 
restrict ourselves to exploration of NISQ era devices, such as those previously mentioned. 
 

2.2.3. Tensor Networks 

 
Tensor networks (TN) have been widely used in the field of solid state physics for simulating many-
body systems, and connections have been made between the structure of such networks and certain 
classes of quantum states (White, 1993) (Östlund, (1995)). The Penrose graphical notation helped to 
depict these networks visually (Penrose, 1971), where akin to Feynman diagrams, one can form 
computational graphs with this visual notation. In many-body quantum physics, high-dimensional 
tensors appear often, with the number of indices scaling exponentially with the number of constituents 
of the system. Tensor networks provide efficient representation of these kinds of states, rewriting them 
as many low-dimensional tensors that carry the quantum properties such as the entanglement in the 
bond dimension of the contracted indices, allowing results to be computed in a more efficient way. 
This view not only gives new insight into the understanding of complex quantum systems but also 
helps to develop new simulation algorithms.  
 
A key idea working with TN is the singular value decomposition (SVD), which allows to approximate a 
wavefunction keeping the relevant degrees of freedom responsible for the entanglement of the state. 
A popular method is the Density Matrix Normalization Group (DMRG) (Schollwöck, 2011), an 
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optimization algorithm that produces 1-d finitely-correlated states known as Matrix Product States 
(MPS) (Orús, 2014). This compact way to represent complex systems and the underlying compression 
of high-dimensional data also finds application in deep learning and neural network representation (A. 
Cichocki, 2016) (Andrey Kardashin, 2018).  
 
On the other hand, most of the time, quantum algorithms are depicted as quantum circuits, which are 
diagrams inspired by tensor network theory (Biamonte & Bergholm, 2017). In fact, it is possible to 
implement tensor network models in small NISQ devices (Huggins, Patil, Mitchell, Whaley, & 
Stoudenmire, 2019) (Wall, Abernathy, & Quiroz, 2010) as the number of physical qubits required can 
be smaller than the desired output size (Bai, Yang, & Chiribella, 2020), having a logarithmic or even 
constant scaling for the right architecture choice of the network. With this approach, quantum states 
are represented by MPS, and linear maps by Matrix Product Operators (MPO) (Chan, Keselman, 
Nakatani, Li, & White, 2016).  
 
A special use of tensor networks is the ZX-calculus (Wetering, 2020). From a TN point of view, ZX-
calculus considers every element of a quantum circuit as a tensor and the wires as the contracted 
indices. It is especially useful for reasoning using Penrose diagrams (Penrose, 1971). For quantum 
NLP, ZX-Calculus is interesting for two reasons: parametrized circuits arising in some models are 
easier to understand in diagrammatic notation, giving us an intuition of the processes involved and 
also it is extremely useful because it can reduce the depth of quantum circuits (Kissinger & van de 
Wetering, 2020) which is usually an issue given the limitations of NISQ devices.  
 

2.2.4. Computational complexity and quantum computers 

Given the generality of classical computers, the use of quantum computers must allow for some 
benefits to be considered a worthwhile endeavour. As such, the main area of benefit for these devices 
is in improved algorithmic complexity for specific tasks. Grover-like methods show a quadratic 
improvement in database search, Shor’s algorithm demonstrates polynomial rather than sub-
exponential scaling for integer factorisation, and heuristic variational algorithms accurately match 
energy levels of molecular systems which require exponential scaling to solve classically.  
 
These complexity improvements show only a small subset of advantages provided by using quantum 
devices. However, it is worth noting that often the overhead in classically preparing information for 
these devices can often undo any gains obtained, and so care must be taken when designing 
algorithms for use on quantum devices. In addition, many algorithms require circuit depths making the 
use of NISQ devices infeasible due to the strength of noise relative to the signal (Preskill, 2018). 
 
Of the above methods, the variational class of algorithms is known to be more resilient to noise and 
device imperfections, given the short depths often observed with such circuits (Swingle, 2017). We will 
consider these methods as part of our proposed design for this reason.  
 

2.2.5. Quantum machine learning & variational circuits 

 
Variational quantum algorithms are, at their core, methods which are defined by parametrized 
quantum circuits: tunable unitary gates controlled by free parameters acting on the different qubits of 
our register, and consisting of sequential rotations along the required axis of the Bloch sphere 
(McClean, Romero, Babbush, & Aspuru-Guzik, 2016). Two popular examples are the variational 
quantum eigen-solver (VQE) (Peruzzo, et al., 2014) (Cerezo, Sharma, Arrasmith, & Coles, 2020) and 
the quantum approximate optimization algorithm (QAOA) (Farhi, Goldstone, & Gutmann, 2014). The 
states for these methods are prepared in a convenient Ansätz that satisfy some requirements of the 
problem to be solved and hardware architecture (Vicentini, Biella, Regnault, & Ciuti, 2019) (Choquette, 
et al., 2020) (Herasymenko & O'Brien, 2019). These Ansätze are specially developed for modelling 
complex interactions, and find favour in quantum chemistry and molecular simulations (Grimsley, 
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Economou, Barnes, & Mayhall, 2019). The goal is to compute the value of an objective function using 
the quantum computer and redefine the parameters for the next run using a classical optimizer. 
  
Another approach to optimize PQCs are differentiable quantum circuits (Bergholm, et al., 2018), where 
the objective function is evaluated for a range of different values around the input parameter, which in 
turn determines the new set of parameters for the next iteration. This “quantum differentiation” has 
been proposed to solve classical deep learning problems such as the vanishing gradient. This 
multilayer picture can be compared to that of neural networks, where the free parameters of the 
circuits are equivalent to the weight and biases of the network (Bharti, 2021).  

2.3. Classical NLP 

The field of natural language processing (NLP) deals with processing human language, including 
speech recognition, natural language understanding (NLU), and natural language generation. NLU 
deals with comprehension and understanding of human language and extracting structured knowledge 
from textual or speech input. Historically, many of the NLP methods have employed rule-based 
approaches (Danilevsky, u.c., 2020). Although such methods provide direct means to apply the 
domain knowledge of experts, and the outputs of the respective models are, in principle, interpretable, 
they often prove to be difficult to scale up due to the open-ended nature of language. 
 
Nowadays, although rule-based methods are still used in NLP, many subfields of NLP have largely 
shifted to using Machine Learning (ML) based methods (Jurafsky & Martin, 2017). Although ML 
methods oftentimes suffer in regard to model interpretability (Danilevsky, u.c., 2020), they propose a 
more scalable approach to solving NLP tasks. ML methods are used to a great extent in recent 
research efforts in the NLP field. In real-world applications of NLP methods, such as intent detection 
and parallel data extraction, typically, ML methods, such as word embeddings and language models, 
are used to attempt to consider meaning when dealing with natural language texts. 

2.3.1. Machine Learning 

Machine learning is a subfield of artificial intelligence that deals with algorithms that improve their 
performance by "learning" from training data. In the recent years, with the rise of deep learning the 
field of machine learning has advanced immensely. Neural networks have become the mainstream 
approach for a wide variety of tasks ranging from image recognition to price forecasting to natural 
language processing. 
 
In NLP, neural networks are used for speech recognition and generation, machine translation, text 
classification, named entity recognition, text generation, and many other tasks. In virtual assistants 
and dialogue systems, neural networks are used for either end-to-end system training or, in different 
parts of the system, for intent detection, generation of the response text, and tracking of the dialogue 
state. 

2.3.2. Word embeddings 

A relatively recent advance in NLP was the development of methods related to word embeddings. 
Machine learning techniques such as neural networks normally take as an input vectors of real 
numbers. Therefore, for textual data to be processed by a machine learning algorithm it first has to be 
transformed into a vectorized form. A simple approach would be using a vector space which has as 
many dimensions as there are distinct words in a dictionary (typically at least 10'000-100'000).  A word 
is then represented with a one-hot vector encoding which has value 1 in the position corresponding to 
that word and 0 in all others. 
 
With word embeddings, instead of such sparse representation, the words are embedded in a less-
dimensional (typically with ~100-1000 dimensions) continuous vector-space. Separate words and 
concepts correspond to vectors in this vector space. In this representation similar words tend to 
correspond to vectors that are close. The word embeddings are trained in an unsupervised manner on 
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large monolingual text corpora. In this way the knowledge about the language and the world is 
contained in word embeddings in a distilled form. There are several tools for training and using word 
embeddings, such as word2vec (Mikolov, Chen, Corrado, & Dean, 2013), GloVe (Pennington, Socher, 
& Manning, 2014) and others. One of the most recent and most successful models is fastText 
(Bojanowski, Grave, Joulin, & Mikolov, 2017), developed and open-sourced by Facebook AI 
Research. It combines several techniques to improve the quality of the representation, most 
importantly dividing the word into subword units. 

2.3.3. Language models 

Language models are probabilistic models that predict the probability of a word or sequence of words 
given the preceding (or surrounding) words. The NLP methods have moved from statistical language 
models (such as, using n-grams) to neural language models. A recent breakthrough in NLP is the 
advent of large-scale extensively pretrained language models, which are typically based on a deep 
neural network (specifically, transformer) architecture. Like word embeddings, they are trained 
unsupervisedly on large monolingual text corpora. In the last two years several large language models 
have been published, each of them further improving the state-of-the-art results on several datasets of 
different NLP tasks and in some of them already exceeding the human performance. Most notable 
examples of such models include GPT-2 (Generative Pretrained Transformer) (Radford, et al., 2019), 
ELMo (Embeddings from Language Models) (Peters, u.c., 2018), ULMFiT (Universal Language Model 
Fine-Tuning) (Howard & Ruder, 2018), BERT (Bidirectional Encoder Representations from 
Transformers) (Devlin, Chang, Lee, & Toutanova, 2018), Albert (A Lite BERT) (Lan, u.c., 2019). 

2.3.4. NLP applications 

 
NLP methods have a broad set of applications, including text generation, speech recognition, machine 
translation, sentiment analysis and many others. We focus on two tasks in the natural language 
understanding subfield – intent detection and parallel data extraction. 

Intent detection 

Virtual assistants are becoming more and more ubiquitous. On mobile phones users can interact with 
Amazon's Alexa, Apple's Siri, Google Assistant, Microsoft Cortana or others. An increasing number of 
businesses relieve the workload of their support service employees with the use of chatbots. 
 
The first essential requirement for a successful computer-human interaction is understanding user’s 
intent. Therefore, intent detection is one of the main tasks of a virtual assistant. The intent detection 
task is typically formulated in the following setting: There are several possible predefined intents 
according to the dialogue system domain and scope and the system should determine which one is 
the most relevant to the user’s input. It can be solved by manually creating a list of patterns and 
comparing if the user’s input matches any pattern. However, this method is relatively limited and the 
latest approach is to use machine learning methods based on neural networks trained on labelled 
example utterances1. In its most basic form, intent detection is a classification task (i.e., a supervised 
learning problem). 
 
The specifics of dialog systems are that generally only small amounts of training data are available 
and the utterances are relatively short. It is further complicated by the specific nature of chat language, 
such as poorly-structured sentences, the presence of grammatical errors, the usage of informal slang, 
abbreviations, etc. The intent detection task is typically carried out by sequentially preprocessing, 
vectorizing and classifying the utterance. In the preprocessing step one or more of the following 
actions are performed: 
 

 
1 In spoken language analysis, an utterance is the smallest unit of speech. It is a continuous piece of 
speech beginning and ending with a clear pause. In intent detection context an utterance is generally 
a sentence or a question. 



 

D6.1 QNLP design and specification 1.0  

 
 

© NEASQC  Consortium Partners. All rights reserved. 
 

Page 10 of 24 

 

• tokenization - splitting the utterance into tokens, properly separating words, punctuation 
marks, numbers, email addresses, links, etc., 

• automatic error-correction - the user grammatical errors are attempted to be programmatically 
corrected, 

• truecasing or lowercasing -- the text is converted into lowercase or true case (e.g., “usa” → 
“USA”), 

• removal of punctuation marks and other symbols, 

• lemmatization -- words are transformed into canonical form, 

• removal of stopwords - insignificant words (such as a, and, I, or, to, etc.) are removed, either 
from a predefined stoplist or from a dynamically-generated list based on the training data. 

 
During vectorization, the utterance is transformed from a textual form to a vector so it can be input to a 
machine learning algorithm. Most modern approaches use word embeddings (either learned from the 
training data, or using pretrained word embeddings from tools such as word2vec or fastText, or from a 
pretrained language models, such as BERT) for vectorization. 
 
During classification the vectorized utterances are classified, typically using some machine learning 
algorithm such as some kind of neural network. The input for the classifier is the vectorized 
representation of the utterance and the output is a probability distribution over the possible intents. 

Parallel corpora extraction 

Parallel corpora extraction entails processing a large body of text to extract source and target 
language sentence pairs that match in meaning – a parallel corpus. The body of text can be a 
collection of documents among which some sort of correspondence for documents in source and 
target language exists or can be inferred – in this case the sentence pairs are extracted only looking at 
the matched documents. Another option is that no such correspondence exists and extraction is done 
on two large monolingual datasets in the respective languages. In this case, generally, a many-to-
many lookup must be performed by searching the entirety of the datasets to try to align any sentences 
having matching meaning. 
 
The later setting, i.e., extracting parallel sentences from two large opaque datasets, is computationally 
challenging – datasets that are acquired via crawling the web can measure in billions of sentences so 
a direct comparison is often infeasible. To alleviate this, different indirect approaches are employed, 
e.g, embedding the sentences of corpora in both languages into a common vector space and then 
extracting sentences that are close together by, e.g., doing nearest neighbour search (Artetxe & 
Schwenk, 2019; Thompson & Koehn, 2019; Schwenk, Wenzek, Edunov, Grave, & Joulin, 2019; Feng, 
Yang, Cer, Arivazhagan, & Wang, 2020). 
 
Parallel corpora are essential to many downstream NLP tasks, such as Machine Translation and 
bilingual dictionary mining, where these datasets are used in Machine Learning procedures as training 
data. 

2.4. Quantum NLP 

2.4.1. Introduction to DisCoCat 

  
We can now discuss the defined theoretical benefit of NLP on quantum devices. Among the published 
works in this area of particular interest are the advances of Prof. Coecke (Oxford Group and now 
Cambridge Quantum Computing), suggesting an approach that combines both a distributional and a 
compositional model of semantics using category theoretic arguments (DisCoCat) (Coecke, 
Sadrzadeh, & Clark, 2010). While the most successful classical NLP models are distributional models, 
i.e., the meaning of sentences are calculated counting the occurrence of words and its surroundings, 
the grammatical structure is lost. The DisCoCat model proves that the structure of entanglement in 
quantum mechanics is similar to that of a pregroup grammar through compact closed category theory 
(Lambek, 2006). In that sense, the parts of speech are mapped to the category containing finite-
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dimensional vector spaces and we can make an analogy to the Hilbert space where quantum states 
live. Words are then composed using tensor products to make sentences, in the same way qubits can 
be tensorized to form many-body quantum systems.  
 
In this model, words can be viewed as tensors that contract certain indices according to certain 
pregroup rules that represent grammatical structure. The outcome sentences they produce following 
this scheme are always 1-index tensors after the contractions, so all possible sentences live in the 
same vector space despite their length. This makes it possible to compare the meaning of sentences 
with different structures or to train a parametrized circuit to classify sentences as true/false 
(Meichanetzidis, Toumi, Felice, & Coecke, 2020) as well as by topic, encoding the meaning of words 
as unitary tunable operators acting on qubits.  
 
One of the issues of this method is how to correctly encode words starting from a corpus. Solutions 
could be selecting a basis of vectors as the most common words or using amplitude encoding, but the 
high-dimensionality often found in NLP tasks can be problematic for current quantum devices. For that 
reason, tensor networks are proposed to handle the encoding of words, and dimensionality reduction 
from classical NLP should also be considered.  
 
Apart from the DisCoCat model, the possible application of quantum computing to the latest NLP 
models such as pretrained vector embeddings, recurrent neural networks (RNNs), especially Long 
short-term memory (LSTM), the Transformer and other attention models, could be studied in the 
development of the project. Their applicability has a currently unexplored use in hybrid classical-
quantum NLP problems, and may offer potential benefits due to the existing works exploring their 
mapping to quantum architectures. 

2.4.2. Hybrid QNLP workflow  

Here we focus on the hybrid approach of classical-quantum NLP tasks. Previous work in this area 
carried out by the ICHEC group involved a compression of the available basis states required to 
represent sentences of a given structure (O’Riordan, Doyle, Baruffa, & Kannan, 2020). This allowed 
for a corpus to be represented using a DisCoCat-like formalism, wherein sentence similarities were 
determined not using tensorial representation, but a Hamming-index approach across all encodings in 
the Hilbert space, with amplitudes weighted via a post-selection procedure. 
 
While this model provides a novel method for encoding and defining states to represent corpus 
tokens, demonstrates accurate predictions of similarity, and overcomes practical implementation 
issues in the original DisCoCat formalism (e.g. the QRAM problem), there are some caveats. Given 
the preprocessing step of this algorithm requires the solution of the Hamiltonian cycle (NP-complete, 
though a heuristic solution is sufficient) problem to define the token orderings on a classical device, 
the scalability of the method is questionable for corpora requiring more than a few basis tokens to 
represent each meaning space. In addition, the resulting quantum circuit depths place this method into 
a region where NISQ devices are currently unable to accurately represent.  
 
As such, to overcome these issues, we can plan to explore methods that map well to NISQ devices. 
The previously discussed variational algorithms, as well as the tensor network methods that offer 
compression of the data can be explored as viable routes to a solution for representing and evaluating 
NLP tasks. Some preliminary work has already been demonstrated in this area (Meichanetzidis, et al., 
2020) (Coecke, Felice, Meichanetzidis, & Toumi, 2020), and shows effective evaluation on NISQ 
devices.  

2.4.3. VT-NLP: Variational tensorial NLP  

Following the effectiveness of variational algorithms for NISQ devices, we intend to use methods for 
state preparation and encoding of corpus data, along a similar line to that of (Coecke, Felice, 
Meichanetzidis, & Toumi, 2020) (Meichanetzidis, Toumi, Felice, & Coecke, 2020). Given the tensor-
network-like relationships for describing sentence relationships, we can aim to take advantage of this 
formalism by representing the encoding quantum corpus state as a matrix-product state (MPS), with 
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operations performed to evaluate transforms and contractions using matrix product operators (MPO), 
as discussed in (Biamonte & Bergholm, 2017) (Orús, 2014) (Huggins, Patil, Mitchell, Whaley, & 
Stoudenmire, 2019) (Bai, Yang, & Chiribella, 2020).  
 
Operations on the tensor network can be optimised to run well on both classical systems for 
verification, analysis and comparison of the methods. For this, we also make effective use of the 
variational algorithms that have been offering great promise for NISQ devices, given their tolerance 
towards noise. Through optimisation of tensor network bond dimension, we can explore the effect of 
noise on these NLP models, and better utilise the available resources of near-term quantum devices. 
As such, by exploiting the state preparation capabilities of variational models, and with the 
representability of tensor network models, we expect one can prepare states to offer a large area of 
exploration and data representation methods, for NLP and beyond. 
 
We follow in Section 3 with an architectural model of the proposed software to realise this solution. 
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3. Proposed solution 

3.1. Software architecture 

In this section we present the proposed software architecture. The package will be developed in 
Python. The system's structure, its relation with external elements and its containers and components 
are introduced. We try to offer a high-level description of the software, depicting the package 
organization and its expected functionality, but leaving more technical details for further consideration. 
The rapid evaluation of models and generation of results are of the utmost importance during research 
and development, and so we have opted for the C4 architecture design model  (Brown, s.f.) to best 
allow the expression of the required functionality and operations with this NLP toolkit. 
 
In Figure 1 we show the system diagram, where our software is represented together with its 
environment. Quantum simulations will be carried out in the ATOS QLM, but running algorithms on 
physical quantum devices will also be a possibility. 
 

 

Figure 1. System-level software architecture diagram for quantum NLP solution. 

Next, Figure 2 shows the containers within the software. These modules include data preparation, 
classical NLP, quantum computing, software testing, and benchmarking. 

Variational Tensorial NLP Software
[Software package]:

Explores tensorial representations of quantum states 

and its applications within Natural Language 
Processing.

ATOS QLM
[Quantum simulator]

Solves optimization problems using 

either quantum annealing or gate-
based quantum computing.

Real Quantum Hardware
[Quantum computer]

Allows quantum algorithms to 

be run in a real situation.

NEASQC 6.1 Team
[User]

Determines data and 

grammatical structures to be 
tested as well as conditions for 

the learning/simulation.

Controls the 

parameters of 
the simulations.

Runs algorithms 

in actual devices.

Uses ATOS 

API to simulate 
the quantum 

algorithms.

Imposes hardware 

constraints for realistic 
simulations.
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Figure 2. Container-level diagram of VT-NLP package. 

Lastly, in Figures 3-7 we depict the components inside every container and how they are related to the 
rest of the architecture. 

 

Figure 3. Component-level diagram of software testing module 
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Figure 4. Component-level diagram of benchmarking module. 

 

Figure 5. Component-level diagram of data preparation module. 
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Figure 6. Component-level diagram of classical NLP module. 

 

 

Figure 7. Component-level diagram of quantum NLP module. 

 
Given the modular-design of the above components, we expect this software tooling will allow ease of 
use, ease of extensibility, and ease of integration with the myQLM platform. Each individual module 
will take the form of a package, with sub-modules and classes defined by the individual component 
functionalities. Following suit with the C4 design philosophy, we have omitted implementation specific 
details, as the above interfaces allow for the required expressiveness for our models. 
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3.2. Testing and verification 

3.2.1. Software testing 

The functional correctness of the classical implementation of the proposed solution will be ensured 
with the use of unit tests. Where appropriate, additional integration, system and acceptance tests will 
be performed as well. The quantum implementation will be compared to the classical implementation 
to evaluate the correctness and the effects of noise. 

3.2.2. Benchmarking 

To evaluate the performance of the methods developed within the project, the final software libraries 
will be evaluated on two NLP tasks - intent detection and parallel data extraction. Task-specific 
datasets will be sourced and the performance of the libraries will be measured through metrics specific 
to each task. The results will be compared to the performance of a set of baseline classical 
implementations (at least one for each task), which will be selected to realistically depict the general 
level of performance attainable by using classical NLP methods at the time of evaluation. 
 
The specifics of the software libraries and any possible limitations of the methods are still subject to 
research, therefore evaluation datasets would possibly need to be adjusted to suit the limitations 
imposed by the libraries. One such limitation could be type of sentence structures supported by the 
libraries, in this case a dataset would be filtered to include only such sentences. Should other such 
limitations manifest, the datasets and the baseline classical implementations would be adjusted 
accordingly. 

Intent detection 

We plan to test the intent detection method on some existing intent detection dataset, used in 
academic evaluations, such as (Braun, Mendez, Matthes, & Langen, 2017). However, a simplified 
dataset with a limited sentence structure may have to be created if the limitations of the developed 
methods will demand it. As the intent detection datasets are typically much smaller than the ones used 
in parallel data extraction, creating a specific dataset from scratch might be a better solution than 
filtering it for suitable sentences. 
 
The developed quantum method will be compared to the classical intent detection system developed 
by Tilde (Balodis & Deksne, 2019). The intent detection accuracy and F1-score will be calculated and 
compared for the evaluated systems. 

Parallel data extraction 

The developed parallel data extraction methods will be compared to the LASER (Artetxe & Schwenk, 
2019) framework or any other similarly or better performing parallel data extraction method available 
at the time of evaluation. The selected baseline parallel data extraction method is also subject to 
change if any limitations appear in the methods developed in the project, that affect the design of the 
evaluation methodology. 
 
Two types of evaluation will be performed – 1) a random subset of the extracted parallel data will be 
selected for human evaluation and 2) the whole of the extracted data will be used for extrinsic 
evaluation via training a neural machine-translation (NMT) system on the extracted datasets.  
 
In the second case, the NMT systems' performance will serve as a proxy for evaluating the quality of 
the extracted data. The NMT systems will be evaluated using automatic metrics that are standard in 
NMT system evaluation, such as BLEU, CharF, BEER and/or others (Papineni, Roukos, Ward, & Zhu, 
2002) (Popović, 2015) (Stanojević & Sima'an, 2014). Additionally, human evaluation will be performed 
to manually asses the quality of the system. The transformer model (Vaswani, et al., 2017) 
architecture or a similarly or better performing model available at the time of evaluation will be used as 
the implementation for the NMT systems. 
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In case the libraries don't scale to the size of corpora needed for training an NMT system, the parallel 
data selection methods to be evaluated will be used to extract a smaller domain-specific dataset 
instead. The domain-specific dataset would be used together with a larger general domain dataset 
that would be present in all systems' training data. The trained systems would then be evaluated on a 
domain-specific testing dataset. 
 
Although LASER and similar parallel data extraction methods use bilingual sentence embeddings for 
similar sentence extraction across languages, using bilingual embeddings is not a hard requirement – 
to enable similarity comparison for sentences in multiple languages using the developed libraries, 
machine translation can be used to translate monolingual datasets so that similarity comparison is 
performed on sentences in a single language, e.g., English. 
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4. Acronyms and Abbreviations 

 

Term Definition 

AI Artificial intelligence 

DisCoCat Distributional compositional category 

DMRG Density matrix renormalisation group 

ML Machine learning 

MPO Matrix product operator 

MPS Matrix product state 

NISQ Noisy intermediate-scale quantum 

NLP Natural language processing 

NLU Natural language understanding 

NMT Neural machine translation 

PQC Parameterized quantum circuit 

QAOA Quantum approximation optimisation algorithm 

QML Quantum machine learning 

QNLP Quantum natural language processing 

QRAM Quantum random access memory 

RNN Recurrent neural network 

SVD Singular value decomposition 

TN Tensor network 

VQE Variational quantum eigensolver 

Table 1: Acronyms and Abbreviations 
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