
EMUE activity A1.2.2
Measurement models involving additive or multiplicative

corrections
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1 Summary

A common form of presentation for calibration results involves expressing the result as an additive or
multiplicative correction. This is the case for vacuum gauges and is illustrated with data using the models
described in [1]. The examples and conclusions do, however, have much wider applicability.

This example demonstrates the effect of model assumptions concerning errors in the reference value.
In addition it demonstrates how conformance probability can be affected by these assumptions. The
example concludes by demonstrating how correlation can be handled for calibration corrections.

2 Introduction

Calibration measurements are reported in a wide variety of forms. A particularly popular form involves
presenting measurement error as a calibration correction.

Often a limit or tolerance is defined for this correction and a conformity test is required. To make such a
conformity decision requires knowledge of the measurement uncertainty associated with the correction.

1



Measurement uncertainty plays a crucial role, both here and in the decision processes found in most activ-
ities concerned with product or process conformity assessment. Without some account for measurement
uncertainty the risk associated with a decision is undefinable.

The evaluation of measurement uncertainty and conformance probability are illustrated here for the cali-
bration of a vacuum gauge; however, the analysis and methods described have more general applicability.

The calibration of vacuum (pressure) gauges is achieved by using a reference standard to establish the
calibration pressure value at the inlet port of the unit under calibration (UUC). Often [2] this reference
pressure is measured directly by a reference gauge and is obtained from a corrected reading from that
gauge. A model for the evaluation of measurement uncertainty in vacuum calibration is described in some
detail in ISO 27893 [1], whose principles can readily be transferred to other measurement applications.

Using the same set of calibration data, this example considers an additive (‘sum’) model, in which the
calibration pressure value can be used to determine a reading error ∆p for the UUC; it considers a
multiplicative ‘quotient model’ (applicable when the calibration value is used to determine a correction
factor, sensitivity coefficient, accommodation coefficient or gauge constant), and a ‘combined model’.

Three scenarios are considered, representing different practices, illustrating how these practices can af-
fect the associated conformance probability.

In the first scenario, following best metrological practice, a reference pressure correction (that is, a known
systematic bias, due for example to the calibration method, thermal transpiration, height correction, etc.)
is applied, and its associated uncertainty is incorporated in the uncertainty evaluation.

In the second scenario, the reference pressure correction is not applied, and instead it is combined with
the associated uncertainty to establish a larger ‘correction uncertainty’. In metrological terms this way
of working represents poor (albeit common) practice when it is adopted for a known bias, and can have
significant consequences for conformity decisions [3]. In situations where the correction is not known,
but is perhaps considered to be in a defined range then this approach is more justified [4].

In the final scenario, the correction and its associated uncertainty are simply neglected, representing what
might be termed ‘bad practice’.

In each case the output PDF is assumed to be normal and conformance probability is calculated using a
standard normal cumulative distribution function.

Data for the analyses are taken from a calibration certificate IMT-LMT-80-2019, produced by the Labo-
ratory of Pressure Metrology, Institute of Metals and Technology, Ljubljana, Slovenia. The UUC in this
example is a capacitance diaphragm vacuum gauge with full scale range of 11 kPa.

The specification adopted for the UUC in our example requires that calibration errors should be no larger
than 0.5 % of the reading.

Finally, a physically different ‘sum model with correlation’ is presented, demonstrating how correlation
might be treated in that case.

3 Measurands

Adopting the nomenclature of [1] the measurand is defined for the various classes of model as one of the
following:

2



∆p – pressure difference (sum model) having standard uncertainty u(∆p),

f – correction error (quotient model) having standard uncertainty u( f ),

e – error of reading (combined model) having standard uncertainty u(e).

Other useful nomenclature:

pUUC,u(pUUC) – pressure for unit under calibration and its associated standard uncertainty,

pstd,u(pstd) – reference standard pressure and its associated standard uncertainty,

∆pm,u(∆pm) – reference pressure correction term and its associated standard uncertainty.

4 Measurement model

The measurement models are of the explicit, univariate type [5]:

In such models, a single real output quantity Y is related to a number of input quantities X = (X1, . . . ,XN)
by a functional relationship f in the form Y = f(X) as stated in the GUM [6]. The estimate of the output
quantity is taken as y = f(x). The standard uncertainty u(y) is associated with y is evaluated from

u2(y) =
N

∑
i=1

N

∑
j=1

ciu(xi,x j)c j,

where ci is the partial derivative ∂ f/∂Xi evaluated at X = x and is known as the ith sensitivity coeffi-
cient, u(xi) is the standard uncertainty associated with xi, and u(xi,x j) the covariance associated with xi

and x j. For independent input quantities, we would obtain the better-known simplified expression

u2(y) =
N

∑
i=1

[ciu(xi)]
2 =

N

∑
i=1

u2
i (y),

where
ui(y) = |ci|u(xi).

4.1 Sum model

In the sum model, the measurand ∆p is defined as the difference between the reading of the unit under
calibration (UUC) and the reference value, which is given by the pressure indication of the reference
standard corrected by a (possible) reference pressure correction term ∆pm:

∆p = pUUC− (pstd +∆pm). (1)
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4.2 Quotient model

The standard ISO 27893 [1] describes how a model can be established in general situations where the
UUC output and the reference standard output are not necessarily given in the same units of measurement.
For example the UUC output may be measured as a current, voltage or frequency that is relatable to
pressure through some functional relationship.

rUUC =
xUUC

pstd
.

In this example we are only concerned with a simple case in which xUUC = pUUC and where rUUC = 1/ f
defines a correction factor f as the measurand; hence

f =
pstd +∆pm

pUUC
, (2)

Note that equation (2) is not a pure quotient but is a simple example of a ‘combined’ model.

4.3 Combined model

In practice, realistic measurement models are seldom a pure sum or product of quantities and a combined
model is required. For example, the measurand e, the relative error of reading, can be defined by

e =
pUUC− (pstd +∆pm)

pstd +∆pm
=

pUUC

pstd +∆pm
−1. (3)

4.4 Sum model with correlation

An example that demonstrates how to evaluate a sum model with correlation is presented in section 7.

5 Uncertainty propagation

The GUM’s law of propagation of uncertainty [6, equation (10)] is applied to establish the standard
uncertainty associated with an estimate of the measurand for each of the three measurement models.

5.1 Sum model

The standard uncertainty in the sum model is

u(∆p) =
[
u2(pUUC)+u2(pstd)+u2(∆pm)

]1/2
. (4)

5.2 Quotient model

The standard uncertainty in the quotient model is

u( f ) =
pstd +∆pm

pUUC

[
u2(pUUC)

p2
UUC

+
u2(pstd)

(pstd +∆pm)2 +
u2(∆pm)

(pstd +∆pm)2

]1/2

. (5)
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5.3 Combined model

The standard uncertainty in the combined model is

u(e) =
pUUC

pstd +∆pm

[
u2(pUUC)

p2
UUC

+
u2(pstd)

(pstd +∆pm)2 +
u2(∆pm)

(pstd +∆pm)2

]1/2

. (6)

6 Measurand expanded uncertainty and conformance probability for three
scenarios

In this section the measurand expanded uncertainty at the 95 % level of confidence (k = 2) and the
conformance probability are evaluated for three different scenarios, described below.

For the purposes of these examples the reference pressure correction term ∆pm is taken to be 0.05 %
of pstd and the associated expanded uncertainty (k = 2) is assumed to be 1 Pa for all pressure values.

The calibration data, calibration corrections and associated expanded measurement uncertainties are
summarised in Table 1. This data applies to all scenarios and models.

Table 1: Calibration data used for all scenarios and models.

Point, n pstd/Pa U(pstd)/Pa pUUC/Pa U(pUUC)/Pa

1 10.89 0.050 10.7 0.23
2 17.02 0.090 17.0 0.23
3 26.03 0.13 25.4 0.23
4 40.28 0.20 39.5 0.23
5 63.10 0.32 63.0 0.23
6 96.89 0.48 97.1 0.23
7 161.3 1.0 161.2 0.23
8 256.4 1.5 255.9 0.23
9 403.3 2.4 403.7 0.23

10 647.5 3.9 647.8 0.23
11 978.7 5.9 980.4 0.23
12 1 610.6 5.0 1 613.2 0.23
13 2 505.4 5.0 2 509.2 0.23
14 4 075.9 0.50 4 079.5 0.23
15 6 278.6 0.70 6 282.7 0.23
16 9 069.2 1.0 9 072.9 0.23
17 10 932.8 1.1 10 937.1 0.23

6.1 Scenario 1

In the first scenario, following best metrological practice, the reference pressure correction ∆pm is applied
to the measured reference pressure pstd.
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The calibration corrections and expanded measurement uncertainty are summarised in Table 2 where
the corrections ∆p, f and e are evaluated using equations (1), (2) and (3) respectively and standard
uncertainties are evaluated using the corresponding equations (4), (5) and (6).

Table 2: Calibration corrections for Scenario 1. All uncertainties are expanded (k = 2)

Point ∆p/Pa U(∆p)/Pa e U(e) f U( f )

1 −0.20 1.0 −0.017 9 0.093 1.018 3 0.096
2 −0.03 1.0 −0.001 7 0.061 1.001 7 0.061
3 −0.64 1.0 −0.024 7 0.039 1.025 3 0.041
4 −0.80 1.1 −0.019 9 0.002 5 1.020 3 0.026
5 −0.13 1.1 −0.002 1 0.001 7 1.002 1 0.017
6 0.16 1.1 0.001 7 0.001 1 0.998 3 0.011
7 −0.18 1.4 −0.001 1 0.008 8 1.001 1 0.008 9
8 −0.63 1.8 −0.002 4 0.007 1 1.002 5 0.007 1
9 0.20 2.6 0.000 5 0.006 5 0.999 5 0.006 5

10 −0.02 4.0 0.000 0 0.006 2 1.000 0 0.006 2
11 1.21 6.0 0.001 2 0.006 1 0.998 8 0.006 1
12 1.79 5.1 0.001 1 0.003 2 0.998 9 0.003 2
13 2.55 5.1 0.001 0 0.002 0 0.999 0 0.002 0
14 1.56 1.1 0.000 4 0.000 28 0.999 6 0.000 28
15 0.96 1.2 0.000 2 0.000 20 0.999 8 0.000 20
16 −0.83 1.4 −0.000 1 0.000 16 1.000 1 0.000 16
17 −1.17 1.5 −0.000 1 0.000 14 1.000 1 0.000 14

Figures 1 and 2, respectively, depict the correction factor f and the pressure difference ∆p as a function
of UUC pressure indication.

The red broken lines on these and later figures represent the specification limits defined by the UUC
owner. These often, but not necessarily, correspond to limits defined by the equipment manufacturer.

Conformance probability can be calculated regarding ∆p, f and e. Since all three quantities are linearly
related their PDFs describe the same physical situation and the same conformance probability will be
established whichever is evaluated. We therefore arbitrarily choose f for the purpose of these examples.

To calculate the conformance probability we further assume that the probability density function (PDF)
for f is normal:

p(x) =
1

σ(2π)1/2 e−[(x−m)2/(2σ2)],

where m is the mean and σ is the standard deviation.

To demonstrate evaluation of the conformance probability, consider a point 13 where say m = f = 0.999
and σ = u( f ) = 0.002. The conformance probability is given by integrating the probability density
function over the limits of interest, say 0.995≤ x≤ 1.005:

pc =
∫ 1.005

0.995

1
0.002 (2π)1/2 e−[(x−0.999)2/(2×0.0022)] dx
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Figure 1: Correction factor as a function of UUC pressure indication (logarithmic scale), scenario 1

Figure 2: Pressure difference as a function of UUC pressure indication, scenario 1

This integral is not analytically solvable, but it can be expressed through tabulated functions such as Q,
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φ or erfc. In this example the use of the Q function will be demonstrated where

Q(x) =
∫ +∞

x

1
2π

1/2 e−t2/2 dt.

Letting t = (x−m)/σ , we find new limits for the integral

(1.005−0.999)/0.002 = 3,

(0.995−0.999)/0.002 =−2,

and (6.1) becomes

pc =
∫ 3

−2

1
2π

1/2 e−t2/2 dt

=
∫ +∞

−2

1
2π

1/2 e−t2/2dt−
∫ +∞

3

1
2π

1/2 e−t2/2 dt

= Q(−2)−Q(3)

= 0.977−0.001

= 97.6%.

Note: To implement the calculations in Microsoft Excel, the Q(x) function can be evaluated using the
relation Q(x) = 0.5erfc(x/

√
2) and the Excel function ERFC.PRECISE().

The conformance probability for this scenario using the given data and the stated specification is sum-
marised in Table 3 (restricted to data in the top two full decades for sake of clarity).

Table 3: Conformance probability – Scenario 1

Point pUUC/Pa ∆p/Pa e f pc/%

7 161.30 −0.18 −0.001 12 1.001 1 72.4
8 256.40 −0.63 −0.002 45 1.002 5 74.5
9 403.30 0.20 0.000 492 0.999 5 87.3

10 647.50 −0.02 −0.000 037 1.000 0 89.2
11 978.70 1.21 0.001 236 0.998 8 87.1
12 1 610.60 1.79 0.001 114 0.998 9 99.3
13 2 505.40 2.55 0.001 016 0.999 0 100.0
14 4 075.90 1.56 0.000 383 0.999 6 100.0
15 6 278.60 0.96 0.000 153 0.999 8 100.0
16 9 069.20 −0.83 −0.000 092 1.000 1 100.0

No general conclusions should be drawn from the values in this table. The results are however informa-
tive for this specific calibration where, as might be expected for a well behaved instrument of this type,
conformance probability tends to be highest at higher pressures. The acceptability or otherwise of the
result can be based on a straightforward consideration of conformance probability.
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6.2 Scenario 2

In the second scenario no reference pressure correction ∆pm is applied, that is, the model equations are

f =
pstd

pUUC
,

∆p = pUUC− pstd,

e =
pUUC

pstd
−1.

This situation might (correctly) arise because little is known about ∆pm; hence the best estimate of its
value is taken to be zero, albeit the uncertainty remains finite. It might also be the case that the value
of the correction is known but following common (albeit poor) practice it is instead somehow combined
with its uncertainty to establish a bigger uncertainty estimate which, it is argued, accounts for the failure
to apply the correction. (See [3] and [7] for explanations of why this is considered to be poor practice.)
This latter situation is evaluated in this scenario.

In this case, the standard uncertainty u(∆pm) associated with the unused correction term is calculated
using

u(∆pm) =

[
0.52 +

(0.05% pstd)
2

3

]1/2

in which ∆pm = 0.05% pstd is assumed to be the semi-range of a rectangular distribution.

The quantities ∆p, f and e and their uncertainties are again recalculated and given in Table 4

Table 4: Data for scenario 2. All uncertainties are expanded (k = 2)

Point ∆p/Pa U(∆p)/Pa e U(e) f U( f )

1 −0.19 1.0 −0.017 4 0.093 1.017 8 0.096
2 −0.02 1.0 −0.001 2 0.061 1.001 2 0.061
3 −0.63 1.0 −0.024 2 0.039 1.024 8 0.041
4 −0.78 1.1 −0.019 4 0.026 1.019 7 0.027
5 −0.10 1.1 −0.001 6 0.017 1.001 6 0.017
6 0.21 1.1 0.002 2 0.012 0.997 8 0.012
7 −0.10 1.4 −0.000 6 0.008 9 1.000 6 0.008 9
8 −0.50 1.8 −0.002 0 0.007 1 1.002 0 0.007 1
9 0.40 2.6 0.001 0 0.006 5 0.999 0 0.006 5

10 0.30 4.0 0.000 5 0.006 2 0.999 5 0.006 2
11 1.70 6.0 0.001 7 0.006 1 0.998 3 0.006 1
12 2.60 5.1 0.001 6 0.003 2 0.998 4 0.003 2
13 3.80 5.3 0.001 5 0.002 1 0.998 5 0.002 1
14 3.60 2.6 0.000 9 0.000 64 0.999 1 0.000 64
15 4.10 3.8 0.000 7 0.000 61 0.999 3 0.000 61
16 3.70 5.4 0.000 4 0.000 60 0.999 6 0.000 60
17 4.30 6.5 0.000 4 0.000 59 0.999 6 0.000 59

Figures 3 and 4, respectively, depict the correction factor f and the pressure difference ∆p as a function
of UUC pressure indication.

9



As would be expected from equations (1), (2) and (3) the uncertainty for scenario 2 is always larger than
the corresponding uncertainty for scenario 1. In this case the difference is not large, but this is dictated
by the data and may be more (or less) significant for other data.

The conformance probability for this scenario using the given data and the stated specification is sum-
marised in Table 5 (restricted to data in the top two full decades for sake of clarity).

Table 5: Conformance probability – scenario 2

Point pUUC/Pa ∆p/Pa e f pc/%

7 161.30 −0.10 −0.000 6 1.000 6 73.4
8 256.40 −0.50 −0.002 0 1.002 0 77.8
9 403.30 0.40 0.001 0 0.999 0 85.9

10 647.50 0.30 0.000 5 0.999 5 88.6
11 978.70 1.70 0.001 7 0.998 3 84.2
12 1 610.60 2.60 0.001 6 0.998 4 98.3
13 2 505.40 3.80 0.001 5 0.998 5 100.0
14 4 075.90 3.60 0.000 9 0.999 1 100.0
15 6 278.60 4.10 0.000 7 0.999 3 100.0
16 9 069.20 3.70 0.000 4 0.999 6 100.0

Figure 3: Correction factor as a function of UUC pressure indication (logarithmic scale), scenario 2

The behaviour for conformance probability is generally more complex than is the case for measurement
uncertainty. In this example the conformance probability for scenario 2 is generally lower than for
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Figure 4: Pressure difference as a function of UUC pressure indication, scenario 2

scenario 1, which can be explained by one or both of the measurand (based upon uncorrected reference
pressure) being closer to a tolerance limit, and the uncertainty being larger, and hence the PDF being
‘wider’ and extending more beyond the tolerance limits. It is however quite possible for a value to be
closer to the centre of the tolerance interval when no correction is applied, which may have a larger
influence on the calculation of conformance probability than the increase in uncertainty, as is seen for
example for our point no. 8.

6.3 Scenario 3

The third scenario is obtained when the correction term and associated uncertainty are excluded, which
is equivalent to setting ∆pm = u(∆pm) = 0 in our three models, yielding the results shown in Table 6 in
which the conformance probability pc is again given for all points in the second and third decade.

Figures 5 and 6, respectively, depict the correction factor f and the pressure difference ∆p as a function
of UUC pressure indication.

The conformance probability for this scenario using the given data and the stated specification is sum-
marised in Table 7 (restricted to data in the top two full decades for sake of clarity).

As was the case for scenario 2, the behaviour for conformance probability is complex. In this case the
conformance probability is generally higher when compared to scenario 1. The difference is entirely
due to the nature of the data and the unused reference pressure correction and will vary depending upon
the data and corrections in question. Conformity decisions based upon these (scenario 3) conformance
probabilities would therefore likely be unreliable.
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Table 6: Data for scenario 3. All uncertainties are expanded (k = 2)

Point ∆p/Pa U(∆p)/Pa e U(e) f U( f )

1 −0.19 0.24 −0.017 4 0.022 1.017 8 0.022
2 −0.02 0.25 −0.001 2 0.015 1.001 2 0.015
3 −0.63 0.26 −0.024 2 0.010 1.024 8 0.011
4 −0.78 0.30 −0.019 4 0.007 5 1.019 7 0.007 8
5 −0.10 0.39 −0.001 6 0.006 2 1.001 6 0.006 3
6 0.21 0.53 0.002 2 0.005 5 0.997 8 0.005 5
7 −0.10 1.0 −0.000 6 0.006 4 1.000 6 0.006 4
8 −0.50 1.5 −0.002 0 0.005 9 1.002 0 0.005 9
9 0.40 2.4 0.001 0 0.006 0 0.999 0 0.006 0

10 0.30 3.9 0.000 5 0.006 0 0.999 5 0.006 0
11 1.70 5.9 0.001 7 0.006 0 0.998 3 0.006 0
12 2.60 5.0 0.001 6 0.003 1 0.998 4 0.003 1
13 3.80 5.0 0.001 5 0.002 0 0.998 5 0.002 0
14 3.60 0.55 0.000 9 0.000 14 0.999 1 0.000 13
15 4.10 0.74 0.000 7 0.000 12 0.999 3 0.000 12
16 3.70 1.0 0.000 4 0.000 11 0.999 6 0.000 11
17 4.30 1.1 0.000 4 0.000 10 0.999 6 0.000 10

Table 7: Conformance probability – scenario 3

Point pUUC/Pa ∆p/Pa e f pc/%

7 161.30 −0.10 −0.000 6 1.000 6 87.7
8 256.40 −0.50 −0.002 0 1.002 0 83.8
9 403.30 0.40 0.001 0 0.999 0 88.8

10 647.50 0.30 0.000 5 0.999 5 89.9
11 978.70 1.70 0.001 7 0.998 3 84.8
12 1 610.60 2.60 0.001 6 0.998 4 98.6
13 2 505.40 3.80 0.001 5 0.998 5 100.0
14 4 075.90 3.60 0.000 9 0.999 1 100.0
15 6 278.60 4.10 0.000 7 0.999 3 100.0
16 9 069.20 3.70 0.000 4 0.999 6 100.0
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Figure 5: Correction factor as a function of UUC pressure indication (logarithmic scale), scenario 3

Figure 6: Pressure difference as a function of UUC pressure indication, scenario 3
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7 Measurement model: sum model with correlation

Suppose that by some mechanism not already accounted for, both pstd and pUUC are both dependent upon
another common quantity, say for example a potential systematic error ∆T in measuring gas temperature
due to placement of temperature probes. This situation might be modelled as:

pstd = p′std(1+αstd ∆T ),

pUUC = p′UUC(1+αUUC ∆T ), (7)

where, for example, p′std and p′UUC now represent the observed values and αstd and αUUC are correspond-
ing temperature coefficients. Suppose also that a reliable estimate of ∆T is not available; hence the ‘best’
estimate is taken to be ∆T = 0K with an associated standard uncertainty u(∆T ).

For this example we will also assume that the reference pressure correction ∆pm is fully independent
and is not affected by the possible temperature error; hence the measurands are to be calculated using
equations (1), (2) and (3).

The standard uncertainties associated with the quantities pstd and pUUC in equation (7) are therefore

u2(pstd) = u2(p′std)(1+αstd ∆T )2 +u2(αstd)(p′std∆T )2 +u2(∆T )(p′stdαstd)
2,

u2(pUUC) = u2(p′UUC)(1+αUUC ∆T )2 +u2(αUUC)(p′UUC∆T )2 +u2(∆T )(p′UUCαUUC)
2.

To illustrate the situation, let u(∆T ) = 0.57K, αstd = αUUC = 1/300K−1 and u(αstd) = u(αUUC) =
1/3 000K−1; hence, for example, at calibration point 8, p′std = 256.4Pa and p′UUC = 255.9Pa. We find
from equation (1) that ∆p =−0.63Pa and

u(pstd) = 0.90Pa,

u(pUUC) = 0.51Pa.

Combining these without taking account of the correlation between pstd and pUUC gives, using equa-
tion (4), a standard uncertainty of u(∆p) = 1.14Pa.

In this case the estimate is about 25 % larger than is obtained by taking account of the correlation, as can
be achieved by following the process described in matrix form in clause 6.2 of GUM Supplement 2 [5]
(demonstrated below) and in subscripted summation form in the GUM [6, Annex F.1.2.3].

Equations (1), (2) and (3) are real univariate measurement functions of the form Y = f (X) where in the
case of equation (1) we have

Y = ∆p,

X = (pstd, pUUC,∆pm)
>.

Applying GUM-LPU, the variance in this case is given by

u2(∆p) = V∆p =C>
∆pVinC∆p, (8)

where C∆p is an array containing sensitivity coefficients, and Vin is the corresponding covariance matrix
for the input quantities:

C∆p =


∂∆p
∂ pstd

∂∆p
∂ pUUC

∂∆p
∂∆pm

=


−1

1

−1

 ,
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Vin =

 u2 pstd) u(pstd, pUUC) u(pstd,∆pm)
u(pUUC, pstd) u2(pUUC) u(pUUC,∆pm)
u(∆pm, pstd) u(∆pm, pUUC) u2(∆pm)

 . (9)

Equation (8) is the matrix representation of the equation obtained by applying GUM equation (13).

The covariance matrix (9) is obtained from

Vin =CXVXC>
X ,

where, in this example we have

C>
X =



∂ pstd
∂ p′std

∂ pUUC
∂ p′std

∂∆pm
∂ p′std

∂ pstd
∂αstd

∂ pUUC
∂αstd

∂∆pm
∂αstd

∂ pstd
∂ p′UUC

∂ pUUC
∂ p′UUC

∂∆pm
∂ p′UUC

∂ pstd
∂αUUC

∂ pUUC
∂αUUC

∂∆pm
∂αUUC

∂ pstd
∂∆T

∂ pUUC
∂∆T

∂∆pm
∂∆T

∂ pstd
∂∆pm

∂ pUUC
∂∆pm

∂∆pm
∂∆pm


=



1+αstd ∆T 0 0

p′std ∆T 0 0

0 1+αUUC ∆T 0

0 p′UUC ∆T 0

p′std αstd p′UUC αUUC 0

0 0 1


and

VX =



u2(p′std) 0 0 0 0 0

0 u2(αstd) 0 0 0 0

0 0 u2(p′UUC) 0 0 0

0 0 0 u2(αUUC) 0 0

0 0 0 0 u2(∆T ) 0

0 0 0 0 0 u2(∆pm)


.

Alternatively, the elements of (9) can be calculated in terms of subscripted summations in line with
annex F.1.2 of the GUM [6] using GUM equations (F.1) and (F.2). As we have assumed that the reference
pressure correction ∆pm is fully independent and is not affected by the possible temperature error, off-
diagonal covariances involving ∆pm are zero. The remaining covariance u(pstd, pUUC) = u(pUUC, pstd)
is non-zero since both pstd and pUUC depend upon ∆T . Its value is given by

u(pstd, pUUC) = (p′std αstd)(p′UUC αUUC)u2(∆T ).

Evaluating the uncertainty by either equation (8) or GUM equation (13) yields a value of u(∆p) = 0.91Pa
and a conformance probability of pc = 0.75 rather than a probability of pc = 0.67 that is obtained when
correlation is neglected. The impact of such a difference in conformance probability is dependent upon
the particular application of interest, but clearly any such differences have the potential to significantly
affect conformity decisions.
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8 Interpretation of results

This example has demonstrated the evaluation of measurement uncertainty and conformance probability
for various related calibration models under several common scenarios. It has also demonstrated how
correlation between quantities (arising from dependency on a common effect) is treated within the GUM
uncertainty framework. In each case the consequences for conformity decisions are complex, depending
as they do upon the particular data, model, and assumptions. No general rule can easily be established.
For some data points the conformance probability decreases when simplifying assumptions are made, in
others it increases. Caution is therefore needed unless best practice (scenario 1) is followed to avoid the
risk of making poor decisions.
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