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Abstract—Humans can distinguish fabrics by their textures,
even when they are finer than the density of tactile sensors.
Evidence suggests that this ability is produced by the nervous
system using an active touch strategy. When the finger slides over
a texture, the nervous system converts the texture’s spatial period
into an equivalent spiking frequency. Many studies focused on
modeling the biological encoding part that translates the spatial
frequency into a temporal spiking frequency, but few explored
the decoding part. In this work, we propose a novel approach
based on a spiking neural network able to detect the frequency of
an input signal. Inspired by biological evidence, our architecture
detects the range in which the encoded frequency dwells and
could therefore decode the texture’s spatial period. The network
has been designed to be composed of existing neuromorphic
spiking primitives. This property enables a straightforward
implementation on integrated silicon circuits, allowing the texture
decoding at the edge of the sensor.

Index Terms—Spiking Neural Network, Phase-Locked Loop,
texture, active touch, neuromorphic

I. INTRODUCTION

Humans find in touch a great ally. This sense is fundamental
for our daily life due to the many abilities it incorporates. The
most known ones are shape detection, texture recognition, slip
detection, grip control, and vibration detection [1]. To be able
to create such a colorful variety of skills, the human body
employs many different types of sensors embedded in the
skin (called mechanoreceptors). Recent studies suggest that
these abilities are enabled by a complex synergy between the
different mechanoreceptors [1]. One of the examples of this
synergy comes from texture recognition. There is evidence,
coming from neuroscience experiments [2], that humans can
perceive textures in two different ways. When the texture is
coarse, a special type of mechanoreceptors, the slow adapting
ones (SA1), encodes it. On the other hand, when the texture is
finer than the skin’s sensors density, another mechanism takes
place: by sliding the finger over the texture, humans induce
vibration on the skin [3]. This signal is perceived by some spe-
cial mechanoreceptors called Pacinian corpuscles [4], sensible

This work has been supported by the EU H2020 project Neutouch grant
No. 813713. The authors would like to acknowledge the financial support
of the CogniGron research center and the Ubbo Emmius Funds (Univ. of
Groningen).
Affiliations: 1 Bio-Inspired Circuits and Systems (BICS) Lab. Zernike Institute
for Advanced Materials (Zernike Inst Adv Mat), University of Groningen
(Univ Groningen), Nijenborgh 4, NL-9747 AG Groningen, Netherlands.
2 CogniGron (Groningen Cognitive Systems and Materials Center), University
of Groningen (Univ Groningen), Nijenborgh 4, NL-9747 AG Groningen,
Netherlands.

t

Pressure

t

Spikes

Encoding
Block

Freq Detection

Freq 2

t

Freq 1

Freq 2

Freq 3

Silk!

Fig. 1. Graphical representation of the designed network. The structure is
composed of different stages: the first one is an encoding block, responsible
for converting periodic analog signals into spikes, phase-locked with the
periodicity of the stimulus. The second part is the frequency detection network,
divided into several parallel blocks that transmit spikes when the stimulus’
frequency is near to their characteristic one. Depending on which block spikes
when a texture is presented, and knowing the characteristic frequency of each
material, we can deduce which fabric was slid.

to high-frequency vibration [5], [6]. It has been demonstrated
that the Pacinian afferents exhibit a response phase-locked
with the input frequency when stimulated with a periodic
vibration [7]. The specific periodic vibrations generated by
the skin, when slid on different materials, help human distin-
guishing between fabrics. For example, the periodic vibration
generated by nylon, stretch denim, and silk jacquard is shown
in [2]. Based on this experimental evidence, several works
exploited the concept that texture recognition relies on the
mechanoreceptors’ spatiotemporal behavior [8]–[10]. In [11]–
[14], the authors propose the existence of a Spiking Phase-
Locked Loop (sPLL) structure (a neural version of the Phase-
Locked Loop, a quite popular circuit in electronics [15]) in the
mouse’s nervous system. The structure is able to decode touch
information using the periodic spiking input. Starting from the
idea that the brain employs sPLLs for touch, we designed
a full neuromorphic chain and demonstrated its properties
in simulations. The proposed architecture can encode and
decode textures when they are slid on the skin. In this paper,
we present the network’s working principle and preliminary
results. The proposed system consists of elementary blocks
which have well established analog circuit implementations
[16], therefore it is suitable for the design of a compact silicon
realization. Such a realization would fully exploit the low-
latency and compactness for seamless integration in prosthetic
systems and robotics.

II. METHODS

The proposed architecture has been designed to detect the
signal oscillations coming from a tactile sensor. These oscilla-
tions, induced by materials sliding over the sensor, can be used
as the basis for texture classification tasks. The underlying
mechanism is simple: as observed in the Introduction, when
we slide a texture on a pressure sensor, the latter generates
a periodic analog signal. The sensor’s output produces a
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Fig. 2. Frequency Detection Network. The structure is divided into 10 lines
able to decode 10 different frequency ranges. The first part of each line is
composed of a sPLL that, depending on the input current provided, is sensible
to specific frequencies. Then for each line we have three layers of simple
Leaky Integrate-and-Fire (LIF) neurons that act as spiking High Pass Filter
(HP), and a Inverted Winner-Take-All (I-WTA) network with a fixed bias
input current IDC

bias. The output of this last part encodes the range in which
the input frequency dwells. The red lines represent inhibitory connections,
while the black ones represent excitatory connections.

specific characteristic frequency that distinguishes the applied
texture. The network can detect this characteristic frequency
and therefore recognize the texture. The first step in the
acquisition chain, visible in Figure 1, is the encoding part.
The encoding block is responsible for detecting peaks in the
pressure signal and converting them into spikes. In this work,
to test the architecture, we directly synthesized the spikes
with specific frequencies, leading to a simulated encoding
block’s output. Once the stimulus is encoded into spikes, the
signal is fed into the Frequency Detection block, represented
in Figure 1 by several red blocks receiving the same input
stimulus from the encoding block. Each of these red blocks
has a different characteristic frequency. When an input signal
is close to said frequency (it is into its sensitivity range),
the correct Frequency block communicates it to the output.
Depending on which block is activated, we can therefore
understand which texture has been presented and, from this,
decode which material it was. The internal structure of the
Frequency Detection block is presented in detail in Figure 2
and explained in the following Subsections. It is composed of
several sPLLs in parallel, followed by three layers of neurons,
composing the High Pass Filter (HP) block, and a further layer
of neurons, implementing a soft Inverted Winner-Take-All (I-
WTA) computation.

A. Spiking Phase-Locked Loop

The first block is the sPLL, responsible of sorting the
different frequencies. The structure, similar in concept to the
one in [11], is composed of a Time Difference Encoder (TDE)
[17]–[20] and a Current Controlled Oscillator (CCO). These
two elements are closed in a negative loop, like in Figure 3.

1) Current Controlled Oscillator: The single neuron, rep-
resented in Figure 3 as CCO, is a Leaky Integrate-and-Fire
(LIF) neuron [21]. This element is composed by two parts: a
capacitor Cmem and a conductance Gmem, equipped with a
negative feedback. When a current is fed into the element, the
voltage Vmem over the capacitance increases. Once reached a
threshold, the negative feedback resets the said voltage. The
circuit then generates a spike and starts again charging the
capacitance. This results in an element that has a spiking
rate directly related to the current fed into its membrane
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Fig. 3. The Spiking Phase-Locked Loop (sPLL)’s block diagram. This
computational module is composed of a Time Difference Encoder (TDE) and
a Current Controlled Oscillator (CCO). The first consists of a multiplier unit
and a LIF neuron. The multiplier generates a current from the two inputs
and injects it into the neuron. The CCO is also implemented with a simple
LIF neuron, which is translating its input current into an output firing rate.
The CCO’s input current is composed by two contributions: a constant current
(CCUR, violet line) and a Closed-Loop current (CL, orange line). The first one
defines the CCO’s intrinsic spike rate, while the latter one transmits the spikes
from the TDEOUT ’s LIF, after converting them to current. Regarding the
TDE, the two input signals (TRG, red line, and FAC, blue line) are respectively
connected to the spikes coming from the sensor, and the spikes coming from
the CCO. For each CCO’s spike, its output exhibits an exponentially decaying
function. By multiplying the FAC and TRG signals, we are able to compute
the time proximity between them. The result of the computation elicits a
current response TDEIN that depends on the time TRG arrives after FAC,
as visible in Figure A. This current is then fed into the TDE’s LIF neuron.
Its output is represented by TDEOUT . Given its nature, its spiking activity
directly depends on the FAC and TRG time proximity, as visible in Figure
B. The TDEOUT ’s response is then directly wired to the neuron’s input in
a closed-loop fashion.

Fig. 4. A raster plot shows an example of three different sPLL’s behaviors.
The vertical yellow lines identify the time of each input spike. The spike’s
phases, coming from each of the CCO, is compared with the input signal
phase. This happens for each input spike, and the result of the TDE’s output
is a spike burst representing the phase proximity. Given the quite long τLIF

(around 10ms), when the input rate is fast (in this case 205Hz), the TDE
output spike is influenced by the previous occurrences. The three CCOs (blue,
red, and green) have different constant current inputs (CCUR) that make them
spike differently. One of them (the red one) is close enough to the input
frequency to lock.

capacitance. By feeding the element with different currents,
we are therefore able to change its spiking frequency. This
solution acts here as a CCO.

2) Time Difference Encoder: This block is able to encode
time differences in spike rate. As visible in Figure 3, it’s
composed of a block that converts the multiplication between
the two voltage inputs (FAC and TRG) into a current TDEIN

(the yellow line in Figure 3A), and by a neuron which receives
this current. Being the latter a LIF neuron, it reacts with
a spiking rate proportional to the TDEIN current intensity.
Every time a spike from the facilitatory node (FAC) reaches
the TDE, it elicits an exponentially decaying response (the blue
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Fig. 5. An example of the network’s underlying working principle. In Figure A, it’s shown the instantaneous rate of 4 different elements. The straight yellow
line at 205Hz represents the frequency at which the input signal spikes. The CCO’s spiking activity of three different lines is also plotted (Line 1 blue, Line
5 red, Line 9 green). Each of these CCOs, fed with a different current, has a different intrinsic frequency. The closed-loop tries to modify the phase difference
between the input and the spiking neuron. The system reaches the locking if the CCO is close enough to the input frequency. For this example, we selected a
low intrinsic frequency (Line 1, 80Hz), an intermediate intrinsic frequency (Line 5, 230Hz), and a high intrinsic frequency (Line 9, 300Hz). Line 5 locks
with the input while the others struggle to do it. In Figure B the three respective TDE’s outputs are shown (response averaged over 3 samples). The locked
one exhibits a low uniform frequency, while the other two have higher peaks. Figure C shows a raster plot of the HP neurons’ output. The three lines shown
in the previous two columns are here highlighted in the same colors. Line 1 and Line 9 have an output frequency given by their high peak activity in the
TDE. Line 5’s output is silent because its low frequency has been cut, Line4 shows a similar behavior, despite taking more time to reach it. The I-WTA
selects the Line 5 as the winner, being the most inactive.

one in Figure 3) that is sensed by the multiplier. If during the
FAC’s decaying response, a spike from the trigger node (TRG)
(the red one in Figure 3) reaches the multiplier, then the TDE
produces a current proportional to the FAC’s value at the TRG
spike’s time (this value is decreasing with the time distance
between FAC and TRG spikes). This causes the TDE’s LIF
neuron to respond with a spike burst TDEOUT (the green
one in Figure 3), proportional in rate to the current TDEIN ,
and therefore to the time proximity (Figure 3B). If the input
signals are periodic, like in this case, then the TDEOUT rate
encodes the phase difference.

In Figure 4 we can see an example of the explained working
principle. When the CCO emits a spike (we can see CCO1,
CCO5, and CCO9), the TDE calculates the distance between
this spike and the input spike (represented in the Figure
with a dashed vertical yellow line). Due to the neuron’s time
constant, in some cases higher than the input spiking period
(τ = CmemRmem = 10ms), the result of the time difference’s
instantaneous calculation depends also on the recent TDE’s
activity.

3) Closed Loop: The architecture, composed of the two
blocks previously explained, works as a PLL. This mechanism,
well known in the frequency synthesis field [15], [22], relies
on the CCO’s ability to synchronize to the input’s spike rate.
The CL current (orange line in Figure 3), coming from the
TDE, can increase the CCO’s frequency, acting as a closed-
loop in the following way: the higher is the phase difference
between the two signals, the higher is the number of spikes in
the TDE’s burst. This response increases the CCO’s spiking
frequency. By changing said frequency, the loop modifies the
phase difference between the CCO and the input spikes up to

the point where the TDE’s spiking activity is minimal, which
is the optimal position. This can be seen in Figure 4 in the
TDE5 line. The CCO5 is locked with the input stimulus and
the TDE5 keeps spiking with a fixed pattern, which is the
equilibrium point of the system to keep the two signal locked.
This works only when the frequency difference between the
two signals is small enough so that the loop can keep the
phase error constant. If the frequency difference is too high,
the phase difference between the input and the CCOs quickly
accumulates and the sPLL is not fast enough to compensate
it. This can be seen in Figure 4 where CCO1 and CCO9
have a different frequency concerning the input stimulus,
and their TDEs have a heterogeneous response, given by the
phase accumulation. Due to this effect, the time difference
periodically changes from very high to very low. In the latter
the TDE spikes with a frequency higher than 1 kHz. Therefore,
on average, TDEs in unlocked situations exhibit more episodes
of intense activity with respect to the locked situation. Figure
5B provides evidence of this behavior. The two lines that
cannot lock have an irregular TDE activity, with peaks up to
3 kHz. Note that by changing the currents in input at CCO we
can move upward or downward the system’s sensitivity range.

B. High Pass Filter
In the sPLL block, we demonstrated that there is a de-

pendence between the TDEOUT ’s spiking activity and the
locking/not locking situation. This mechanism can be used to
detect which PLL has the closest frequency concerning the
input one (i.e. it can lock with it). To do so, we used three
layers of LIF neurons with a feed-forward 1 to 1 connectivity
pattern connected to the sPLLs (as visible in Figure 2 under
HP). These neurons, thanks to their leaky part that constantly



discharge the neuron membrane, spike only when the input
frequency is fast enough to charge the Cmem up to the
neuron’s threshold. This means that the neuron is insensible to
the TDE’s bursts when the burst’s interspike interval is higher
than 1ms. Considering the behavior explained previously, we
are then filtering out the response of the PLL that is locked.
The presence of three instances of the same neuron in series
comes from the need to be sensitive only to frequencies
higher than 1KHz using components compatible with circuit
implementations. We, therefore, repeated 3 times the same
operation to ensure the HP’s strength with the minimum
number of components.

C. Inverted Winner Take All
The I-WTA represents the last part of the Frequency detec-

tion block. This block, composed of a layer of LIF neurons,
receives an external constant current IDC

bias, making all the
neurons spike continuously. Each neuron is connected with one
neuron from the HP layer through an inhibitory connection.
This means that the more active HP neurons are inhibiting
the corresponding I-WTA’s neurons in a stronger way. All of
the I-WTA’s neurons are exciting a single global inhibition
neuron. The spiking activity of this last element inhibits the I-
WTA neurons permitting only the strongest one to spike. The
neuron that has the highest spiking activity is selected as the
winner.

III. RESULTS

A. Single Frequency Experiment
The network presented in the Methods section has been

simulated using Brian2 [23].
Figure 5 shows the details of the different signals inside the

architecture during a simulation with only one input frequency
(205Hz). To simplify the visualization, in Figure 5A and
5B, we only plotted 3 out of the 10 lines in which the
network is divided (specifically Line 1, Line 5, and Line 9). In
Figure 5A, the spiking frequency of the three lines’ CCOs is
compared with the input’s spiking frequency. Line 1 and Line
9’s frequencies are not close enough to the input’s frequency to
achieve locking, while Line 5 is close enough to lock. Figure
5B shows the TDEout’s spiking frequency. The two lines that
are not able to lock exhibit a denser pattern of fast spikes
(subsequent spikes, close in time). The line that is locked
shows a very uniform low spike rate. In Figure 5C, we can
see the scatter plot of all HP neurons. By filtering out the fast
spikes, Line 5 has no spikes, while all the other 9 Lines still
have spikes.
B. Sweeping Frequencies Experiment

In this experiment we generated different spiking frequen-
cies, ranging from 0Hz to 500Hz, to simulate what is ob-
served in Pacini corpuscles, sensible to frequencies up to
800Hz [7]. The HP’s output was fed into a I-WTA. For each
input frequency, we analyzed the I-WTA’s spiking output and
declared as the winner the neuron with the highest spike count.
If due to the overall TDEs’ low activity, more than one of I-
WTA’s neurons had the highest value, we considered that trial
as failed.
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Fig. 6. The confusion matrix resulting from the inverted I-WTA stage. We
generated a sample for each frequency, ranging from 0Hz to 500Hz with
1Hz step. Each of these has been tested once, for 1 second each, on the
structure, measuring which I-WTA neuron had a higher spiking rate, counting
this as the winner. If more than one I-WTA neuron had the higher rate the
algorithm counted it as fail (the last x-axis value in the plot). In the confusion
matrix, the frequencies, represented on the y-axis, have been collected in bins
of 5Hz to increase visibility.

The result is shown in Figure 6, using a confusion matrix.
Some conclusions can be drawn from these results. When
the signal’s frequency is lower than the lowest CCO intrinsic
frequency, all the 10 TDEs are not stimulated enough to
generate spikes. This keeps the whole system in an idle state
and the I-WTA’s neurons are driven only by the external input
current. This results in a failed trial since all of the I-WTA’s
neurons spike synchronously. In the range between 50Hz
and 250Hz, the system works as expected: different PLLs
lock with different frequency ranges and the I-WTA spikes
correspondingly. The Line0 has the lowest input frequency
from the CCO. This binds the TDE to receive spike bursts
less often, making its spiking activity lower in frequency peaks
and being filtered out by the HP block. For input frequencies
higher than 250Hz, the system struggles to recognize the right
frequency because of Line0’s low activity, similar to one of
the lines that locked to the frequency.

IV. CONCLUSIONS

In this work, we proposed a spiking neural network able to
detect frequencies. The network is capable of distinguishing
10 different frequency ranges (from 50Hz to 300Hz). The
structure aims to explore the idea that PLL in the brain
could be used for texture decoding [11]. Following studies
will assess if this solution enables the detection of complex
multiple frequency signals coming from fine texture, based
on data provided by one sensor. This can relax the need for
high-density distribution of sensors. Furthermore, the proposed
structure is composed of building blocks that can be easily
implemented in CMOS circuits. Examples of leaky integrate
and fire neurons are abundant [16], [24] and a TDE circuit
implementation has been already proposed [17]. Integrated
neuromorphic circuits have the advantage to reduce power
consumption and circuit footprint. This aspect is needed to
integrate texture recognition at the edge of the sensor, for
example in robots and prostheses.
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