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Abstract. We present sem ind, a recommendation tool for proof by in-
duction in Isabelle/HOL. Given an inductive problem, sem ind produces
candidate arguments for proof by induction, and selects promising ones
using heuristics. Our evaluation based on 1,095 inductive problems from
22 source files shows that sem ind improves the accuracy of recommen-
dation from 20.1% to 38.2% for the most promising candidates within
5.0 seconds of timeout compared to its predecessor while decreasing the
median value of execution time from 2.79 seconds to 1.06 seconds.

1 Evaluation dataset

We evaluated sem ind against smart induct [11]. Our focus is to measure the
accuracy of recommendations and execution time necessary to produce recom-
mendations. All evaluations are conducted on a MacBook Pro (15-inch, 2019)
with 2.6 GHz Intel Core i7 6-core memory 32 GB 2400 MHz DDR4.

Unfortunately, it is, in general, not possible to mechanically decide whether a
given application of the induct tactic is right for a given problem. In particular,
even if we can finish a proof search after applying the induct tactic, this does not
guarantee that the arguments passed to the induct tactic are the right combi-
nation. For example, it is possible to prove our motivating example by applying
(induct ys); however, the necessary proof script following this application of
the induct tactic becomes unnecessarily lengthy.

For this reason, we adopt coincidence rates as our indicator to approximate
the accuracy of sem ind’s recommendations: we measure how often recommen-
dations of sem ind coincide with the choice of human engineers. Since there are
often multiple equally valid combinations of induction arguments for a given in-
ductive problem, we should regard coincidence rates as conservative estimates of
true success rates. For example, if sem ind recommends (induct xs ys rule:

itrev.induct) this produces a negative data point that is not counted in when
computing the corresponding coincidence rates since this is not the choice made
by Nipkow et al., even though auto can discharge all the sub-goals emerging
from this induct tactic.

As our evaluation target, we use 22 Isabelle theory files with 1,095 applica-
tions of the induct tactic from the Archive of Formal Proofs (AFP) [6]. The
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AFP is an online repository of formal proofs in Isabelle/HOL. Each entry in the
AFP is peer-reviewed by Isabelle experts prior to acceptance, which ensures the
quality of our target theory files. Therefore, if sem ind achieves higher coinci-
dence rates for our target theory files, it is safe to consider that sem ind tends
to produce accurate recommendations. To the best of our knowledge, this is the
most diverse dataset used to measure automation tools for proof by induction.
For example, when Nagashima evaluated smart induct they used 109 invoca-
tions of the induct tactic from 5 theory files, all of which are included in our
dataset.

In the rest of the paper, we use the following abbreviations to represent the
22 target theory files.

– BHeap and SHeap represent BinomialHeap.thy and SkewBinomialHeap.thy,
respectively [9].

– Build, KDTree, and Nearest stand for Build.thy, KD Tree.thy, Nearest -

Neighbors.thy, respectively, from the formalisation of multi-dimensional
binary search trees [15].

– Cantor stands for Cantor NF.thy, which is a part of a formalisation of ZFC
set theory [14].

– C1A and C1B stand for Challenge1A.thy and Challenge1B.thy, respec-
tively. They are parts of the solution for VerifyThis2019, a program verifica-
tion competition associated with ETAPS2019. [8].

– DFS stands for DFS.thy, which is a formalisation of depth-first search [12].
– DNF stands for Disjunctive Normal Form.thy, which is a part of a for-

malisation of linear temporal logic [17].
– Ftree stands for FingerTree.thy, which implements 2-3 finger trees [13].
– Goodstein is for Goodstein Lambda.thy, which is an implementation of the

Goodstein function in lambda-calculus [2].
– HL refers to Hybrid Logic.thy. which is a formalisation of a Seligman-style

tableau system for Hybrid Logic [3].
– Kripke refers to Kripke.thy. which is a part of a general scheme for com-

piling knowledge-based programs to executable automata [4].
– NBE stands for NBE.thy, which formalises normalisation by evaluation as

implemented in Isabelle [1].
– OpSem stands for OpSem.thy, which is a part of a formalisation of logical

relations for PCF [5].
– PST stands for PST RBT.thy, which is from a formalisation of priority search

tree [7].
– RFG stands for Rep Fin Groups.thy, which is a formal framework for the

theory of representations of finite groups [18].
– SStep stands for SmallStep.thy, which is a the theory of a sequential im-

perative programming language, Simpl [16].
– TSafe stands for TypeSafe.thy, which is a part of an operational semantics

and type safety proof for multiple inheritance in C++ [19].
– Graphs stands for Graphs.thy, which is a part of a a formalization of prob-

abilistic timed automata [20].
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2 Coincidence Rates within 5.0 Seconds of Timeout

Table 1 shows the evaluation results of both sem ind and smart induct. In each
row of this table, the left most column shows the name of the target theory file.
And the second column shows the tool used to measure coincidence rates: “new”
stands for sem ind, while “old” stands for smart induct. The third column
shows how many invocations of the induct tactic appear in each theory file.

The columns in the middle of Table. 1 show the coincidence rates for each tar-
get theory file within 5 seconds of timeout. The numbers in the second row in the
columns for coincidence rates show how many recommendations are considered
to count coincidence rates.

For example, the coincidence rate of “new” for BHeap is 64.1 for 3. This
means that the combination of induction arguments used by human researchers
appear among the 3 most promising combinations recommended by sem ind

for 64.1% of the uses of the induct tactic in BHeap. On the other hand, the
coincidence rate of “old” for BHeap is 60.7 for 10. This means that even if we
check for the 10 most promising candidates recommended by smart induct,
smart induct’s recommendations coincide with the choice of human researchers
only for 60.7% of the uses of the induct tactic in BHeap.

A careful observation reveals that the gaps between the coincidence rates for
these tools are particularly large for Nearest, in which 81.8% of applications of
the induct tactic involves generalisation. In fact, when Nagashima evaluated
smart induct in a similar setting but without a timeout they reported smart -

induct’s low coincidence rates for induction involving generalisation [11] and
concluded “recommendation of variable generalisation remains as a challenging
task”. Their tool, smart induct, was based on LiFtEr [10], which is not ex-
pressive enough to encode generalisation heuristics that take the definitions of
relevant constants into consideration.

3 Return Rates for 5 Timeouts

sem ind achieves higher coincidence rates than smart induct does mainly be-
cause sem ind uses the SeLFiE interpreter to examine the definitions of constants
relevant to the inductive problem at hand. Inevitably, this requires larger com-
putational resources: the SeLFiE interpreter has to examine not only the syntax
tree representing proof goals but also the syntax trees representing the defini-
tions of relevant constants. However, thanks to the fast SeLFiE interpreter, and
the smart construction of candidate inductions and pruning of less promising
candidates, sem ind provides recommendations faster than smart induct does.

This performance improvement is presented in the columns on the right-
hand side of Table 1, which show how often sem ind and smart induct return
recommendations within certain timeouts specified in the second row.

For example, the return rate of “new” for BHeap is 85.5 for 2.0. This means
that sem ind returns recommendations for 85.5% of proofs by induction in
BHeap within 2.0 seconds. On the other hand, the return rate of “old” for
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BHeap is 77.8 for 5.0. This means that even if we give 5.0 seconds of time-
out to smart induct, smart induct returns recommendations for only 77.8% of
inductive problems in BHeap.

A quick look at Table 1 reveals that for all theory files sem ind produces more
recommendations than smart induct does for all specified timeouts (0.2 seconds,
0.5 seconds, 1.0 second, 2.0 seconds, and 5.0 seconds), proving the superiority of
sem ind over smart induct in terms of the execution time necessary to produce
recommendations.

In fact, the median values of execution time for these 1,095 problems are 1.06
seconds for sem ind and 2.79 seconds for smart induct. That is to say, sem ind

achieved 62% of reduction in the median value of execution time.
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Table 1: Coincidence rates and return rates within timeouts. Coincidence rates
are based on 5.0 seconds of timeout. The unit of each rate is %.

coincidence rates return rates

theory name tool goal 1 3 5 10 0.2 0.5 1.0 2.0 5.0

BHeap
new 117 28.2 64.1 66.7 76.9 1.7 12.8 51.3 85.5 97.4
old 117 25.6 48.7 48.7 60.7 0.0 0.9 7.7 23.9 77.8

Boolean
new 20 60.0 80.0 90.0 100.0 30.0 60.0 85.0 100.0 100.0
old 20 10.0 60.0 70.0 70.0 0.0 5.0 25.0 40.0 70.0

Build
new 10 10.0 10.0 10.0 10.0 0.0 0.0 0.0 20.0 60.0
old 10 10.0 10.0 10.0 10.0 0.0 0.0 0.0 10.0 20.0

Cantor
new 22 18.2 50.0 50.0 50.0 0.0 13.6 36.4 40.9 54.5
old 22 18.2 50.0 59.1 59.1 0.0 0.0 22.7 63.6 86.4

C1A
new 11 36.4 54.5 72.7 81.8 63.6 63.6 90.9 100.0 100.0
old 11 72.7 72.7 72.7 72.7 0.0 27.3 54.5 90.9 100.0

C1B
new 6 66.7 83.3 83.3 83.3 33.3 33.3 66.7 100.0 100.0
old 6 0.0 16.7 16.7 33.3 0.0 33.3 33.3 50.0 66.7

DFS
new 10 20.0 80.0 80.0 90.0 20.0 70.0 100.0 100.0 100.0
old 10 40.0 70.0 70.0 70.0 0.0 10.0 30.0 30.0 80.0

DNF
new 35 60.0 62.9 65.7 68.6 34.3 71.4 82.9 97.1 100.0
old 35 17.1 48.6 54.3 54.3 0.0 14.3 25.7 74.3 94.3

FTree
new 126 40.5 45.2 45.2 57.1 4.0 17.5 38.1 58.7 68.3
old 126 19.0 43.7 43.7 52.4 0.0 0.8 20.6 33.3 61.1

Goodstein
new 52 32.7 71.2 75.0 78.8 7.7 26.9 65.4 92.3 98.1
old 52 21.2 44.2 59.6 69.2 0.0 5.8 28.8 55.8 86.5

HL
new 89 47.2 58.4 62.9 65.2 13.5 28.1 44.9 64.0 79.8
old 89 16.9 39.3 53.9 64.0 0.0 5.6 24.7 52.8 74.2

KDTree
new 9 77.8 77.8 100.0 100.0 11.1 33.3 88.9 100.0 100.0
old 9 77.8 77.8 77.8 77.8 0.0 0.0 33.3 100.0 100.0

Kripke
new 13 53.8 69.2 69.2 76.9 0.0 15.4 38.5 53.8 100.0
old 13 0.0 15.4 30.8 30.8 0.0 0.0 7.7 15.4 30.8

NBE
new 104 30.8 49.0 54.8 71.2 5.8 23.1 48.1 70.2 88.5
old 104 15.4 38.5 46.2 56.7 0.0 3.8 21.2 41.3 70.2

Nearest
new 11 54.5 63.6 72.7 72.7 0.0 0.0 0.0 9.1 72.7
old 11 0.0 0.0 0.0 9.1 0.0 0.0 0.0 0.0 9.1

OpSem
new 33 45.5 66.7 78.8 81.8 9.1 18.2 36.4 54.5 84.8
old 33 12.1 30.3 42.4 45.5 0.0 9.1 15.2 21.2 45.5

PST
new 24 41.7 95.8 100.0 100.0 0.0 0.0 20.8 58.3 100.0
old 24 45.8 45.8 45.8 45.8 0.0 0.0 4.2 16.7 45.8

RFG
new 99 41.4 58.6 67.7 68.7 5.1 17.2 29.3 47.5 76.8
old 99 9.1 38.4 42.4 45.5 0.0 1.0 7.1 29.3 69.7

SHeap
new 177 35.6 55.9 64.4 81.4 2.3 27.1 56.5 87.0 99.4
old 177 26.0 51.4 54.2 61.6 0.0 1.1 7.9 32.8 76.3

SStep
new 66 45.5 75.8 77.3 77.3 15.2 21.2 33.3 47.0 83.3
old 66 21.2 37.9 47.0 50.0 0.0 1.5 19.7 48.5 63.6

TSafe
new 20 15.0 20.0 25.0 25.0 0.0 0.0 5.0 15.0 35.0
old 20 0.0 5.0 15.0 15.0 0.0 0.0 0.0 5.0 20.0

Graphs
new 41 31.7 70.7 78.0 87.8 36.6 61.0 75.6 87.8 100.0
old 41 19.5 41.5 51.2 61.0 0.0 12.2 41.5 56.1 87.8

overall
new 1095 38.2 59.3 64.5 72.7 8.8 24.7 47.8 69.8 86.8
old 1095 20.1 42.8 48.5 55.3 0.0 3.5 16.9 38.3 70.2
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