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Abstract

Flexible automation technologies often require an accuracy in the millimeter and milliradian
range at different target positions. This thesis introduces a strategy that leverages a pose graph-
based localization approach to reduce positioning errors at target poses of collaborating mobile
robots. Using the precise localization from the pose graph we propose an odometry-based
method to improve the accuracy at target locations, thus avoiding manual teach-in of reference
scans for ICP that can degenerate in dynamic environments over time. As a basis for this
strategy, an extensible software architecture for socially acceptable navigation of mobile robots
is designed and implemented using ROS components. This architecture proposal includes a
DevOps toolchain to automate the process of software testing, building and delivery to different
robotic platforms or the cloud. Finally, we evaluate the proposed method in a industrial setting
achieving a position error below 25 mm in 92.7% and a rotation error below 1.5° in 93.9% of the
tests. Although the advances shown in this thesis couldn’t be statistically tested due to skewed
data distributions and some possible outliers, the improvement in both trueness and precision
underlines the gains in terms of accuracy positioning.
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Abstract (Deutsch)

Flexible Automatisierungstechnologien erfordern oft eine Genauigkeit im Millimeter- und Milli-
radiumbereich bei unterschiedlichen Zielpositionen. In dieser Arbeit wird eine Strategie vorgestellt,
die einen auf dem Pose Graph-basierenden Lokalisierungsansatz nutzt, um Positionierungs-
fehler bei Zielpositionen von kollaborierenden mobilen Robotern zu reduzieren. Unter Verwen-
dung der präzisen Lokalisierung aus dem Posendiagramm schlagen wir eine auf der Odome-
trie basierende Methode vor, um die Genauigkeit an den Zielorten zu verbessern und so das
manuelle Einlernen von Referenzscans für ICP zu vermeiden, das in dynamischen Umgebungen
mit der Zeit ausarten kann. Als Grundlage für diese Strategie wird eine erweiterbare Software-
Architektur für eine sozialverträgliche Navigation mobiler Roboter entworfen und mit ROS-
Komponenten implementiert. Dieser Architekturvorschlag beinhaltet eine DevOps-Toolkette zur
Automatisierung des Prozesses des Softwaretests, der Erstellung und der Auslieferung an ver-
schiedene Roboterplattformen oder die Cloud. Schliesslich evaluieren wir die vorgeschlagene
Methode in einem industriellen Umfeld, wobei ein Positionsfehler unter 25 mm in 92, 7% und
ein Rotationsfehler unter 1.5° in 93, 9% der Tests erreicht wird. Obwohl die in dieser Arbeit
gezeigten Fortschritte aufgrund verzerrter Datenverteilungen und einiger möglicher AusreiSSer
nicht statistisch getestet werden konnten, unterstreicht die Verbesserung sowohl der Richtigkeit
als auch der Präzision die Gewinne in Bezug auf die Genauigkeit der Positionierung.
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Introduction 1
„I do not fear computers. I fear the lack of them.

— Isaac Asimov
(American writer and professor of biochemistry)

1.	
Pick	up	gear	bearing	from	MiR	platform

2.	
Assemble	bearings	and	wheel	together	with	UR-10

(Robot-Robot	Collaboration)

3.	
Human	screws	wheels	inside	the	rail	

that	is	held	by	a	UR-10
(Human-Robot	Collaboration)

4/5.	
Quality	Assurance	by	UR-5	and	Human

4/5.	
Customer	modifications

6.	
Customer	Delivery

Fig. 1.1.: Co-bot scenario: Precisely visit different workplaces and interact with humans, objects and
other mobile or gripping robots

The increasing individualization of products
and the desire of customers for faster prod-
uct cycles is a current trend in the econ-
omy [1]. Production systems’ design and
operation has to become more flexible in or-
der to adapt to current market demands set
out by international roadmaps [2], which in-
cludes on-demand production, shorter lifecy-
cles, mass-customization schemes, high qual-
ity standards, rising speed of delivery and
lower fixed costs. A key technology to al-

low flexibility in industrial applications are
collaborative robots (co-bots) that can navi-
gate autonomously and achieve a precise po-
sitioning in order to perform mobile manipu-
lation tasks or docking [3].

A co-bot scenario is illustrated in Figure 1.1
as an example of an imagined flexible pro-
duction process. The process requires a co-
bot to transport producing parts over sev-
eral stations in collaboration with humans
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and robots. While a station with a human
is rather negligible, a mobile manipulation
robot has to pick up or place the parts in con-
trast, requires a low positioning error. There-
fore, the co-bot has to be able to approach
the individual stations with different accura-
cies. Such autonomous navigation requires a
complete system that provides autonomous
and socially acceptable behaviors. In order
to allow the required flexibility, markers of
all kinds, are not very welcome in the indus-
try.

This navigation system have to be as generic
as possible, to support different mobile
robotic platforms that move using different
types of mobility types. Irrespective of the
platform, the components of the system can
be distributed differently. While one co-bot
has a powerful control computer embedded,
others might require to be controlled using a
remote computer.

The term accuracy as defined by the Interna-
tional Vocabulary of Metrology VIM [4] and
ISO 5725-1 [5] as a measure for closeness

of a measurement to the true value. Apply-
ing this term of accuracy to sets of measure-
ments, involves two components: random er-
ror and systematic error. The sum of both er-
rors yields the total error. The ISO standard
defines the closeness of the mean of a mea-
surement set to the true value as trueness.
Further, it defines the closeness of agreement
between the measurement results as preci-
sion. Therefore, to improve accuracy it is
required to improve both trueness and preci-
sion. The term accurate as an indicator of the
quality of an unbiased and precise measure-
ment result. This term should only be used
as a general comparison that a method or
technology is “more accurate than” the other.
A multitude of other terms are used in this
thesis and are outlined in Section 1.2

Finally, this thesis attempts at solving the
problem that can be stated in a short sen-
tence: “Navigate to different target poses
accurately in (x, y) and yaw ∠θ while giv-
ing way to human coworkers and avoid colli-
sions with robot coworkers and other obsta-
cles.”

1.1 Thesis Outline and Achieved Contributions

This thesis begins by designing a complete
proposal for an extensible solution archi-
tecture supporting flexible automation tech-
nologies and provides a generic solution for
autonomous and socially acceptable naviga-
tion. The architecture combines autonomous
exploration with life-long mapping and a De-
vOps toolchain for developing, testing and
deploying software increments to robot plat-
forms or the cloud. This system is based on a
pose graph-approach for simultaneous local-

ization and mapping which provides precise
odometry-like localization. The thesis then
further goes on to leverage that precise lo-
calization for proposing a strategy that con-
verges the odometry pose with a previously
saved goal pose. This is deployed without
the need of a manually teached-in reference
scan that can degrade over time. The pro-
posed strategy is experimentally evaluated
by using an external motion tracking system
to capture precise measurements at two tar-

2 Chapter 1 Introduction



get locations. Finally, the last chapter dis-
cusses the findings of the thesis and its lim-
itations, and gives guidance for future re-
search.

Chapter 1

introduces the thesis topic and summarizes
the main contributions

Chapter 2

discusses the related work and technical
background required

Chapter 3

documents the proposed solution architec-
ture for socially acceptable navigation in flex-
ible environments. The solution is built us-
ing a service-oriented architecture with a mi-
cro services division where every component
is isolated in its own virtualized container
together with the data needed for that pro-
cess. The architecture combines various com-
ponents with state-of-the-art algorithms that
yield a robust and socially acceptable naviga-
tion. The second contribution of this thesis
is a DevOps toolchain for developing, test-

ing and deploying software increments us-
ing a continuous integration and delivery ap-
proach. The third contribution is a Gazebo
8.6 port for the simulation plugin of the Mo-
bility Base platform.

Chapter 4

discusses an error with the laser scanner that
led to a contributed bugfix. The chapter then
goes on to present the improvement oppor-
tunities. The fifth contribution is a strategy
to converge a precise odometry pose with a
goal pose.

Chapter 5

evaluates the strategy presented in Chapter 4
using an external measurement system. The
thesis compares the results with the stan-
dard navigation stack that was configured in
Chapter 3.

Chapter 6

Lastly, in our final chapter, we not only
briefly summarise our main findings,but also
point to some of the limitations of our work
and towards future directions.

1.2 Terminology

Here we introduce some key terminology that is used throughout the thesis

Pose of an object include its location and orientation in 6D

Yaw is a movement (rotation) around the yaw axis of a rigid body

Virtualization is the process of creating, running and managing virtual environ-
ments or computing resources; abstracts physical resources

Virtual Machines is a hardware virtualization technology that emulates a full com-
puter

1.2 Terminology 3



(Linux) Container containers are an operating system virtualization technology used
to package applications and their dependencies and run them in
isolated environments

Container Runtime is the component that actually runs and manages containers on a
host computer

Docker first technology to successfully popularize Linux Containers; is
the widely used solution to this date

Development tools are computer programs for creating, debugging, maintain or oth-
erwise support other programs and applications used by develop-
ers

Development Strategies are the methods and processes employed for developing software

DevOps is a combination of development and operations, which is a set of
practices that automates the processes between software develop-
ment and IT operation teams

4 Chapter 1 Introduction



Related Work 2
„ If you’re not failing every now and again, it’s a sign

you’re not doing anything very innovative.

— Woody Allen
Director

In this chapter all previous work found that
relates to solving the task is discussed. First
this includes investigating the state of the
art in robot software development for re-
search. Second, the last section discusses the
methodology to evaluate pose accuracy of

mobile robot navigation and localization and
how to improve upon it. Finally, a sighting
of architectures and algorithms for socially
acceptable navigation was done to identify
solutions best fit for my purpose.

2.1 Extensible Software Development Framework for
Robotics Research and Deployment

An integrated robot system for mobile ma-
nipulation requires diverse skills. Skills that
bridge the gap between AI and robotics, such
as robot perception, knowledge representa-
tion and reasoning for robotic agents. There-
fore, developing a complex robotic system
from the ground up requires a high level of
specialization in a large number of diverse
scientific areas. Also, great effort has to be
applied in order to join the separate soft-
ware modules for the whole robotic system
to work fluently. Using robotic frameworks
thus is required to overcome these obstacles.
There are a number of well known robotic
frameworks available [6, 7, 8, 9, 10, 11] that
vary in operation system and programming
language support, as well as their focus. The

focus of a framework can be e.g. real-time,
control or simulation and is not exclusive.

In [12], extensive comparison between
robotic frameworks is performed. The paper
first defines a nomenclature to distinct be-
tween and compare different robotic frame-
works, middlewares and architectures. A col-
lection of software tools, libraries and con-
ventions that aims at simplifying the task of
developing software for a complex robotic
device is defined as a Robotic framework. Us-
ing such a framework often restricts the gen-
eral architectural principles of the developed
software. Such general architectural princi-
ples could be of two kinds - centralized or
real-time system. A Robotic middleware is de-
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scribed as the glue that holds together the
different modules of a robotic system. A mid-
dleware provides the communications infras-
tructure between software nodes running in
a robotic system as its most basic task. As
these interfaces consist of various OS spe-
cific drivers, a middleware also usually pro-
vides the essential software, such as hard-
ware interfaces between the high level and
low level components of the system. Dif-
ferentiating from the definition of robotic
frameworks and middlewares is a Robotic ar-
chitecture, which is a more abstract concept.
A robotic architecture describes how mod-
ules in a robotic system should be intercon-
nected and interact.

Having defined the nomenclature, [12]
found that the Robot Operating System ROS,
has the largest momentum and appeal to the
community. This fact is also supported by
the large amount of submitted algorithms by
the scientific community in the ROS wiki that
covers a wide range of applications. Con-
trary to its name, the Robot Operating Sys-
tem is a framework as defined in the previ-
ous nomenclature. Specifically targeted for
writing robot software, ROS is comprised of
tools, libraries and conventions that aim for
complexity reduction, concerning the proce-
dure of writing complex and robust robotic
behaviours. As it provides standard sys-
tem operating services, such as hardware
abstraction, low-level device control, imple-
mentation of commonly used functionality
and message-passing between processes and
package management.

Because of the huge amount of diversity in
robotic applications, the research in [13]
finds that establishing a unified structure for
intelligent robot systems is difficult. Absorb-

ing previous experience and lessons learned
from past typical architectures is important.
Moving away from modules towards agent-
based control architectures can bring inde-
pendence, autonomy, intelligence and flexi-
bility. Such architectures consist of different
types of agents that are responsible for differ-
ent aspects. The different types of agents can
be found in the AI classic [14]. A navigation
task can be abstracted into different layers
with different types of agents that are just re-
active or deliberate. Examples for a deliber-
ate agent are task or path planning and local-
ization. As for a reactive agent, examples are
navigation and obstacle avoidance. Building
on this, [13] propose six design principles for
constructing intelligent robot systems. These
design principles are implemented in the pro-
posed architecture and consist of

1. Modular Division based on the primi-
tive Sense, Plan, Act (S, P, A)

2. Hierarchical Principle of Architecture
3. Principle of High Cohesion and Low

Coupling
4. Design Principle of Redundancy
5. Coordination Principle Between Delib-

erative and Reactive Layers
6. Extend Software Design Methods to

Robotics

The first design principle modularity is key to
designing an intelligent robot system, which
basis division depends on the task and the ap-
plication domain. Classification of the mod-
ules depends on choosing different granular-
ity such as function, behavior and compo-
nent. All modules are explained as expan-
sion or extension of the primitive (S,P,A).
Sensing can be seen as the ability to per-
cept internal and external state changes, and
to understand the meaning of these changes.

6 Chapter 2 Related Work



Planning is the ability to make decisions au-
tonomously based on conditions, states and
constraints. Acting is the basic action and be-
havior of the robot. As such, a module can
i.e. follow a reactive paradigm (S → A) or
deliberative paradigm (S → P → A).

The hierarchical principle, divides behavior
into layers similar to the animal spatial be-
havior. Division of the agent-oriented dis-
tributed hybrid architecture is based on de-
liberative and reactive paradigms. Splitting
reflex-like, fusion, learning and cognition be-
haviors in different layers to achieve a more
complex cognitive behavior. The principle of
high cohesion and low coupling is embodied
during the design process. Relationships be-
tween modules determine data and control
flow. A reasonable division of subsystems
that solve sub-problems are important. At
the same time, this design strategy considers
how to synthesize the sub-problems for solv-
ing the original problem.

Redundancy in the design increases robust-
ness and adaptability to the environment.
Redundancy can come from either part or
function. Functional redundancy is easier
and cheaper to achieve, as it mostly involves
fusing perception from different sensors. An
example for functional redundancy for mo-
bile robot navigation is overlapping vision
from a camera with range data from a laser
scanner. Both sensors have their advantages
and disadvantages in certain situations and
can provide more robustness if they are com-
bined. Coordination between the different
reactive and deliberative layers make a robot
have strong features and application flexi-
bility. Complementing deliberative abilities
such as modeling, planning and other intel-
ligent decisions with reactive abilities. Such

reactive abilities allow real-time responding
for overcoming the uncertainty of dynamic
changes during the execution of intelligent
decisions. Lastly, extending software de-
sign methods to robotics, such as Service-
Oriented Architecture (SOA) brings impor-
tant advantages. Such methods can improve
modularity, robustness, flexibility, durability,
scalability and reuse of robotic software.

These proposed principles are used in the
solution architecture described in Chapter
3. The desirable requirements for the con-
trol software architectures of autonomous
mobile robots described in [15] also sup-
ports these principles. They describe a gap
between available methodology/technology
and the new application and market de-
mands that require fully autonomous robots.
These demands motivate researchers and
practitioners to develop novel methods and
techniques to overcoming the large uncer-
tainties in the real world environment and
facing the sensory imprecisions and inaccura-
cies. In turn, this motivates the importance
to achieve

Robot hardware abstraction for portabil-
ity to different platforms

Extendability and scalability for adding
new hardware and software compo-
nents to the system

Reusability of software components, struc-
ture, framework and patterns

Repeatability of behaviors and achieved re-
sults

Low overhead in memory and CPU require-
ments, frequency and end-to-end la-
tency at run-time

A critical factor in software development for
ROS is that building, running and shipping

2.1 Extensible Software Development Framework for Robotics Research and
Deployment
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applications and services is a daunting en-
deavor for non-experts with a formidable
learning curve described in [16]. The ROS
ecosystem builds from fast-growing, open
source, continuously evolving community
of newly released linux distributions1, up-
dated dependencies and deprecated pack-
ages. Combined with a curse of dimensional-
ity that plagues developers when developing
robotic applications, makes packaging an ap-
plication so that it runs on any system regard-
less of operating system, a hard challenge.
The curse of dimensionality comes from
the the various robotic platforms, peripher-
als, operating systems and ROS distributions
that a developer has to consider, as well
as used third-party software libraries. The
packaging is further complicated by shared
packages or libraries on which several other
packages have dependencies upon but where
they depend on different and incompatible
versions, often called “dependency hell”.

Furthermore, the field of robotics is not
solely composed of trained software engi-
neers, but is rather one of the most interdisci-
plinary fields in existence. While classically it
started in engineering, it has now evolved to
psychologists for human-robot collaboration
[17] and neuroscientists which enrich the
collaboration by integrating brain-robot in-
terfaces [18]. In order to allow non-experts
in robotic software development to develop
their component independently, easier de-
velopment tools and environments are re-
quired.

In [16], they utilize advances in Linux con-
tainers to showcase development tools and
strategies to construct repeatable and re-
producible environments, as well as run-

ning and shipping portable ROS applications.
This opens up many new possibilities in the
interdisciplinary field of robotics such as get-
ting started without cumbersome environ-
ment setup and setting up workflows for
continuous integration and test verification.
Due to the lack of such a workflow, [19]
found that this represents a significant obsta-
cle for testing and reusing purposes. A hard
to test and reuse package, mixed together
with the tendency for experimental code to
be accompanied by little explanatory mate-
rial, leads to issues with repeatable and re-
producible environmental setups. Research
reproducibility and performance evaluation
as described by [20] has a high importance,
especially for dependable robots. Properties
such as e.g. safety, reliability and availability
that can be objectively measured are part of
the dependability. Additionally, the depend-
ability also contains a subjective perspective
that reflects the level of trust end-users have
in the system performance.

A standard architecture called “Plug and Pro-
totype P&P” to enable fast software prototyp-
ing and generating modular and easily exten-
sible structures is proposed by [21], which
aims at providing a standardized pattern for
developing applications for ideally any robot.
This framework however suggests to encap-
sulate all resources needed in one single con-
tainer, which leads to spawning all nodes
in a single bash process. This approach
is in contrary to the paradigm of a micro-
service architecture, where each small ser-
vice runs in its own process and communi-
cates with lightweight mechanisms. Running
every ROS node in a seperate container al-
lows longer life-cycles for certain nodes and
to start them dynamically. Furthermore, this

1A linux distribution is an operating system made from a software collection that is based upon the Linux kernel
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eases the process of running multiple or dif-
ferent versions of language runtimes and col-
lections of software with conflicting depen-
dencies.

In contrast to Virtual Machine VM tech-
nologies, Linux Container virtualization
has the ability to load and communi-
cate directly with the GPU driver us-
ing the Nvidia Container Toolkit project
nvidia-docker2. This allows to run all
sorts of hardware accelerated/intensive ap-
plications inside a container directly on the

GPU with only minimal overhead as [22]
found. Their research found no noticeable
drawbacks of Docker containers in CPU and
GPU tests. They performed just as good as
programs running in the host system. How-
ever, this technology only supports Linux
platforms as of now, which limits the deploy-
ability of such containers. Containers are
mostly for simulation or model training pur-
poses they can be run on a seperate machine
running any Linux distribution supporting
Docker.

2.2 Pose Accuracy of Mobile Robot Localization

Determining the robot’s position and rota-
tion (its “pose”) by using its sensor and mo-
tion observations is known as robot localiza-
tion. The localization of where the robot is
occurs within a frame of reference, which is
its internal map of the environment. Because
motion and sensors are not always perfectly
accurate and the environment is dynamic, lo-
calization needs to deal with some uncertain-
ties.

The definition of pose used in this thesis is of
a 6D Cartesian pose that is relative to a ref-
erence coordinate frame. Such a Cartesian
pose is composed of a position and orienta-
tion component. The position component is
simply a point consisting of 3 coordinates x,
y and z. The position point describes an ab-
solute location in 3D space using these coor-
dinates. The second component of the Carte-
sian pose is the orientation and comes in
quaternion form.

Quaternions represent the shortest path to
get from one rotation to another. [23] gives
a good introduction to quaternion algebra
and rotation operators. Simply put, a quater-
nion represents an orientation or rotation
delta. Quaternions are made out of 4D vec-
tors of the form [x, y, z, w]. The x, y and
z components are factors of complex num-
bers C, and w is the scalar part R. Rotating
smoothly and directly over the shortest path
using quaternions is as simple as matrix mul-
tiplication. Typically, this is done by taking
the current orientation as a quaternion and
multiplying it by another rotation quater-
nion. While the quaternions are not com-
mutative, they are associative, and form a
group known as the quaternion group. This
is the case, because rotating consecutively
90° about x-axis and y-axis returns a differ-
ent rotation than doing it in the reverse order.
These different sequences can be observed in
Figures 2.1 and 2.2. Therefore, for quater-
nions p and q the following has to be consid-

2NVIDIA Toolkit can be found under https://github.com/NVIDIA/nvidia-docker
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ered i.e., pq ̸= qp. A subset {v1, v2, ..., vk} of
a vector space V is called orthonormal if the
inner product ⟨vi, vj⟩ = 0 such that i ̸= j.
These vectors vi and vj are said to be mu-
tually perpendicular when ⟨vi, vi⟩ = 1. A
basis is called an orthonormal basis, if the
orthonormal set is linearly independent and
is a vector basis for the space it spans. The
standard orthonormal basis for R3 is given
by three unit vectors i = (1, 0, 0), j = (0, 1, 0)
and k = (0, 0, 1).

A quaternion is defined as the sum of a scalar
w and a vector q = (x, y, z):

q = w + q = w + xi + yj + zk

Utilizing the inner product and cross product
of two vectors in R3 the quaternion product
pq can be written as follows

pq = wpwq − ppp · qqq + wpqqq + wqppp + ppp× qqq

In the equation above, ppp = (xp, yp, zp) and
qqq = (xq, yq, zq) are the two vector parts of
both ppp and qqq, respectively.

A complex conjugate of a complex number in
mathematics is a number with an equal real
part ℜ(z) and an imaginary part ℑ(z) equal
in magnitude but opposite in sign. If for ex-
ample z = a + bi, where a and b are real,
then the complex conjugate of z = a + bi

is z∗ = a − bi. The complex conjugate of a
quaternion q = w + xi + yj + zk denoted q∗

is defined as

q∗ = w − qqq = w − xi− yj − zk

From this definition also follows, that q∗q =
qq∗ and given two quaternions p and q,
(pq)∗ = q∗p∗ can be easily verified.

The norm of a quaternion q is denoted by |q|
and is the scalar |q| =

√
q∗q. If the norm of

a quaternion is equal to 1, it is called a unit
quaternion. For two quaternions p and q the
norm of their product is the product of the
individual norms as follows

|pq|2 = (pq)(pq)∗ = |p|2|q|2

With the definitions of a complex conjugate
and the norm of a quaternion, the inverse of
a quaternion q can be defined as

q−1 = q∗

|q|2

While it can be verified that q−1q = qq−1 = 1,
in the simple case of a unit quaternion, the
inverse is just its conjugate q∗.

Fig. 2.1.: Rotation around x-axis then around y-
axis

Fig. 2.2.: Rotation around y-axis then around x-
axis
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Euler Angles on the contrary, are intuitive
and easier to work with. They can be
thought of as a sequence of steps in 3D called
pitch X, roll Y and yaw Z. However, these
angles have a gimbal lock flaw, that occurs
when two of the three axis line up. This locks
the system into rotation in a degenerate 2D
space where one degree of freedom is lost.
Converting from and to Euler angles can be
difficult, as there are multiple solutions for
a given orientation. Therefore, if required
to work with Euler angles, the transforma-
tion library from ROS should be used. Also,
these conversions should happen only at the
last possible moment, doing as much with
quaternions as possible.

Localization and Pose Accuracy is a key re-
quirement for mobile robots. On the fac-
tory floor in industrial applications a high de-
gree of accuracy is required, in order to per-
form accurate docking or mobile manipula-
tion tasks such as pick and place. For such
applications, it is required to achieve pre-
cise positioning at target locations. Popular
solutions for accurate positioning as found
by [3] relies on modifications of the envi-
ronment using embedded wires or magnetic
tapes. Other solutions depends on the mod-
ifications of the environment, which make
use of V or VL shaped [24] or QR code mark-
ers [25].

Whereas many approaches to mobile robot
localization have been proposed in the past,
mostly probabilistic approaches that localize
robots with respect to a given map have been
the most successful application-wise. These
approaches often rely on techniques such
as ICP-based pose graphs [26], extended
Kalman filters EKF [27] or the faster and

unstable unscented Kalman filters UKF [28],
histogram filters [29] or particle filters. Par-
ticle filters are often referred to as Monte-
Carlo localization MCL [30] and variants
thereof.

Some marker-based technologies using
Radio-Frequency Identification RFID or
wireless receivers estimating radio signal
strength have been evaluated in [31, 32, 33]
for the accuracy they provide and how well
they can deal with changes in the environ-
ment. Using the Active Beacon technology
[31], achieved a positional accuracy below
5 mm, which can deal with heavy changes
and dynamics (rotating tables, moving fur-
niture, robots, people, etc.) in the environ-
ment. In contrast to this, the solution us-
ing landmark bearings [32] was only able
to achieve below 3.8 cm, while only deal-
ing with isolated changes to the environment.
However, none of these works considered
the orientation accuracy of the final pose.
While some of those systems work precisely,
they rely on modifications of the environ-
ment, such as installing beacons and land-
mark bearings at specific locations. These
modifications limit the flexibility of a robotic
system.

As for the egocentric sensors such as 2D cam-
eras, there are three vision-based approaches
that are available for mobile robot localiza-
tion. The oldest experimental results from
[34] achieved - with a maximal error of
6.8 cm - the best positional accuracy of that
category of sensors. This work capitalized on
the strengths of image and landmark-based
methods by encoding images as a set of vi-
sual features. These features are then used
to detect landmarks and perform localiza-
tion using a landmark tracking and interpo-
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lation method. This approach is markerless,
as it learns the landmarks using visual char-
acteristics of interest related to object recog-
nition. Other approaches uses Scale Invari-
ant Feature Transform SIFT to extract fea-
tures with a single perspective camera in
[35] and a stereo camera in [36] and uses
Monte-Carlo localization. Using a monocular
camera yielded below 39 cm positional and
4.5° rotational accuracy, while using a stereo
camera yielded a 19 cm better positional but
1.5° worse rotational accuracy. Dealing with
dynamics in the scene is rather difficult us-
ing single cameras, but moderate changes
can be overcome by fusing various low cost
cameras as described in [37]. Unfortunately,
this approach of fusing low cost cameras
only achieved a sub-metre positional and re-
ported no rotational accuracy.

Most robotic platforms are equipped with
laser rangefinders, which provides precise
distances to obstacles and requires no data
pre-processing. In [3], they combined
Monte-Carlo localization with KLD sampling
and fine repositioning using scan alignment
with the Iterative Closest Point ICP algorithm.
In an experimental evaluation of their sys-
tem, they were able to achieve position er-
rors between 5 mm and 15 mm. The reason
for that interval is the amount of change
in the environment, where the upper bound
was reached when dealing with eight people
as well as additional objects placed in the di-
rect proximity of the robot. Also, a small ro-
tational error of 0.15° was achieved.

Using the ICP algorithm for finding the trans-
formation that best aligns points of a current
point cloud reading with respect to a refer-
ence. ICP is a rather simple and modular
algorithm that was originally introduced in

[38]. Numerous variants have been devel-
oped along the years, with the wide range
of selection of proper configuration and its
parameters that normally requires empirical
tests and experience. Factors like the envi-
ronment in which the robot evolves, the sen-
sor, the amount of processing data, the data
organization schema, the algorithm config-
uration and the measurement errors in the
data needs to be considered, to make a pre-
cise scan registration.

Using time of flight ToF or structured-
light 3D camera technologies, similarly to
laser rangefinders, returns point clouds from
scans that can be aligned to compute a trans-
lation and rotation between them. This can
be thought of as a 3D point cloud that would
yield more information and a more accu-
rate description of the environment. In or-
der for the computation to be efficient, the
data would have to be filtered wisely. The
performance of two registration algorithms
ICP and normal distribution transform NDT
on 3D point clouds have been evaluated for
autonomous vehicles by [39]. Their com-
parison showed that NDT possesses a bet-
ter ability to handle realistic adversity con-
ditions such as static and dynamic environ-
mental changes. With NDT they achieved a
positional error below 40 mm realistic field
tests in dynamic environments. As the ve-
hicle was moving while computing the reg-
istrations and the (sub-)urban environments
are continually changing which leads to sig-
nificant differences. These temporal changes
that occur over varying time-scales include
dynamic and ephemeral objects (such as
parked cars), seasonal changes (vegetation,
snow, dust) and human impacts such as con-
struction. Therefore, it is expected, that 3D
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augmented scan alignments in more control-
lable environments perform better.

Monte Carlo Localization deals with this
uncertainty by generating many random
guesses of where the robot is going to be
next. These guesses are known as particles
and contain a full description of a possible fu-
ture state. Such a state for a 2D mobile robot
consists of a tuple (x, y, θ) for position x, y

and orientation θ. The robot’s estimate of its
current state is a probability density function
distributed over the state space and is called
the belief. In the MCL algorithm, this belief
at time t is represented by a set of M par-
ticles, where each state can be considered a
hypothesis.

Xt =
{

x
[1]
t , x

[2]
t , ..., x

[M ]
t

}

Regions in the state space with many par-
ticles is predictive of the robot’s location
and vice versa. The MCL algorithm assumes
the “Markov property” where the current
state depends only on the previous state (i.e.
Xt depends only on Xt−1). This assump-
tion only works if the environment does not
change with time and is static. The algo-
rithm at time t takes an input – the previous
belief Xt−1, an actuation command ut, some
data from sensors zt and outputs its new be-
lief Xt.

KLD-Sampling adapts the number of parti-
cles which is based on how sure the robot is
of its position. The original Monte Carlo lo-
calization algorithm is fairly simple. Many
variants to this algorithm have been pro-
posed that has tried to address its shortcom-

ings or adapt it to perform effectively in cer-
tain situations. One of them is the MCL with
KLD-sampling which samples the particles
based on an error estimate using the KLD. Us-
ing the same state space as with normal MCL,
a histogram is overlaid where each bin is ini-
tially empty. A new particle is drawn from
the previous weighted patricle is set at each
iteration with a probability proportional to
its weight. Resampling in classic MCL, the
robot generates a set of new particles, with
most of them generated around the previous
particles with more weight. In KLD-sampling
algorithm, particles are drawn from the pre-
vious, weighted particle set and gets applied
motion and sensor updates before placing
the particle into its respective bin. Further-
more, the algorithm tracks the number of
non-empty bins k by recalculating Mx each
time a particle is inserted into a previously
empty bin. This benefits computational re-
quirements, as it increases linearly in k and
is repeated until the sample size M is equal
to Mx. In practice, KLD-sampling consis-
tently outperforms and converges faster than
classic MCL.

Simultaneous Localization and Mapping
SLAM

In order for the robot to localize itself, it first
has to create a map of the environment. The
problem of building a map of an unknown
environment while continuously estimating
the robot pose is called simultaneous local-
ization and mapping SLAM and as described
by [40] is one key issue that prevents the cre-
ation of truly autonomous mobile robots. Al-
though different algorithms have been pro-
posed, the universal one has not been found
yet. Laser range-finders are widespread sen-
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sors and indoor navigation of mobile robots
can be represented as a 2D problem. This
representation in lower dimension comes at
the cost of reduced autonomy in uneven or
cluttered environments. The focus of this
thesis lies on the 2D laser scan based SLAM.
While this does not exclude 3D cameras of
different types, it does require their point
clouds to be down-projected onto a 2D plane.
The benefit of doing this is being able to reg-
ister obstacles not only on a horizontal line
but obstacles on all heights, which should in-
crease the robustness and autonomy of the
robot’s navigation. This benefit comes at a
cost of much higher computational require-
ments as reported by [41].

Loop closure is the problem of detecting
when the robot has returned to a past loca-
tion after discovering new terrain for a while,
which is crucial to enhance the performance
and robustness of SLAM. The most popular
SLAM algorithms to date are Google’s Car-
tographer [42], GMapping [43] and Hector
SLAM [44], which have been evaluated and
compared by [45]. The research found that
Google’s Cartographer constructed maps in
almost all scenarios with the smallest error
relative to a precise ground truth while be-
ing robust w.r.t. the different type of mobile
robot movements. The maps constructed
with Gmapping, whose quality are not far
from Cartographer’s, ranked second in the
test. Compared to Hector SLAM, both Car-
tographer and Gmapping make additional
use of odometry for localization rectification
and map correction, besides using light de-
tection and ranging LiDAR sensor data. Car-
tographer and Gmapping also provide an ex-
plicit option for loop closure. Because Hec-

tor SLAM does not provide an explicit option
for loop closure and uses only LiDAR data,
its results are less accurate than other algo-
rithms.

Cartographer can be seen as two separate
subsystems for local and global SLAM. The
local SLAM subsystem is sometimes called
the frontend and is responsible for build-
ing a succession of submaps. Each of those
submaps are meant to be locally consistent
but are allowed to drift locally over time.
The global SLAM subsystem is also called
the backend and tries to find loop closure
constraints. This is achieved in the back-
end by matching scans from sensors against
submaps. Incorporating other sensor data al-
lows it to get a higher level view and iden-
tify the most consistent global solution. At
a lower level of details, this means gener-
ating good submaps with local SLAM and
tying them together as consistenly as possi-
ble with global SLAM. Unfortunately, Cartog-
rapher seems not very consistent in repeti-
tive environments and does not work that
well in practice as can be found in some is-
sues on GitHub 3. Cartographer requires tun-
ing to make it pick up global loop closures
of submaps in large and repetitive environ-
ments, which defines most industrial envi-
ronments.

A graph-based approach KartoSLAM was pro-
posed by SRI International’s Karto Robotics,
which [46] found to produce accurate maps
with lower CPU load. The complete stand-
alone library for robust 2D mapping was
open sourced as OpenKarto4 with very little
documentation. The library uses the correla-
tive scan matching algorithm by [47] in the

3Issues #127, #141 and #1617 can be found on GitHub https://github.com/googlecartographer/cartographer/issues
4The ROS Karto Wiki can be found under http://www.ros.org/wiki/karto
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frontend and a Sparse Pose Adjustment SPA
from [48] in the backend. The high quality
scan matcher gives the algorithm good accu-
racy and combined with the SPA which uses
the poses to minimize the error caused by
the constraints, and in doing so, reduces the
errors accumulated before loop closure. This
combination has been previously shown by
[49] to give excellent mapping results with
minimal errors in large real-world datasets.
Using a graph-based approach, [50] shows
the possibility to build maps using multiple
robots, by keeping track of the positions and
subscribing to the laser feeds of all robots.

ICP-Based Pose-Graph SLAM provides an
odometry-like localization solution upon Li-
DAR sensors as proposed by [26]. The pro-
posed solution registers sequentially point
clouds along a robot trajectory. Such a point
cloud represents a set of data points in space.
Generated by 2D or 3D scanners, they mea-
sure points on the external surfaces of ob-
jects around them.

Fig. 2.3.: Two layers in the ICP-based pose-
graph SLAM system

A problem in only using ICP and with odome-
try systems in general, is the accumulation of
errors made at every registration that leads
to a drift of the overall position estimate.
Without any prior map of the environment,
resorting to a SLAM approach is the only way
to reduce this drift. Probabilistic graphical
model theory proposed in [51] was used to
solve the SLAM problem through optimiza-

tion. The computation time needed to con-
verge to a solution can be considerably re-
duced by exploring the sparsity of the SLAM
problem. Graphical models used to model
the optimization problem provide a power-
ful layer of abstraction that helps to better
understand the problem and design power-
ful solutions.

The diagram in Figure 2.3 gives an overview
of an ICP-based pose-graph SLAM system. It
describes a hypothetical state after the sys-
tem processed some scans. Two main lay-
ers on the top plus the scan stream on the
bottom represents simply the history of ac-
quired scans. The ICP layer is composed
of keyframes Ki, and their associated scans
that are called keyframe scans. All associated
scans for a keyframe scan in the ICP layer
are found within the cloud shapes. Each
keyframe Ki is associated with a node xi

in the graph layer above. Some of these
keyframe scans are selected to compose lo-
cal maps represented in the Figure by blue
clouds. These local maps are used as ref-
erence inputs for the ICP process. Other
keyframe scans represented in the Figure by
a gray cloud are only stored and may at a
later point be used to compose a local map.
Such a composition is only possible if the
robot revisits this part of the environment
again. The robot pose R is always expressed
with respect to the closest keyframe in the
current local map. The system does not re-
quire a complete map of the environment,
but can be computed on demand as the con-
catenation of all keyframe scans.

The robot initial position with respect to
the world origin is added to the graph de-
picted as black square in the Figure. The
first keyframe K0 is associated to the first ac-
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quired scan and with it, the associated node
x0 is created in the pose-graph. Every time
a new scan depicted as green cloud is avail-
able at the current robot position R, the ICP
finds the transformation that aligns it best
with the current local map depicted as green
arrow, correcting the robot position. If the
overlap between the current scan and the
current local map is lower than a defined
threshold, a new keyframe is created. Oth-
erwise the scan is discarded, as depicted by
the crossed circles in the scan stream.

As new keyframes are created, they are ini-
tialized with the corrected robot frame. This
adds a new frame variable as a node to
the pose-graph, as well as a factor depicted
as blue square that contains the transforma-
tion between the new and former keyframes.
This transformation is shown in the ICP layer
by the blue arrows. Finally, the local map is
rebuilt by incorporating the newest and re-
moving the furthest keyframe scan.

Potential loop closures between two
keyframes, when detected by the system trig-
ger a local map is built around the oldest
between these loop closing keyframes. A
ICP call then tries to align the scan of the
other loop closing keyframes with this local
map. If that ICP call is successful, a new fac-
tor is added to the pose-graph between the
variables associated with these loop closing
keyframes. This closes a loop at the graph

representation layer, which as a result, trig-
gers a optimization that uses the pose-graph
data. Subsequently, the loop ends by reposi-
tioning the keyframes. Local maps are also
reconstructed using these new keyframe val-
ues. At the same time, the robot frame R

being expressed in the closest keyframe, is
also updated by the loop closing process.

The slam_toolbox5 is built on top of the
OpenKarto SDK with support for large and
dynamic spaces. This project contains dif-
ferent tools and capabilities for 2D planar
SLAM. The pose-graph approach maintains
a rolling buffer of recent scans in previously
visited poses, which can be used to load
a saved pose-graph and continue mapping
while removing extraneous information from
newly added scans. Unlike other SLAM li-
braries, it does not rely upon other localiza-
tion such as adaptive (or Kullback-Leibler di-
vergence KLD-sampling) Monte Carlo local-
ization AMCL from [52] which uses a parti-
cle filter to track the pose of a robot against
a known map. The slam_toolbox provides a
motion model by getting odometry using Li-
DAR which uses optimization-based localiza-
tion built on the pose-graph and OpenKarto’s
high-performance scan matcher. Getting pre-
cise odometry information aids on the gener-
ation of more precise localization, since un-
derstanding the robot dynamics we can esti-
mate its pose.

5Announcement of the package https://discourse.ros.org/t/announcing-stable-release-of-slam-toolbox/9872
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2.3 Architecture and Algorithms for Socially Acceptable
Navigation

Navigation of mobile robots is a key factor
in order to be fully autonomous and achiev-
ing flexible automation technologies. A lot
of research has been done on mobile robot
navigation with various robotic platforms in
order to make the systems more autonomous
and robust. Some of these research built re-
sources for ROS that allows a robot to plan
and follow a path while deviating from obsta-
cles [53]. The ROS navigation stack that can
be found in the package move_base that pro-
vides those resources for differential drive
and holonomic robots. The navigation task
requires many other resources, such as robot
localization in a static or dynamic map, as
well as a motion model of the robot and
some sensor sources.

As powerful as the ROS navigation stack is,
there are a ton of parameters to fine tune
in order to maximize its performance. The
guide from [54] describes the main parts
and offers a description of some of the avail-
able algorithms for global and local planning.
The guide also describes the meaning and ef-
fects of some of the parameters the individ-
ual components offer. This makes the navi-
gation guide a good starting point and can
be used as a reference to perform naviga-
tion performance optimization for the mo-
bile platform at hand.

In order for robots to seamlessly integrate
into the human physical and social environ-
ment, they must display appropriate prox-
emic behavior (the use of space). This means
that they must adhere to social norms in
determining their physical and psychologi-

cal distance from people. There are many
proficient competing models of human prox-
emic behavior. All models conclude that
the proxemic behaviour of an individual is
determined by the proxemic behaviour of
others and the proximity of the individual
to them. In [55], they explore whether
these models of human proxemic behav-
ior can also be used to explain how peo-
ple physically and psychologically distance
themselves from robots. As path planning
in mixed human-robot environment could
distract, alarm or distress humans as [56]
points out, robots should behave in a socially
acceptable manner. This paper also lays
a mathematical background for formulat-
ing the social path planning problem which
eases tracking and compares different frame-
works.

There are 6 rules as high-level requirements
that are accepted in literature for successful
human-robot interaction, which are stated in
[57]

Collision-free Maintains robot and human
safety

Interference-free Robot should not - unless
it is the objective - enter the personal
space of any human

Waiting If robot enters personal space of a
human, it has to stop within a fixed
amount of time

Human priority Humans always have high-
est priority

Robot intrusion If a robot enters the
workspace of another robot, it should
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leave, while the other robot(s) should
stop their activities

Robot priority Robots with higher priority
should get yielded passage

However, those rules should not be strictly
applied following [56] as they could lower
the robot behavior optimality (could lead to
unwanted effects). While trying to give the
robot a friendly behavior, for efficiency rea-
sons, the robot should also act optimally
in terms of path length, smoothness, safety,
energy consumption and execution time.
Therefore, these conventions should rather
be seen as general preferences or guidelines
following [58, 59], which discourage a sub-
set of paths without disallowing them out-
right.

Most path-planners used in navigation sys-
tems nowadays use a discretized costmap,
where values in the costmap cells (cells in a
2D grid, often called occupancy grid6) corre-
spond to the “badness” of the robot being in
that position. Using that costmap, the path-

planner then generates a path from the start
position to the end, which has the minimum
accumulated cost. While a rather close ap-
proach of any obstacle is fine most of the
times, it is not socially acceptable with peo-
ple. The work in [58] explored a Gaussian
adjustment to the costmaps of the ROS nav-
igation stack in order to model the personal
space of people with a amplitude ranges and
without limits on variance. They found that
there are large dead zones (provide region of
zero output) in the parameters and disconti-
nuities when configuring single parameters,
which have to be tackled when configuring
a system. Also noteworthy is the associated
difficulties of creating the desired behavior
around people which are often due to unfore-
seen interactions between different elements
in the costmap. More complex cost functions
may alleviate some of those problems. While
the approach using a Gaussian adjustment
does not lead to a perfect social navigation
it is certainly a better solution than having
no costmap modifications at all.

2.4 Summary of Findings

In this chapter we show that while using
the state-of-the-art robotic framework ROS
together with the containerization of Docker
it is possible to build an extendable software
development framework for mobile robots,
which support flexible automation technolo-
gies. This framework should follow the
micro-service architecture in order to bene-
fit of varying life-cycles and dynamic starting
of components, as well as to manage depen-

dencies and make deployments maintainable
with continuous integration. In combination,
this makes robotic research more collabora-
tive, eases repeatability and reproducibility
and encourages reuse of components or com-
plete architectures. Additionally, this ecosys-
tem enables experts of related fields without
a deep computer science understanding to
develop prototypes rapidly.

6Each grid cell in the costmap has a value in the range [0, 255] representing the cost of navigating through that
grid cell.
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Navigation of mobile robots is a key compe-
tence for full autonomy and flexible automa-
tion technologies. In order to use the pow-
erful ROS navigation stack, it is required to
provide a map of the environment in which
the robot is localized, along with motion
model that suitably describes the robot mo-
tions and sensor sources. Every component
needs to be tuned further for the mobile
platform at hand. Mapping large and dy-
namic spaces is a challenging task and re-
quires continuous mapping using accurate
odometry at an adequate scanning resolu-
tion. Path planning in mixed human-robot
environments could distract, alarm or dis-
tress humans. Therefore, robots should try
to follow 6 guidelines for HRI, while being
optimal in terms of efficiency metrics. Using
a Gaussian adjustment to costmaps leads to
a better social navigation with and around
humans.

Because of the flexibility limitations of
marker-based solutions, this thesis focuses
on ego-centric solutions to localize a mo-
bile robot system using only built-in sensors.
Promising results have been achieved using
laser rangefinders, which are available on
most robotic platforms, that returns precise
distances to obstacles without requiring any
additional data pre-processing. Using out-
of-the-box MCL localization with KLD sam-
pling and fine repositioning using scan align-
ment with ICP a position error below 15 mm
and rotational error below 0.15° is seen to
be achievable. However, this approach re-
quires a reference scan captured at a given
point in time. This reference scan can de-
grade over time as the environment changes
and requires re-registration to achieve previ-
ous precision.

A recent trend using an ICP-based pose-
graph approach for SLAM allows to combine
laser odometry with velocity or wheel odom-
etry results in an accurate motion model. Re-
fined by a pose-graph layer to reduce the
drift of the overall position estimate offers a
powerful solution. This localization is inde-
pendent from the occupancy grid generated,
which is used by the ROS nagivation stack.
Consequently, the localization has the poten-
tial to be more accurate than AMCL in the
defined map resolution. The slam_toolbox
integrates localization with lifelong continu-
ous mapping for 2D environments.

This thesis combines the benefits of contin-
uously updating ICP scans transformation
with fine adjustment of the robot pose at
target locations. The evaluation of the cus-
tom fine adjustment odometry based method
for fine adjustment at target locations is
compared to the ROS standard navigation
stack and the ground truth measured using
a ±0.3 mm and 0.05° accurate external sys-
tem. In order to be successful and efficient in
a human-robot collaboration scenario, a so-
cially acceptable navigation is employed on
the platform. This navigation detects human
legs and uses that information to follow a set
of general preferences that discourages cer-
tain paths that would give the robot a less
friendly behavior. Every process is developed
in a seperate and isolated container along
with the environment and data needed for
that process. Container templates for various
ROS environments in C++11 and Python
2.7 are made available for robotic software
developers. For non-robotic developers, a
web-based Integrated Development Environ-
ment IDE containing all required dependen-
cies and integrated with ROS, OpenCV, Ten-
sorFlow, a.o. is provided that works for
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Python 2.7. This web-based platform can
also be used for rapid prototyping, that is, to
quickly test a new idea without cumbersome
environment setup. For all kinds of users,
a Web Application can be used to get vari-
ous status and debug information, as well as

for sending commands to and from the robot.
The web application can also be used to de-
fine new semantic positions that the base
should drive to accurately (±1 cm) or inac-
curately (±5 cm).
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Proposal for an Extensible
Solution Architecture for
Reproducible and Deployable
Robotics Research

3

„There are many ways to do design badly, and just a few
ways to do it well.

— Bass, Clements, Kazman
(Software Architecture in Practice)

Several definitions of Software Architecture
have been proposed. In [60, 61] which con-
forms to ISO/IEC/IEEE 42010:2011, the def-
inition is based on the notion of a system.
This definition organizes elements in a sys-
tem by its structure and relationships with
a given purpose. The purpose is to achieve
goals and separate the system from its en-
vironment through a clear boundary. As
a result, Software Architecture can reduce
complexity by thoughtful modeling and good
documentation.

The key aspects of modeling can be listed
as follows: decomposition and structuring
of components, abstraction and reusability
of parts. To achieve this, an architecture
has to define components of a system, de-
scribe its essential features and characterize
the relations between the components. Dif-
ferent views that describe static and dynamic
aspects are developed and discussed in this
chapter.

This chapter proposes the key elements that
define the solution architecture and the used
architectural means. First, this involves
determining the systems’ requirements and
quality goals as well as available assets. Sec-
ond, these inputs are then used to create a
solution architecture choosing one architec-
tural style and applying tactics in order to in-
fluence the control the response of a quality
attribute. In order to test coding increments
faster and without being bound to hardware,
an integrated simulation environment can be
used. This simulation environment should
reflect the real world environment as closely
as possible, such that the developed coding
increments can be deployed “as is” to the
real robot. Lastly, the output of this process
should be a viable Software Architecture in
terms of the identified quality goals. Along
the way, many decisions and compromises
needs to be made, which should be docu-
mented together with multiple views show-
ing different aspects of the system. Each of
those views only represent the concerns of
a particular set of stakeholders. This focus
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on the views is due to the fact that we can
only understand and reason about a complex
software system’s architecture from multiple
points of view. The key is to grow a set of

architectural decisions that yield an optimal
balance of the functional and non-functional
forces having weightage on every view.

3.1 Architectural Forces

In this section we show how the system is
built in its context and the vision is formu-
lated. Achieving that optimal balance of
functional and non-functional forces men-
tioned earlier requires a certain engineer-
ing process to identify actors and systems
in its context. The identified actors have to
be abstracted into general personas which

have a goal of using this system. This goals
can be formulated using user stories form-
ing the functional requirements. In order
to judge the operation of the system, non-
functional requirements can be used to spec-
ify criterias. Concluding the forces are the
constraints that come from the systems’ envi-
ronment and cannot be circumvented.

3.1.1 System Vision

The aim of this navigation system is to pro-
vide a flexible and extensible navigation
framework for mobile robot bases. Fast de-
ployment to new robotic platforms should
be possible with minimal effort. Further-
more, the adaptation of the platform config-
uration to new simulated or real world envi-
ronments should be possible without expert
knowledge in Robotics or Software Develop-
ment with C++ or Python.

Interaction with the navigation system
should be possible without the user having
to install anything but a recent browser. The
system should work on any combination of
platforms and browsers that are available.
The system should be easy to use, such that
an user should not be required to have any
prior education or skills for using the naviga-
tion in a short amount of time. For advanced
users that wants to extend the functional-

ity of the framework, a rapid prototyping in-
terface should be provided integrated with
all tools needed. These coding increments
should be easily testable on the real platform
or using a simulator. For faster testing with-
out hardware dependencies, it should be pos-
sible to simulate large areas with navigation,
exploration and pose accuracy on a power-
ful GPU equipped machine. A certain degree
of freedom in deployment is to be achieved
that allows running nodes on the robot plat-
form, if possible or running them on a re-
mote machine. The framework should be
easy to setup according to the user’s needs
for production or development purposes.

To achieve autonomy in flexible environ-
ments, a mechanism to update internal rep-
resentations of the environment is required.
Final pose accuracy should be improved to
allow robot-robot collaboration and execute
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pick and place tasks. A mechanism to store
and retrieve semantic poses is required. This
mechanism should allow two different pose
accuracy requirements. One is the standard
non-modified pose that just drives to a goal
approximately, while the other pose helps to
drive more accurately to a goal pose.

These goals that the navigation system tries
to achieve and the values formulated should
be reflected in a short and catchy name.
Thus, the name NavAjust (i.e. shorthand
“nav” for Navigation and the old english
spelling of adjust, i.e. “ajust”) was chosen, to
reflect the flexibility and adaptability of the
solution.

3.1.2 Context delimitation

Fig. 3.1.: Context Diagram shows how the software system in scope fits into the world around it

As a means to delimit the scope of the system
from its context, the context view in Figure
3.1 helps. It shows how the NavAjust Navi-
gation System is embedded into its environ-
ment and how it interfaces with neighboring
systems as well as with all of its users. The
arrows between the users and the neighbor-

ing systems depict all events that can enter
or leave the system. The system is presented
as a black box to focus attention on the en-
vironment and show the system interactions
with all elements around. Because omissions
in the system context are the main source
of risks in software projects, a good amount
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of time is spent to refine the context view
as well as re-iterating through various ver-
sions. A broader view on the software system
is shown in the system landscape diagram
in the Appendix A.3. This system landscape

shows the bigger picture of how the system
fits into the service platform without focus
on the particular software system developed
here.

3.1.3 Functional Requirements

Persona Specifications

Needs of different users have to be taken into
account in order to determine how the prod-
uct fits the requirements. These functional
requirements are defined by the users of dif-
ferent fields and ages with unequal contexts
to help the functional design. In this the-
sis, we have achieved this goal by creating
Personas that are fictional characters. These
fictional characters represent the majority of
potential users of NavAjust. The specified
personas should answer “who” the system is
designed for. The use of persona is handy,

because it allows to have a typical image of
many real groups of people.

Three relevant Personas have been identified
in the context. For every persona, its specifi-
cations are listed in Tables 3.1 to 3.3. Each
listing contains a goal that is the desired
result, the persona wants to achieve. The
aim sets the determined course in order to
achieve said result. Furthermore, for each
persona, the required education and skills
are listed below in a general fashion.

Worker

Goals Fast and easy mission definition
Aim Specify goal poses to a mobile base. These poses are entered on a

simple to use web interface or over a Microsoft HoloLens1.
Education None required
Skills No common skill set

Tab. 3.1.: Worker Persona Specification

Firstly, there is the Worker who directly col-
laborates with the platform. This persona
does not needs no specific education or skills.
The Interface for the worker should be as
simple and intuitive as possible. Also, the

platform should not interfere with the nor-
mal work activities in any way. The plat-
form should ideally be perceived as a work
colleague. Secondly, there has to be an
Administrator, who is responsible for the

1The HoloLens is a pair of mixed reality smartglasses developed and manufactured by Microsoft. The first version
was released on March 30, 2016. The second version of the HoloLens is announced and already available to
Enterprise customers and developers.
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platform and its maintenance. This persona
has access to more advanced features like
defining new semantic poses and customiza-

tions. In order to do the critical customiza-
tions, some IT education as well as some
sytem programming skills are required.

Administrator

Goals Customize solution to own environment
Aim Responsible for the maintenance. Has access to advanced features like

defining new semantic poses and customizations.
Education Junior IT or Senior IT
Skills System programming

Tab. 3.2.: Administrator Persona Specification

Developer

Goals Rapid prototyping
Aim Works in a robotics related field and proposes improved or innovative

features
Education Some robotics related field
Skills Software Development w/o Robotic Operating System ROS, Robotics,

Machine Learning ML or Human-Robot Interaction HRI Expert

Tab. 3.3.: Developer Persona Specification

Finally, there are various kinds of
Developer’s who proposes improving or
adding innovative features. For this persona,
all robotics related education profiles that
are thinkable that can make a contribution.
This could be a robotics expert that can im-

prove the accuracies of the robot at target
locations, i.e. a Machine Learning ML En-
gineer that improves people detection or a
Brain-computer interface BCI expert that de-
velops new ways to interact with the plat-
form.

User Stories

A user story identifies the user and their need
or goal in a short statement. It specifies who
the user is, what they need and why they
need it. The user stories formulated in this
thesis follow the simple and most common
Connextra template.

“As a <persona> I can <capability>, so
that <receive benefit>.”

The following 4 user stories have been identi-
fied for the 3 personas defined previously.

• As a worker, I want to specify precise poses for the mobile base to visit, so that it can
assist me in tedious tasks.
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• As an administrator, I want to define new semantic positions, so that the mobile base
can reach it autonomously and precisely.

• As an administrator, I want to customize the system to the new environment, so that the
mobile base can reach targets safely and precisely.

• As a developer, I want to quickly test an idea, so that I can prove a concept.

3.1.4 Adressed Quality Goals

The basic statement of the systems capabili-
ties, services and behavior comes from quali-
ties of the system’s architecture that goes be-
yond functionality. Systems are frequently
redesigned not because they are functionally
deficient, but they are difficult to maintain.
The mapping of a systems functionality onto
software structures is what determines the
architectures support for qualities. A qual-
ity attribute QA is a measureable or testable
property of a system. The QA can therefore
be used to indicate how well the system sat-
isfies the needs of its stakeholders. System’s
functions and quality attributes go hand in
hand, as they reinforce each other.

In this thesis, we wanted to build an easy-
to-use navigation system for the Worker and
Administrator persona, while allowing devel-
opers and researchers from different fields
to improve or extend the system. This is
important because research in robotics and
Artificial Intelligence is progressing rapidly.
Therefore, seperate modules for individual
behaviors should be easily replaceable or
added to the system. In order to test if
a replaced or added module improved the
quality of the solution, a fast and easy test-
ing is important. Because of varying re-
quirements for accuracy in different environ-

ments, it should be possible to test differ-
ent algorithms and configurations. Software
that does not work reliably or incorrectly can
lead to significant problems as motivated by
[62]. Problems such as harming people or
equipment, loosing money and time or dam-
age to company reputation can be the conse-
quences.

Three quality attributes have been selected
as goals for the system built in this thesis,
i.e. Modifiability, Usability and Testability. All
quality attributes that are specified with re-
quirements, are unambiguous and testable.
A common form to specify the quality at-
tribute requirements from [60] is used for
that purpose. This common form specifies
the requirements as six-part scenarios using
stimulus, stimulus source, environment, arti-
fact, response and response measure.

These required quality attributes are
achieved using a technique called architec-
tural tactics. Such tactics are design deci-
sions that influence the achievement of a
quality attributes response. Thus, Tactics
directly affect the response of a system to
some stimulus. Applied tactics are discussed
in the following Section 3.2.4. In the end, a
systems design consists of a collection of de-
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cisions. While some of these decisions help
to control the quality attribute responses,

others ensure achievement of system func-
tionality.

Modifiability

As pointed out in the introduction and re-
lated work, setting up the development can
be a daunting endeavor. This setup is even
worse for non-experts in ROS development.
Also, change happens. Already the Greek
philosopher Heraclitus of Ephesus knew that
change is central to the universe. If the
only constant in the universe is change, then
change in software is not only constant but
ubiquitous. Changes could be for various rea-
sons, as mentioned in [60], such as adding
or changing features, fixing defects, tighten
security, or improve performance. Changes
can also be made to enhance the user expe-
rience or to embrace new technologies and
algorithms. Adding support for other robotic
platforms that requires porting to a different
processor family could also be another rea-
son for change.

All of this change revolves around the qual-
ity of modifiability. Planning for modifyabil-
ity requires considering 4 factors. As change

can happen to any aspect of a system, it is im-
portant to define what can change and what
is the likelihood of the change. This is im-
portant, as not all potential changes can be
planned in the system. The other two factors
are when and by whom is the change made
and at what cost. All of the possible costs
involved are measured in the response mea-
sure, which is both time and cost consum-
ing.

Modifiability scenarios contain a stimulus
and the source of that stimuli. The stimu-
lus portion specifies the change to be made,
while the source defines the persona making
that change. The artifact represents what is
to be changed and the environment defines
when that change can be made. As a re-
sponse, the change should be made, tested
and deployed. All of the responses should
happen within a response measure that spec-
ifies some time constraint.

«Environment»
Development time

«Artifact»
Component

Developer

«Source»

Within
four hours

«Measure»«Stimulus»
Modifies a
component

«Response»
Changes made,

tested and
deployed

Fig. 3.2.: Modifiability scenario for improving an existing component

To enable modifications as stated in the first
paragraph, this thesis specifies the two mod-
ifyability scenarios as illustrated in Figures
3.2 and 3.3. The first scenario is defined to

control the effort and time needed to get a
new developer to make changes to a specific
component of the system. This component
could be anything from a service backend,
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«Environment»
Development time

«Artifact»
New ROS node

Developer

«Source»

Within
one day

«Measure»«Stimulus»
Develops a

new node

«Response»
New node
developed,
tested and

deployed

Fig. 3.3.: Modifiability scenario for developing a coding increment as ROS node

database or user interface. This measure also
includes the time required for a new devel-
oper to get up and running with the required
system components needed as well as under-
stand the structure, behavior and communi-
cation schemes used in the system in order
to contribute. The contribution of a com-
ponent addition comes in the form of the
second modifiability scenario. After under-
standing and getting the system running in
under one hour, it is beneficial that a devel-
oper can develop a new component within
one day. The scenario specifies a ROS node,
as this represents the most time-consuming
component in the system to set up.

For the first scenario, a developer wants to
modify a specific component of the naviga-
tion system. The modification can be made
to any component already present in the
system. An example would be an improve-

ment to the pose accuracy component that
is responsible for the qualitative fine adjust-
ment at the target pose. This change can
only be made at development time, as rig-
orous testing has to be performed before it
is deployed. This testing can take place in
the simulator but should be confirmed on
the real hardware before placing it into pro-
duction. It should be possible to make all
changes, test and deploy them to the plat-
form within four hours. The second scenario
is similar to the first i.e., instead of changing
a already present component, a new one is
added to the system. Keeping everything else
the same, it should be possible to develop
a new node, test and deploy it to the plat-
form within one day. Both of these scenarios
are important in Robotics and Artificial Intel-
ligence, in order to keep up with research as
it progresses rapidly.

Usability

Usability is defined as the ease of use and
learnability of a system. The degree of usabil-
ity is quantified by objectives such as effec-
tiveness, efficiency and user satisfaction in a
quantified context of use. As such, Usabil-
ity encompasses a vast area of topics: Learn-
ing system features, using a system efficiently,
minimizing the impact of errors, adapting the

system to user needs and increasing confidence
and satisfaction. The developed navigation
system adresses those areas in the two sce-
narios sketched in Figures 3.4 and 3.5. First,
learning system features should be supported
by the system to make the task of learning
easier for an unfamiliar user. Second, us-
ing the system efficiently includes thinking
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about tactics to make the user more effective.
Third, adapting the system to user needs in-
cludes thoughts about how the system could
facilitate the user’s task. Fourth, increasing
confidence and satisfaction that is required to
give the user feedback for when the correct
action is being taken, to increase his confi-
dence. Lastly, as the error is human, and
they can occur when people interact with

user interfaces. Errors can be slips or mis-
takes. Slips happen when a user is on autopi-
lot, and takes the wrong actions. Mistakes
on the other hand happen, when a user has
developed a wrong mental model of a user
interface. Both of these errors should mini-
mize the impact of user induced errors by pro-
viding correcting and cancelling options.

«Environment»
Runtime

«Artifact»
HoloLens
Application

Worker

«Source»

Within 5 minutes
of experimentation

«Measure»«Stimulus»
Learns to use

the system

«Response»
User uses

application
productively

Fig. 3.4.: Usability scenario for using the system productively

To measure the learnability of the navigation
system for the worker persona, the scenarios
in Figure 3.4 is specified. In this concrete sce-
nario, the worker wants to learn to use the
HoloLens application productively. This ap-
plication is not developed as part of this the-
sis. Using an intuitive application deployed
on the HoloLens, the worker should be able
to use the platform productively. This in-
cludes using the application to add seman-
tic positions and send goals to the platform.
The time for learning should remain under 5
minutes. This short amount of time is impor-
tant, because it is thought as a support fea-
ture should threfore not waste the time of

the worker. The environment in which this
scenario takes place is at runtime.

The second usability scenario illustrated in
Figure 3.5 measures the task time for an ad-
ministrator that deploys the navigation sys-
tem in a new environment. Deploying the
system in a new environment requires au-
tonomous exploration, creating maps of the
environment and defining initial semantic
positions. An administrator should be able
to configure the system within an hour, to
achieve robust navigation results. The ad-
ministrator only interacts with the system us-
ing the web application at run time.

«Environment»
Run time

«Artifact»
Web Application

Administrator

«Source»

Within
an hour

«Measure»«Stimulus»
Deploys system in
a new environment

«Response»
Robust navigation

Fig. 3.5.: Usability scenario for deploying the system in a new environment
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Testability

Because software is intangible, a test cannot
be carried out on a tangible basis. There ex-
ist varying quality requirements for naviga-
tion solutions. A target pose can be reached
with varying degrees of accuracy. For the
problems mentioned in the beginning of this
section, it is important to test the software
system in order to be able to assess the qual-
ity and minimize risks. Risks in such cases
come in the form of software failure and er-
rors. Unfortunately, testing is generally a ran-
dom sampling of the software. The subse-
quent evaluation checks whether the test ob-
ject meets the required properties. The pro-
cess of testing encompasses, besides the ex-
ecution and evaluation, also planning, anal-
ysis, design and realization of tests. Even if
most of the tests do not reveal an error, it can-
not be excluded that there are additional er-
rors. This is especially true for Systems with

a certain degree of complexity and amount
of program lines.

Testing a system can be done at 4 different
levels. On the lowest levels, unit and com-
ponent tests should check a single compo-
nent’s internal aspects. Isolation is the key
in such cases to exclude component external
influences. The next level called integration
testing, which assumes that components are
tested and components internal error states
have already been corrected. This is the level
at which the scenario in Figure 3.6 is defined.
A coding increment is viewed as the contri-
bution to a single service that is part of a big-
ger software where all individual parts have
to function correctly with each other. The
goal is to find error states in interfaces and
in the interaction between integrated compo-
nents.

«Environment»
Development time

«Artifact»
Code increment

Developer

«Source»

Within
10 minutes

«Measure»«Stimulus»
Completes a

coding increment

«Response»
Execute test suite

and capture results

Fig. 3.6.: Testability scenario for executing the test suite

«Environment»
Development time

«Artifact»
Accuracy

subsystem

Developer

«Source»

Within
an hour

«Measure»

«Stimulus»
Completes integration

of the
accuracy subsystem

«Response»
Execute test

suite and
capture results

Fig. 3.7.: Testability scenario for executing system tests

As a second testability scenario, a system test
for the accuracy subsystem is defined in Fig-
ure 3.7. As the system test, this is one level
above the integration test from the first testa-

bility scenario. As such, it verifies that the
subsystem meets all specified requirements.
These tests are executed from the perspec-
tive of end-users such as the administrator.
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Executed by the developer that completed a
coding increment and passed the unit and in-
tegration tests. This scenario is specific to
the accuracy subsystem in a way, that it en-
sures an automated way of testing the perfor-
mance of the introduced changes. By com-
pleting the integration of the accuracy sub-
system a developer can run the automated
testing pipeline. This pipeline will run on

its own after calibrating initially a goal pose
manually. The platform will then randomly
navigate to explored areas in the map and
try to achieve the pose defined using the al-
gorithm defined in the accuracy subsystem.
The captured results of each run are com-
puted, compared and plotted for an easy
evaluation of the achieved performance.

3.1.5 Constraints of the Environment

Constraints are design decision that have
already been made by the environment in
which the system operates and have in gen-
eral zero degrees of freedom. In the case of
the navigation system, the constraints in Ta-
ble 3.4 have been identified. First, a service-
orientation is required by surrounding soft-
ware systems and personas. Second, the
navigation system is to be build using hard-
ware that is already available to save time
and resources. Third, a markerless setup
is required to support deployments in flexi-
ble environments. This requires sensors that
perceive the egocentric position and veloc-
ity. Egocentric perspective transformations
involve a self-to-object representational sys-
tem. This system represents the location
of objects in space relative to its own body

axes. Fourth, all platforms that provide some
sort of range data and accepts velocity com-
mands are to be supported. New platforms
are required to work with the navigation
system with minimal configuration and de-
ployment effort. Lastly, the state-of-the-Art
Robotic Framework ROS has to be used to-
gether with the respective device manufac-
turer drivers and ROS wrappers. A ROS
wrapper is a design pattern, which exposes
a ROS interface for an underlying driver. If
the device manufacturer does not provide a
ROS wrapper for their drivers, a third party
wrapper can be integrated. If everything else
fails, a ROS wrapper has to be written from
scratch for the device at hand. Fortunately,
there is a lot of documentation available2.

Constraints

Service-Orientation • System should offer various services to other systems and users
• Easy to use by other developers

Time & Resources • Use hardware that is available

2Documentation on how to write an Object-Oriented C++ ROS Wrapper can be found under
https://roboticsbackend.com/create-a-ros-driver-package-introduction-what-is-a-ros-wrapper-1-4/
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Constraints

Markerless • Use sensors that perceive the egocentric position and
velocity

Multiple Platforms • Support compatible mobile robot platforms
• Working solution with minor configuration and deployment

changes

ROS • State-of-the-Art Robotic Framework
• Robot manufacturer provides driver and a ROS wrapper

Tab. 3.4.: Constraints of the Environment

3.2 Solution Architecture

In this chapter, the solution architecture for
the navigation framework is presented. This
is done by first specifying the setting for the
design of the navigating agent defining the
performance measure, environment, actua-
tors and sensors (PEAS) and risks associated
with the agent task. The design of a navigat-
ing agent requires an architecture, which is
appropriate for the task. The task requires
a mix of deliberate and reactive components.
This requirement leads to the introduction of
the layered Mobile Base Task Control Archi-
tecture model that is developed in this thesis.
The general idea of this model is to combine

the more low-level reactive components with
higher level and more intelligent deliberate
components. To support this design, con-
trol architecture and gain combination flex-
ibility of components with dynamic reconfig-
uration and isolated components an Micro
Service style has been chosen. The following
sections introduce this style with its benefits
and drawbacks and discusses the tactics used
to help achieve the quality goals. All central
decisions made in designing the architecture
are documented in the subsequent sections.
Finally, the technologies used are presented
in the last section.
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3.2.1 Robotic Agent and Environment

Defining the agent, its task and environment
properties following [14] allows a classifica-
tion of the difficulty of the task in the envi-
ronment. The environment specification is
used to determine the types of agent pro-
grams that are needed to deal with the en-
vironment. This thesis focuses on mobile
robots moving about in their environment us-
ing wheels. The agent’s task can be defined
as follows:

“Navigate to different target poses
accurately in (x, y) and yaw
∠θ while giving way to human
coworkers and avoid collisions
with robot coworkers and other
obstacles.”

A function that implements the mapping
from percepts to actions is the agent pro-
gram, whose design is the job of Artificial In-
telligence AI. A complete agent is made up of
an agent program and an architecture, which
provides the run-time. The architecture is re-
sponsible to make the percepts from the sen-
sors available to the program, run it and feed
the actions of the program back to the effec-
tors.

The proposed solution in this thesis is devel-
oped using the Mobility Base from Dataspeed
as depicted in Figure 3.8, but ideally should
work with any holonomic or differential
drive robot. The robot platform should, how-
ever, provide a ROS wrapper for its device
drivers. Because of the real-time constraints
of navigation, it would be beneficial if the
robot platform provides access to the on-
board computer. This access is important, in

order to deploy the agent programs locally
and avoid network latencies.

Fig. 3.8.: Mobility Base with and without Baxter
Robot mounted on top

The navigating agent under discussion, the
Mobility Base for Baxter, serves as a mobile
base for the Baxter Robot. This top mounted
robot is available separately as an industrial
or research robot. Together with the Mobil-
ity Base MB it has the potential to be an au-
tonomous mobile robot. For the objective
of this thesis, the Baxter Robot was removed
from the base. The MB has an on-board In-
tel Next Unit of Computing NUC that runs on
a fully featured Ubuntu 16.04 Linux Distribu-
tion. As effectors, the MB has 4 mecanuum
wheels that allow movements in all direc-
tions at all times. Independently of the lat-
eral movements, it can also rotate around its
own axis. The viable sensors on the MB plat-
form are the 360° 2D LiDAR, 8 bumpers and
the floor facing camera for reading QR codes.
A inertial measurement unit IMU reports a
body’s specific force and angular rate using
a 3-axis accelerometer, gyroscope and mag-
netometer. While the MB includes an IMU,
the magnetometer data is not published, and
accelerometer is set to “Not a Number NaN”.
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The data is not published, because a prob-
lem with the IMU data has been identified.
Therefore, for the time being neither specific
force nor angular rate can be used to en-
hance odometry.

Task Properties The task of the agent has
the properties of being a single achievement
goal with weak committment. All goals have
equal utility with constraints on the goal
achievement. These constraints include that
no harm or damage is done to the collabo-
rators and movements should be restricted
to goal poses in allowed and reachable ar-
eas. Because the agent is only weakly com-
mited to its goals, it needs to be able to de-
cide when to give up trying to reach a goal
pose.

As for the nature of the environment, a clear
trend in industry towards a flexible and dy-
namic shop floor can be observed. This work-
place will include Human-Robot Collabora-
tion HRC as well as Robot-Robot Collabora-
tion RRC. This nature leads to a difficult task
environment to percept.

Task Environment As only the surround-
ings of the base at a height of 30 cm are seen
in 2D horizontally, the task environment is
only partially observable. This leads to a re-
quirement of having an internal state of the
environment.

Working cooperatively with other mobile
and non-mobile robot agents and avoiding
collisions, maximizes the performance mea-
sure of all agents in this multi-agent setting.
Although, it could become partially compet-
itive when multiple robots try to reach the

same target pose accurately. Social abilities
of the agent should be investigated as a possi-
bility to mitigate problems arising from com-
peting agents.

Uncertainty lies in the environment, as well
as in between the agent’s actions. These un-
certainties come from sensory errors as well
as from wheel slippage. Because the prob-
abilities are not known, the environment is
classified as non-deterministic. A notion of
uncertainty is therefore required for repre-
sentation and reasoning capabilities.

Decisions which are taken at a certain point
have an influence in future decisions. As
most decisions only result in time or energy
lost, they are not fatal and can be neglected.
Therefore, the environment can be seen as
episodic, where the outcome of an action
only depends on the current state and ac-
tion. The agent receives a percept in each
episode and performs a single action. How-
ever, while the agent calculates the next ac-
tion to perform, the dynamic environment
around can change. Therefore, the time it
takes to choose an action to perform needs
to be fast enough and requires reactive safety
mechanisms.

Speed and location of the agent and its col-
laborators sweep over time through a range
of continuous values. Possible movement
actions of the base are infinite. This re-
quires abstraction in order to get a simpli-
fied model of the environment. For 2D nav-
igation, this means creating a cellular de-
composition of the environment. Such a de-
composition discretizes the environment as
a grid of cells with specific sizes between 5
and 50 cm. Each cell holds a value between
[0, 100] that represents the occupancy proba-
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bility, else −1 for the unknown cases. Deci-
sion making is then realized via various soft-
ware layers, each of which is more (or less)
explicitly reasoning about the environment
at different levels of abstraction.

Actions Performing actions has resource
cost attributed denoting the costs of actions.
The utility of an action is the utility of the
state which results from the action. If an
action has maximum utility it is called cor-
rect. An action is therefore optimal if it is
correct and there is no other correct action
with lower cost. The actions in the task en-
vironment are fallible as they are not guaran-
teed to produce their intended effects when
executed. Also, the utilities and costs could
sometimes be contrasting. Imagine that there
are two paths leading from a current loca-
tion to a defined goal: a shorter path, which
has a opened or closed door along the way,
and a longer path without any obstacles. In
this case, the longer path would have greater
utility, but higher cost. Whereas the shorter
path could have lower cost, if the door is
open. In the latter case, the utility is lower
than going the longer route. Also, to follow a
friendly humanly navigation it considers the
6 rules for successful HRI introduced in sec-
tion 2.3. Therefore, the agent needs to be
able to choose between alternative courses
of action. The agent communicates with
other robots indirectly by its actions in the
environment.

Performance Measure For measuring the
performance of the agent, the following
aspects have to be evaluated. First, the
navigation should avoid all collisions, be
interference-free and give human priority.

Second, goal poses should be reached with a
positional error below 1 cm and rotational er-
ror below 1°. Third, the calculation and exe-
cution of paths should be seamless, while the
movement speeds in HRC applications are ir-
relevant. Finally, the navigation should be
robust to scene dynamics such as moving ob-
jects and people. All these aspects were con-
sidered while working on this thesis but only
the second one is evaluated in more detail in
the following chapters.

Sensors The success of real robots also de-
pends on the design of sensors and effectors
that are part of the agent architecture. The
interfaces between the robot and its environ-
ment have to be appropriate for the task.
Various active and passive sensors exist that
sense the environment, the robot’s location,
or its internal configuration. The MB comes
equipped with a range sensor that uses laser
beams and a special 1-pixel camera, which
is directed around 360° using a complex ar-
rangement of rotating elements. This sen-
sor is frequently also called scanning LiDAR,
which is short for Light Detection and Rang-
ing. Scanning LiDARs are (generally) accu-
rate at longer ranges and perform well in var-
ious light settings.

Augmenting the dimensionality using time
of flight ToF or structured-light 3D camera
technologies provides a more accurate de-
scription of the environment at closer ranges.
For 2D navigation purposes, the resulting 3D
point clouds are then down-projected into
2D. This accounts for obstacles, which are
above or below the 2D LiDARs horizontal
scan line. Integrating this information makes
the agent potentially more autonomous. Ad-
ditionally, more robust people detection is
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possible by fusing the LiDAR and Camera
data. Also, better Human-Robot Interaction
HRI techniques such as pose detection and
ultimately gesture recognition imaginable us-
ing cameras.

Range sensing based on physical contact
is made possible by tactile sensors, such
as bump panels, whiskers and skin that is
touch-sensitive. The MB has two Bumpers
equipped per wheel on each side with a total
of 8. Such sensors can only be deployed for
sensing objects close to the robot.

Information about the robot’s own motion
can be obtained by proprioceptive sensors
such as shaft decoders and inertial sensors.
Shaft decoders count the revolution of mo-

tors in small increments which can be com-
bined over all wheels to measure the dis-
tance traveled. This measurement of dis-
tance traveled is often called odometry. Be-
cause of wheel slippage and drift, these mea-
surements are accurate only over short dis-
tances. Unfortunately, the MB does not pro-
vide any such measurements. Therefore, the
travelled distance is approximated by calcu-
lating movements based on executed veloc-
ities. Fusing these measurements with esti-
mated odometry from consecutive planar dis-
tance readings (based e.g. on laser scans or
down-projected 3D point clouds) can yield
better motion estimates. This method can
also be used if the base odometry of the plat-
form is inaccurate.

PEAS

Agent Humanly navigating base with precise goal pose localization
Performance Measure Safe, accurate, timely and robust navigation
Environment Flexible floor spaces with other mobile robots and human workers,

tables, benches and fixed machines
Actuators Wheel drives with at least 3 effective DoF and 2 controllable DoF
Sensors 360° 2D LiDAR

Tab. 3.5.: PEAS: Task environment specification for the Mobility Base

Effectors Mobile robots move their base
in the environment by means of effectors.
Omni drive robots can move at any heading
and turn at the same time. This motion is
characterized as 3 degrees of freedom DoF,
where each independent direction in which
the robot can move counts as one degree.
For omni drive there are 2 DoF for its (x, y)
planar location as well as 1 DoF for its angu-
lar orientation, known as yaw. The reference
of the planar location of the robot is defined
in a right-hand coordinate system, where
positive x values lie in front and positive y

values lie to the left of the robot. For dif-
ferential drive robots, as they have a limited
mobility in y direction, they have only 2 con-
trollable DoF. However, because it is possible
to maneuver the body to any (x, y) point, in
any orientation, the kinematic configuration
of a differential drive robot is 3-dimensional
on a planar surface. Therefore, differential
drive robots also have 3 effective degrees
of freedom. A robot is called holonomic
if effective DoF equal the controllable DoF.
This makes differential drive robots nonholo-
nomic. The degrees of freedom define the
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kinematic state known as pose of the robot.
In order to make the proposed navigation so-
lution in this thesis as general as possible,
the movements are restricted to the x-axis
and rotations. This restriction is also benefi-
cial for the MB, as the motion estimates us-
ing only the velocities, tend to increase the
localization error in y-axis direction.

Risks There are multiple risks that can be
identified in the task and environment. In
order of priority, the highest risk is in rela-

tion to the horizontally scanning laser that
only perceives obstacles at a height of 30 cm.
This leads to the robot failing to perceive
a smaller object or a Table that is at a cer-
tain height. Also at risk could be a human
foot that is longer on the ground than at the
lasers height. Possible second risks are reach-
able, but occluded areas of the MB when ap-
proaching a junction or corner. These ar-
eas are regions of potential collisions with
dynamic obstacles like walking humans or
other mobile robots.

Appropriate Architecture: Requirements

Task level • Ability to decide when to give up on trying to pursue a goal
→Weak committment

Percept level • Internal state to keep track of current state of the world
→ Partially observable

• Minimize time it takes the agent to choose which action to perform
→ Dynamic environment

• Representation or reasoning capabilities require notion of uncertainty
→ Non-deterministic/Stochastic

• Constraints: social abilities of robotic agent
→ Multiple agents

Action level • Environment monitoring to see if action succeeded
→ Actions are fallible

• Needs ability to choose between alternative courses of action
→ Costs and utilities are contrasting

Tab. 3.6.: Requirements for an appropriate architecture for the navigating agent

Summarizing the found requirements in Ta-
ble 3.6 from analyzing the agent task prop-
erties and environment. Using these require-
ments and the following agent definitions, al-
lows designing an appropriate architecture.
This appropriate architecture is discussed in
the next section.

Agent Types There are 4 types of sub-
agents in the solution that are gathered in
a hierarchical structure. These sub-agents
implement specific capabilities and taken to-
gether, create a complete system that can ac-
complish difficult tasks. First, there are two
Simple reflex agents that are responsible for
safety routines and commands that are given
over the WebApp or HoloLens. The safety
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agent checks with high frequency (120 Hz) if
an obstacle is in the proximity and adapts
its speed linearly to that distance. Another
simple reflex agent is responsible for execut-
ing and checking tasks on the robot platform

that a user wishes to perform. Both agents
are simple, which means they have limited
intelligence and only work if the correct deci-
sion can be made on the basis of only the cur-
rent percept and condition-action rules.

Fig. 3.9.: Overview goal-based agent move_base and both utility-based agents global and local
planners. Image courtesy of Open Source Robotics Foundation OSRF downloaded from
https://wiki.ros.org/move_base in January 2020.

Second, a Goal-based agent tries to success-
fully direct the robot to a given goal pose or
shows that the pose is unreachable by throw-
ing an error. For a correct decision, the agent
needs to maintain a belief of where the robot
is at all times and the position and orienta-
tion information that describes the desired
target pose to be reached. The agent then
tries to combine the current state descrip-
tion with its model of the world in order to
choose actions that achieve the desired goal
pose with a tolerance of 5 cm and 10°. This
internal model controls the progress of the
robot on the path and in case it is stuck, per-
forms recovery behaviors. The actions follow
the path suggested by the next two agents
responsible for global and local path plan-
ning. That setup using the aforementioned
goal-based agent to reach a goal pose and
the following two path planners are depicted
together with their context in Figure 3.9.

Third, a global path planner responsible for
determining an efficient travel from the cur-
rent pose to the goal pose is a Utility-based
agent. This agent will choose plans with high
expected utility from a number of considered
alternatives. It has to deal with uncertainty
from actuators and sensors, which compli-
cate this planning. As it can come to inaccu-
rate path following, this agent has to replan
constantly and consider, that the shortest dis-
tance is not always the fastest path (e.g. nar-
row pathway). Similarly, a local path plan-
ner tries to - as closely as possible - follow
the path determined by the global planner.
While doing so, it uses a rolling window of
percepts to locally optimize the robots’ tra-
jectory with respect to trajectory execution
time, separation from obstacles and compli-
ance with kinodynamic constraints. Because
of the dynamic aspects, this planner can devi-
ate from the suggested global path in order
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to deal with obstacles or sensor and motor
uncertainty.

Finally, two Model-based reflex agents are
used for calculating the motion model and
taking care of the final pose accuracy when
reaching a goal. The motion model agent
behaves similar to the simple reflex agent
while also keeping track of the current state
of the world using an internal model. This

internal model maps the previous robot state
and odometry measurements or estimations
to the new robot state. As for the final pose
accuracy agent (the agent responsible for the
fine adjustment) this internal model is a rep-
resentation of how its sensor readings should
look like at a precise target location. Calcu-
lating how to transform itself to reach that
representation and executing actions to get-
ting to it as close as possible.

3.2.2 Intelligent Agent Design

The humanly navigating MB with precise
goal pose localization task requires an appro-
priate architecture. There are three levels at
which the architecture has to succeed in or-
der to reach the targets: Task, Percept and
Action.

Mapping sensor measurements into internal
representations of the environment, is the
task of robotic perception. This perception
is difficult because of noisy sensors, and the
environment is only partially observable, un-
predictable, and dynamic. In order to rea-
son in such environments, the agent must
keep track of the current state to the extent
that the sensors permit. Maintaining a belief
state, which represents which states of the
world are currently possible, and a transition
model, the agent can predict how the world
might evolve in the next time step. This be-
lief state is updated using the current per-
cepts, a sensor model and probabilities that
quantify the degree of belief in elements of
that belief state.

Filtering (or state estimation) is the task of
computing the belief state given all evidence

to date. Good internal representations to do
that have according to [14] the following 3
properties

1. Contain enough information for the
robot to make good decisions

2. Structured so that they can be updated
efficiently

3. Internal variables correspond to natu-
ral state variables in the physical world

Deliberate Architecture Because the agent
needs the ability to choose between alterna-
tive courses of action, there is a preference to
be defined in terms of costs or utility. Also,
a deliberative component is required, that
chooses its preference amongst alternatives.
Furthermore, planning in such environments
is a hard problem, as the initial state of the
world is often incomplete or mistaken. The
world around the agent is continually chang-
ing, also while the agent is busy planning.
Uncertainty as key characteristic in robotics,
arises from partial observability of the envi-
ronment and from the stochastic effects of
the robot’s actions. These stochastic effects
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are not modeled in the agent. The use of fil-
ters also introduces errors that arise from the
use of approximation algorithms. This leads
to a belief state that is not exact even if the
stochastic nature of the environment is mod-
eled perfectly. In case the situation changes
in between planning and the change is signif-
icant, it requires a replanning. Replanning is
also needed in case of a old and incorrect
agent’s model of the world. The agent there-
fore needs online replanning of paths during
plan execution.

An agent’s percepts give rise to goals, which
are a representation of a state to be achieved.
While an agent deliberates about how to
achieve a goal, it also has to manipulate a
model of the world and simulate possible
courses of action. This then results in a repre-
sentation of actions to be performed. This pro-
cess requires an accurate world model. Guar-
anteeing real-time with accurate world mod-
els is generally difficult. As reactive control
is sensor-driven it is appropriate for making
real-time low-level decisions.

Hybrid Architecture Therefore, a hybrid ap-
proach that combines reactive control and
model-based deliberative planning is more
appropriate. Both techniques have strengths
and weaknesses. A hybrid approach gen-
erally carries the advantages of both. To
achieve both advantages, hybrid architec-
tures use reactive techniques at the lower lev-
els of control and deliberative techniques at
the higher levels.

Pipeline Architecture Additionally to the
layered hybrid architecture for robots, the
pipeline architecture executes multiple pro-

cesses in parallel. While the perception com-
ponents processes the most recent sensor
data, the planning and control components
base their choices on slightly older data. This
is similar to the human brain in that it per-
ceives, plans and acts all at the same time.
The processes in the pipeline architecture
run asynchronously and all computations are
data-driven. This results in a robust and fast
system.

Task Control Architecture

if (isAccurate)

«User Interface»
Task

«Reactive»
Safety Routine

«Perception»
Motion Model

«Planning»
Navigation Stack

«Hardware»
Sensor Drivers

«Hardware»
Actuator Driver

«Control»
Accuracy Routines

Inaccurate
Goal Pose

Velocity
Controls

Accurate
Goal Pose

Goal
Reached

Velocity
Controls

Laser and
Velocities

Odometry

Velocity
Controls

Fig. 3.10.: Mobile Base Task Control Architec-
ture

For the Control and Navigation of the MB a
Pipeline Architecture is appropriate and con-
sists of 5 layers. Figure 3.10 shows the Mo-
bile Base Task Control Architecture. The com-
ponents used in this architecture have been
explained when discussing the agent types
in the previous section. The 5 layers con-
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tain on the bottom the hardware layer, which
provides data from the sensor drivers and ac-
cepts direct velocity commands over the ac-
tuator driver. The perception layer is respon-
sible for updating the robot’s internal model
of the environment based on the most recent
data from sensors. This model aggregated
with sensor data are handed to the planning
layer, which adjusts the robot’s plans and
turns them into actual controls for the robot
to execute. The planning and control layers
base their choices on slightly older data. If
the user interface UI task requested an accu-
rate pose, the accuracy control routines kick
in once the navigation stack has reached the
destination. This accuracy routines only per-
form fine adjustments at the target. These
fine adjustments try to reach a goal pose pre-
cisely using the aggregated data and an inter-
nal model creating controls. Similar to the
planning layer, these controls from accuracy

routines are to be executed by the actuators.
All controls to execute are checked by a reac-
tive routine for low-level and robust behavior
for safety. It turns those commands into safe
velocity commands that get executed directly
by the hardware or servo controllers.

A task that a user enters over an interface
of his choice, gets executed by the naviga-
tion stack alone or in combination with the
accuracy routines. If the task is an inaccu-
rate navigation goal pose, it gets taken care
of by the navigation stack alone. If the user
wants to save a new accurate semantic goal
pose, the accuracy component will update its
internal models. When the user then asks to
drive to a accurate goal pose, first the navi-
gation stack will reach the goal pose inaccu-
rately and will trigger the accuracy compo-
nent with data to achieve that goal.

3.2.3 Micro Services as Architectural Style

For the architectural style, Micro Services has
been chosen, where every service is an iso-
lated component. That is, every ROS node,
API, Web Application, Proxy is an isolated
container. All containers include per defini-
tion all files, environment variables, depen-
dencies and libraries necessary to run the
service. Thanks to this property and net-
work virtualization, it is possible to have
a near identical setup for deployments in
real world as in simulation. Using software-
defined networking SDN container networks
enables defining entire network of contain-
ers that can be migrated between platforms
or clouds, without modifications. Such net-
works can even span multiple platforms.

These containers can be individually com-
bined and dynamically reconfigured while
the services are running. The dynamic recon-
figuration of running services can be done
without damaging other nodes and allows to
add, remove or extend functionality easily.

Following the pragmatic approach of [63]
the micro services architectural style, struc-
tures an application as a collection of ser-
vices that are

• highly maintainable and testable
• loosely coupled
• independantly deployable
• organized around business capabilities

3.2 Solution Architecture 41



• owned by a small team

Benefits This style has four main benefits
that enables the continuous delivery and
deployment of large, complex applications.
First, it leads to improved maintainability.
Because the services are small, they are eas-
ier to understand and change. Additionally,
these services can easily be replaced with
equivalent components. Second, these small
services are faster to test individually, which
leads to an overall better testability. Third,
an independent deployment of services en-
ables better deployability. Lastly, the orga-
nization of development effort around mul-
tiple, autonomous teams is easier, as each
team can develop, test, deploy, and scale
their services independently. There are ad-
ditional benefits due to the small size of the
services and the individual components be-
ing easier for developers to understand. For
instance, a developer is more productive, be-
cause his development environment is faster
and the application itself loads faster, and
speeds up deployments in itself. Due to the
isolation of each service, a better fault iso-
lation and elimination of long-term commit-
ment to technology stacks are achieved. A
fault isolation improvement is achieved e.g.
if a service is affected by a memory leak. In
such a case only that isolated service is af-
fected, leaving all other services intact. De-
veloping a new service or improved version
of a service leaves a developer the choice of
picking the technology stack most suited for
the task.

Drawbacks Unfortunately, the micro ser-
vices architecture also has several draw-
backs. There is additional complexity that

developers have to deal with when creat-
ing a distributed system. The additional
complexity comes from different aspects of
inter-service complications. Developers need
to implement inter-service communication
mechanisms and deal with partial failure.
Dealing with requests and testing interac-
tions that span multiple services is more dif-
ficult, and requires careful coordination be-
tween the teams. There is also no explicit
support by developer tools or by any inte-
grated development environment IDE for de-
veloping distributed applications. The de-
ployment complexity is also a drawback,
where operational complexity gets added to
deploying and managing such a distributed
system. There is also increased memory con-
sumption compared to monolithic applica-
tions. For example, when a micro service
architecture replaces N monolithic Java ap-
plication instances with N · M services in-
stances, it requires M times as many Java
Virtual Machine JVM runtimes, provided
that these services run directly on the host
system. If each service runs on its own
virtual machine VM, the overhead is even
higher.

Challenges Determining if using a micro
service architecture is the right approach, is
one challenge in the beginning. It is espe-
cially a challenge in the beginning, because
the problems that this pattern solves are not
present at that point. Using a elaborate
and distributed architecture generally slows
down development in the early stages of de-
velopment and using funcional decomposi-
tion might make it more difficult to iterate
rapidly. Later on, this functional decomposi-
tion makes it easier to scale the services hor-
izontally. Scaling a services horizontally con-
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sists of running multiple copies of the service
behind a load balancer. The investment of
setting up a continuous delivery and deploy-
ment pipeline has to be considered as well.
This will pay off later on by accelerating soft-
ware development.

The second challenge using the micro ser-
vices pattern is the art of decomposing the
solution into “micro” services. Two strate-
gies described in the book [63] that helped
decomposing the navigation system into mi-
cro services is the decomposition by verbs or
nouns. The former uses particular actions to
define services, such as a Mapping Service
that records in detail the spatial distribution
of the environment. Latter defines a service
that is responsible for all operations on en-
tities of a given type. Such a decomposi-
tion by noun is a Known Pose API that is re-
sponsible for managing accurate and inaccu-
rate poses. Ideally, all services should have
only a small set of responsibilities. This is
also widely known as the Single Responsibil-
ity Principle SRP. This principle states, that a

class should only have one reason to change.
The same principle makes sense to apply
to service design as well. For ROS nodes,
this decomposition can be easily defined that
each node should be a seperate service.

Maintaining data consistency accross ser-
vices can be a difficult task. To ensure loose
coupling, each service has to have its own
database. In this case, a service has to pub-
lish an event when its data changes, which
interested services consume and update their
data. To reliably update data and publish
events in such cases, there are patterns such
as Event Sourcing or Transaction Log Tailing.
Another issue that arises from this architec-
tural style are queries, which need to re-
trieve data that is owned by multiple ser-
vices. Such challenge requires either pattern
like API Composition or Command Query Re-
sponsibility Segregation CQRS. As there are
no such challenges in the current set of ser-
vices, the reliable update and querying ac-
cross multiple services are not discussed fur-
ther here.

3.2.4 Applied Tactics to Achieve the Quality Goals

Section 3.1.4 characterized a number of
quality attributes the system should achieve
with the help of scenarios. This characteriza-
tion allows to bring forth and measure qual-
ity requirements but does not provide under-
standing of how to achieve them. Achiev-
ing the three system qualities modifiability,
usability and testability requires deciding on
and applying a combination of tactics. The
chosen tactics are used to create a design
using design patterns, architectural patterns,
or architectural strategies. Such patterns

and strategies implement a collection of tac-
tics. The chosen tactics will then guide the
architectural decisions. This section can be
seen as connecting the quality attribute re-
quirements with the architectural decisions
described in the next section.

Tactics are design decisions that influence
the control of a quality attribute response to
a stimuli. A tactic focuses on a single quality
attribute response. The tactics used in this
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thesis come from [60], which provides a cat-
egorization and many general tactics. In or-
der to be applied, these have to be refined
in order to make each tactic concrete. Addi-
tionally, because applying tactics to a archi-
tecture depends on the context.

Modifiability Tactics

Making changes to software often involves
cost and risk. Changes can occur to any as-
pect of the system with varying likelihoods.
The art lies in deciding which changes are
likely and should thus be supported. Mod-
ifiability tactics help in controlling the com-
plexity of making changes, as well as the
time and cost to make changes. Thus, as a
change stimuli enters a system, tactics con-
trol that these anticipated changes are made
withing the measures defined. Figure 3.11
gives an overview of the applied tactics in
this section.

Modifiability Tactics

Reduce coupling
Encapsulate

Introduce explicit interface to module
Use an intermediary

Dynamic lookup of a module
Convert syntax of a service into another form
Mask interface identity changes
Remove producer’s knowledge of its consumers

Abstract common services
Implement more general service just once

Increase cohesion
Increase semantic coherence

Reduce size of modules
Split modules

Defer binding
Design artifacts with built-in flexibility

Fig. 3.11.: Tree overview of the applied modifia-
bility tactics

Reduce Coupling Change that only affects
one module is easier and less costly than

if it affects multiple modules. However, if
responsibilities of modules overlap then a
single change could potentially affect them
both. A overlap measurement of probabil-
ity that such a modification propagates to
another module is called coupling. A high
percentage in this measurement is an enemy
of modifiability. Multiple tactics to reduce
coupling have been implemented in the ar-
chitecture. First, encapsulation was used to
provide all modules with an explicit appli-
cation programming interface API that did
not have one already. Most modules run-
ning ROS nodes already define such a API.
ROS nodes and other modules that were con-
tributed as a result of this thesis received
an interface abstract with respect to the de-
tails of the module that are likely to change.
This abstraction is a means to hide those de-
tails.

Second, using an intermediary contains a
lot of concrete implemented sub-tactics that
are meant to break dependencies. Using
a service-oriented architecture adds the re-
quirement for a directory service interme-
diary, which discovers services by dynamic
lookup. This dynamic lookup of services en-
ables the location of a service to be changed
at runtime without affecting clients. Going
in and out of the ROS Core System is a ROS
Bridge, that uses an event-driven approach
to convert the syntax of the services running
inside the ROS environment into forms that
are assumed on both sides. Using such a
bridge prevents changes in the ROS environ-
ment to propagate to the outside. A depen-
dency of a module on an identity of an in-
terface of another module can be masked by
a broker. This broker can make the connec-
tion between modules, such that if the iden-
tity of a module changes, the other module
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can remain unchanged. Wherever possible a
producer’s knowledge of its consumers was
removed using a publish-subscribe interme-
diary. Getting measurements from the Opti-
Track system In the ROS Core System of the
navigation system that runs all ROS nodes in
an isolated environment, strongly typed ROS
messages over ROS topics are used. Using
such an intermediary is the standard when
using ROS.

Lastly, common services have have been out-
sourced to a general form. The Known Pose
API, which provides a service for creating, re-
trieving and deleting 6D poses in free space.
This service is used by nodes inside and out-
side of the ROS environment as well as in the
various UIs. Other planned common services
beside the Known Pose API can be seen in
Figure 3.16 in the Appendix and have not yet
been implemented. This includes abstracting
Mission API, Teleoperation API, Mapping
API and Exploration API. This reduces the
cost of modifications, as changes are occur-
ring just in one place.

Increase Cohesion The measure of cohe-
sion reflects the strength in relatedness of re-
sponsibilities a module. This measure con-
sists of determining the probability that a
change scenario that affects a responsibility
will also affect other responsibilities. A low
probability in affecting multiple responsibili-
ties signifies high cohesion and vice-versa. In
order to increase semantic coherence there are
two goals to achieve in all modules. First,
all functionality embedded in the module ac-
cessed through its interface, have much in
common. Second, the functions inside a
module carry out a small number of related
activities, by avoiding unrelated sets of data

or data that is not fine grained. Data granu-
larity is the size in which data fields are sub-
divided, where fine granularity means mul-
tiple fields. This fine granularity leads to a
bigger overhead for data input and storage
and manifests itself in a higher number of
objects and functions. The fine granularity
however helps the flexibility of data process-
ing in treating each data field in isolation if
required.

There are 7 types of cohesion in [64] that can
be ranked on a scale from least desirable (1)
to most desirable (7) cohesion types:

• Coincidental cohesion
• Logical cohesion
• Temporal cohesion
• Communication cohesion
• Sequential cohesion
• Functional cohesion
• Data cohesion

Those types of cohesion come from various
sources. Coincidental cohesion is the least de-
sirable, as it means that there are multipl el-
ements in the same module for no particular
reason. Logical cohesion happens if elements
perform logically related tasks accross mod-
ules. Temporal cohesion requires elements
of different modules to be used at approxi-
mately the same time. Communication cohe-
sion occurs if elements share the same input
or output I/O. Sequential cohesion is when
elements are required to be used in a partic-
ular order. Functional cohesion requires ele-
ments to cooperate to carry out a single func-
tion. Data cohesion is when elements coop-
erate to present an interface to a hidden data
structure. These seven points are not ranked
on a linear scale. Applied to a system design,
the first three constitute low and generally
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unacceptable levels of cohesion. This low
level of cohesion suggests a poor and costly
design. Having functional or data cohesion
is considered the most desirable type of cohe-
sion for a software module as it is the highest
and superior. Having cohesion in between
those is considered moderate and acceptable
cohesion. There are cases where communi-
cational or sequential cohesion is the highest
level of cohesion that can be attained under
the circumstances.

Estimating the degree of cohesion within
modules can be achieved by writing a brief
statement in one sentence of a module’s pur-
pose and performing 4 tests, suggested by
the inventor of the software quality metrics,
Larry Constantine. If that sentence

1. describes the purpose of the module as
a compound sentence

• module probably performs more
than one function

• probably has sequential or commu-
nicational binding

• could also mean less cohesion
through temporal, logical, or coin-
cidental binding

2. contains words relating to time

• module has probably a sequential
or temporal binding

3. has a predicate that does not contain
a single, specific object following the
verb

• module probably logically bound
• e.g. “edit all data” has logical

binding; “edit source data” may
have functional binding

4. contains words such as “initialize” or
“clean up”

• module probably has temporal
binding

All existing modules developed in this sys-
tem and modules that will be added in the
future, have to be described using such a
brief statement sentence and be evaluated
using these 4 tests. The details of estimating
the cohesion of the current solution can be
found in the Appendix A.3 and reveals some
sequential and functional binding presence.
While the sequential binding is moderate co-
hesion, it could be the highest attainable in
the circumstances.

Reduce Size of Modules If a module in-
cludes a great deal of capability, modifying
it will likely have high costs. Reducing the
size of modules should reduce the average
cost of future changes. Using the micro ser-
vices style where every module has only one
responsibility as stated by the single respon-
sibility principle means that modules tend to
be small in size.

Defer Binding Time Letting computers han-
dle changes as much as possible will re-
duce costs of making changes. Therefore,
designing artifacts with built-in flexibility is
cheaper than hand-coding a specific change.
There are 4 different times at which values
can be bound: compile, deployment, startup
and run time. The later in that life cycle a
value is bound, the better. Supporting such
late binding mechanisms is a tradeoff, as it
tend to be more expensive to put in place.
The art lies in finding the latest possible bind
time, as long as the mechanism that allows it
is cost effective.

46 Chapter 3 Proposal for an Extensible Solution Architecture for Reproducible and De-
ployable Robotics Research



At deployment time, tactics to bind values
using configuration files was applied. These
configuration files allow to set environment
variables such as unified resource identifier
URI, ports or custom paths. Tactics that
have been applied for binding values at run-
time include dynamic lookup and startup time
binding. Dynamic lookup was realized for
services using software defined networking
and adds deployment flexibility, as services
are found at runtime. Startup time binding
is similar to configuration files as it allows to
overwrite environment variables but at run-
time.

Usability Tactics

Usability is concerned with how easy it is for
the user to accomplish a desired task. The
process of user interface UI design consists
of generating and then testing a UI design.
Deficiencies in the design are corrected and
the process repeated. There is a connection
between the achievement of usability and
modifiability. Both qualities attributes com-
plement each other, because one of the best
ways to make a system more usable is to
make it modifiable. Facilitating experimen-
tation with the UI via rapid prototyping is
therefore one of the most helpful things to
make a system usable. Building several pro-
totypes, let real users experience the inter-
faces and give their feedback pays enormous
dividends. Designing software so that the UI
can be quickly changed is the best way to
achieve that. Figure 3.12 gives an overview
of the applied usability tactics.

Usability Tactics

Separate User Interface
Support User Initiative

Cancel
Aggregate

Support System Initiative
Maintain task model

Fig. 3.12.: Tree overview of the applied usability
tactics

Separate User Interface To support the
rapid UI prototyping approach and facilitate
experimentation the UI is separated using a
single entry point for clients. This single en-
try point implements a API gateway that han-
dles requests in two ways. Most requests
are simply routed to the appropriate service,
while other requests are handled by fanning
out to multiple services. Figure 3.13 shows
the setup.

API Gateway Single Entry Point

HoloLens/Native Mobile App Server-side Web Application

REST | Known Pose API WebSockets | ROS Bridge MQTT | OptiTrack Bridge

Fig. 3.13.: API gateway that is the single entry
point for all clients

Support User Initiative The design of a re-
sponse for user initiative comes by enumer-
ating and allocating the responsibilities of
the system to respond to the user command.
First, as a user issues a cancel command, the
system has to listen for it. This listening is
the responsibility to not be blocked by the
actions of what is to be cancelled. Such can-
celling option is provided in the architecture
for navigation tasks that can be terminated
at any time on the path. Second, when a
user performs repetitive operations, such as
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removing known poses in a large number
from the database, the architecture provides
the ability to aggregate the objects into a
group.

Support System Initiative Getting an idea
of what the user is attempting requires a task
model that is used to determine the context
and provide assistance. The system can then
provide useful feedback and can help navi-
gating through the workflow. In the simple
web application developed, this tactic is ap-
plied to guide the administrator through the
setup and accuracy estimation workflow.

Testability Tactics

The goal of tactics for testability is to allow
easier testing of software increments. Any-
thing that helps reducing the high cost of
testing in the architecture will yield a signif-
icant benefit for the reliability of a system.
Figure 3.14 gives an overview of the applied
testability tactics.

Testability Tactics

Control and Observe System State
Record/Playback
Abstract data sources
Sandbox

Limit Complexity
Limit structural complexity

Fig. 3.14.: Tree overview of the applied testabil-
ity tactics

Control and Observe System State Control
and observation is central to testability. In its
simplest form a control provides a software
component with a set of inputs, let it do its

work, and then observe its outputs. The tac-
tics discussed in [60] go further and provide
insight into software components to main-
tain state information and change values in
that state information. This state informa-
tion can be an operating state, the value of
a variable or sensor data, intermediate pro-
cess steps or anything else useful to re-create
component behavior.

The operating state space of complex soft-
ware is large and therefore it is more diffi-
cult to re-create an exact state that caused a
fault. Making behavior repeatable is crucial
to finding a fault that caused a failure. Tactic
Record/playback defines the recording of the
state when it crosses an interface in order to
“play the system back”, and it that way re-
create the fault. A program’s state can be
controlled easily by its input data and makes
it easier to test. Abstracting interfaces to data
sources such as databases or possibly even to
files of test data allows to substitute test data
easily, without having to change functional
code.

Isolating instances of the system from the
real world using simulations enables experi-
mentation that is unconstrained by the worry
about having to undo the consequences of
the experiment. Sandboxing helps testing by
providing the ability to operate the system
in such a way that it has no permanent con-
sequences or that any consequences can be
rolled back. Using a virtualized resource that
simulates the imortant aspects of the real
world system offers the benefit of building
a version of the resource whose behavior is
under the develpers control.

Developing software for a robot requires
physical access to the hardware as well as
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to the defined environment where the robot
should operate in. Using record/playback
or substituting data sources and simulation
in virtualized environments, it is possible to
test components quickly and without hard-
ware dependencies. These virtualized en-
vironments also set clear test environments
and add capabilities to abstract resources
such as sensors, time, environment, network,
and so on. Virtualized resources such as envi-
ronments allow e.g. adding obstacles, other
robots or people that behave as a scripted by
a developer.

Limit Complexity As stated in previous
paragraphs making behavior repeatable is
important to find the fault that caused a
failure. Limiting structural complexity in-
cludes avoiding or resolving cyclic dependen-
cies between components, isolating and en-
capsulating dependencies on the external en-
vironment, and reducing dependencies be-
tween components in general. Having high
cohesion, loose coupling and separation of
concerns from the micro services style and
modifiability tactics helps with testability.
The first two limit the structural complexity,
while the latter helps achieving controllabil-
ity and observability.

3.2.5 Key Architectural Decisions

An architecture of a system can be viewed as
the result of applying a collection of design
decisions. [60] categorizes these decisions
in different architectural design decision cat-
egories. The relevant categories

1. Allocation of Responsibilities
2. Coordination Model
3. Data Model
4. Binding Time Decisions
5. Choice of Technology

are discussed next. This categories provide
a rational divisio of concern but can over-

lap. The design checklists for the 3 quality at-
tributes that lead to these key decisions can
be found in the Appendix A.2.1 to A.2.3.

Allocation of Responsibilities

Decisions that involve the allocation of re-
sponsibilities include identifying responsi-
bilities that are important and determine
how they are allocated to (non-)runtime ele-
ments.
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System Subdivision

Issue How is the system to be subdivided in order to allow for the specified
modifiability, usability and testability qualities?

Alternatives
1. monolith

+ Easy maintenance of the application during operation
+ Faster project spin-up time
− Single programming language must be used
− Cannot achieve required quality objectives

2. micro services
+ Each module developed in appropriate language
+ Each module can be switched out at runtime
+ Greater autonomy in the development of individual services
+ Able to achieve the required quality objectives
− Initially greater cost to set up
− Elaborate deployment

Outcome micro services
Rationale The positive consequences of using a micro services subdivision of the

system overweigh the negative ones by far. Initially, there is more effort and
time needed to set up the elaborate and distributed architecture. Later on,
this investment pays off by allowing

• each module to be developed in appropriate language
• each module to be switched out or turned on/off at runtime
• allow for autonomous development of module

Micro services follows the principle of single responsibility, where each
service has one function, which it must do well. There should be no overlap
in responsibilities between modules (low coupling). The relatedness of
modules responsibilities should be high (high cohesion). Following these
principles leads to a high maintainability. Because each service is isolated,
better testability is achieved. Furthermore, this style dictates to separate the
UI in a seperate module, which aids in rapid UI prototyping and facilitates
experimentation for achieving greater usability.

Tab. 3.7.: Application subdivision in many subprograms

Coordination Model

Interaction between elements through de-
signed mechanisms is the way software
works. Such mechanisms are collectively
referred to as coordination model. Deci-

sions about the coordination model come in
3 flavours. First, they include identifying ele-
ments of the system, that must coordinate or
are prohibited thereof. Second, properties of
the coordination are determined. Lastly, the
communication mechanisms are chosen that
realize those properties.
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Coordination Between two Environments

Issue The ROS Core System in the NavAjust solution combines and configures
existing ROS packages together with contributed packages from this thesis.
Packages in that ROS environment reduce coupling using masking interface
identity changes, removing producer’s knowledge of its consumers and defer
binding to as late as possible. Using ROS constrains the use of programming
language to C++11 or Python3.6. How should simpler components such as
a web application or API, that do not directly depend on ROS coordinate
with the ROS environment?

Alternatives
1. use ROS for every module
2. use an intermediary bridge to convert syntaxes

Outcome Use an intermediary bridge to convert syntaxes
Rationale In order to remove the dependency on ROS for simpler components such as

web applications, various APIs and rapid prototyping it is necessary to
convert the syntax of a service into another form. Introducing this bridge
removes some benefits of loose coupling but also removes constraints on
programming languages and provides a universal interface, allowing any
client to send and receive ROS messages. Using the bridge also prevents
changes from inside the ROS environment to propagate out. The
coordination model proposed can be seen in Figure 3.15.

Tab. 3.8.: Coordination between two environments: ROS and non-ROS programs

Docker SDN

ROS Core System

WebSocket

ROSBridge
ROS Topics <=>JSON

REST MQTT

Measurement ServiceKnown Pose API

API GatewayFront Proxy

HTTPS

Driver

Motion Model

Navigation Accuracy

SafetyMaster

Broker

Fig. 3.15.: Coordination model: interactions between elements

Communication Mechanism for Known Pose API

Issue The Known Pose API should serve previously recorded known poses in a
known environment. What communication mechanism should be used for
accessing the Known Pose API?
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Communication Mechanism for Known Pose API

Alternatives
1. Representational state transfer REST API

+ Based on standard CRUD operations and stateless in nature
+ Client and Server can be implemented independently
+ Can be documented using a open standard
+ Generate mature tools automatically
− High communication cost

2. GraphQL
+ Easy to produce and consume
+ Contract-driven by nature
− Server and clients coupled at the client programming time
− Not using HTTP

3. WebSockets
+ Low communication cost
+ Allows client and server to talk independently
− Stateful protocol
− No automatic generation of tools

Outcome REST API
Rationale GraphQL, a library initially created by Facebook allows to represent all

remote data sources as a single domain model via a virtual JSON graph.
While GraphQL has some advantages over REST by being easy to use and
contract-driven it also neglects some problems of the distributed system,
coupling server and clients at programming time. Because GraphQL is not
using HTTP, it throws away what the protocol has already solved: scalability,
performance, the mechanics of network communication, and many others.
While this functionalities can be added to a GraphQL API it leads to
bikeshedding3. The request/reply interaction of adding, deleting and
retrieving known poses is a great fit for REST. Additionally, every
programming language is interoperable with the transport layer of REST
APIs. Verb-based action i.e. create, read, update or delete operation are
executed successfully over HTTP protocol. Message payloads can be easily
documented using OpenAPI specification. The documented OpenAPI
proposal can be found on SwaggerHub4.

Tab. 3.9.: API Design: Communication Mechanism for the Known Pose API

3Definition: Spending disproportionate time and energy spent over an insignificant or unimportant detail of a
larger concern.

4Documentation at https://app.swaggerhub.com/apis/kw90/known-pose-api/1.1.0#/AccuratePoseArray
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Data Model

Data that is of system-wide interest has to be
represented in some internal fashion. These
decisions that define the representations and

how they are interpreted is the data model.
This data model contains decisions on the
choice of the major data abstractions, their
operations, their properties, the compila-
tion of metadata and how the data is orga-
nized.

Representation of Point Cloud Data

Issue Point clouds acquired using laser scanners can be represented using
numerous formats. Which should be used to describe the reference point
cloud saved in the known pose database?

Alternatives
1. PLY - Polygon File Format
2. STL - Stereolithography File Format
3. OBJ - Geometry Definition File Format
4. X3D - ISO Standard XML-based File Format
5. CSV - Comma Separated Values
6. VTK - Visualization Toolkit File Format
7. PCD - Point Cloud Library File Format

Outcome PCD
Rationale For the point cloud representation PCD was chosen in version 0.7 (PCD_V7),

because no other alternative offers the flexibility and speed. Also, the PCD
format allows a simple ascii form where each point is separated on a new
line, space or tab. This alternative representation allows to have the best of
both worlds: simplicity and speed, depending on what the underlying
application needs. This adaptability makes this format perfect for this
system.

Tab. 3.10.: Representation of point clouds for adaptability
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Representation of Measurement Data

Issue Choosing the right format for a dataset in which the data is structured and
made available to humans and machines. Ensuring the data can be simply
managed and reused needs selecting the right format. The data shows the
hierarchy in the following Figure with relationships between tests and
measurements and their start, resp. end pose. Start and end times are
recorded for every test run. Every test measurement is aggregated into a top
level test object as a list.

C Point

double x
double y
double z

C Quaternion

double x
double y
double z
double w

C Pose

Point position
Quaternion orientation

C Rotation

double x
double y
double z

Euler angles

C OptiTrackMeasurement

Point position
Rotation orientation

C TestMeasurement

int testRun
Pose startPose
DateTime startTime
Pose endPose
OptiTrackMeasurement testMeasurement

C Test

string testLocationName
Pose goalPose
OptiTrackMeasurement manualMeasurement
TestMeasurement[] testMeasurements

The captured measurement data can be downloaded over the web
application. What data format should be picked for easy access and reuse?

Alternatives
1. CSV - Comma Separated Values
2. JSON - JavaScript Object Notation
3. XML - eXtensible Markup Language
4. UTF-8 - Self Defined Text Lines
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Representation of Measurement Data

Outcome JSON
Rationale The JavaScript Object Notation is an open data format standard. JSON

allows to store and transport data in a lightweight format. For hierarchical
data structures, JSON is ideal. The notation is “self-describing” and easy to
understand for humans. many modern programming languages include
code to generate and parse JSON-format data. Many modern programming
languages include packages to generate and parse JSON-format data.

Tab. 3.11.: Representation of measurement data

Binding Time Decisions

Binding Time of Values

Issue When in the life cycle should values that are most likely to change be bound?

Alternatives
1. compile time
2. deployment time
3. startup time
4. run time

Outcome run time
Rationale Binding values that late in the life cycle comes at a cost, but allows greater

flexibility. Some ROS parameters can be changed at run time using the
built-in dynamic reconfigure tool rqt. For other values that are most likely
to change, such as

• navigation behavior (change planners and configurations)
• switch between different fine adjustment algorithms
• sensor scan frequency, sampling resolution and frame ID

a run time binding using environment variables defined in modules and
overwriting them in Dockerfiles or Docker-Compose files is cost effective and
allows fast changes of the expected changes.

Tab. 3.12.: Binding time of values that are likely to change
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3.3 Architectural Views

The individual subsystems and their compo-
nents are explained in this Section. First,
the building block view gives an overview of
the rough division of the system into differ-
ent microservices. Then the important mi-
croservice component are described as white
box with black box descriptions of their in-

ternal building blocks. Second, runtime
views show the behavior of important build-
ing blocks as scenarios. Finally, deployment
views are shown with different deployment
strategies that are possible using this archi-
tecture.

3.3.1 Building Block View

Fig. 3.16.: Container view zooms into navigation system in scope showing the high-level technical build-
ing blocks at level 1
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In the building block view, the static decom-
position of the system into building blocks
is shown with their dependencies. The con-
tainer view in Figure 3.16 zooms into the
navigation system as can be seen in the con-
text view in Figure 3.1 of Section 3.1.2. This
container view is a slimmed down version of
the complete navigation system planned in

Figure A.4 in the Appendix and corresponds
to the implemented software stack in this
thesis. The view gives an overview of the
rough division of the system into different
microservices and the ROS Core System sub-
system. The ROS Core System is again made
up of multiple microservices, described as
white box view.

Component Purpose Technologies

ROS Core System Implements the Mobile Base Task Control Architecture.
Provides navigation, exploration and mapping
functionality via a JSON WebSocket API.

ROS Kinetic
C++11
Python3.6
JSON/BSON
Docker 19.03.5

Known Poses API Provides storing and retrieving of known poses
functionality via a JSON/HTTP API.

OpenAPI 3
Python3.6
Flask 1.1.1
JSON
Docker 19.03.5

Known Poses
Database

Stores manually defined semantic poses with a map
reference.

MongoDB 4.2.2
JSON
Docker 19.03.5

API Reverse
Proxy

A proxy to prevent the cross-origin problem and control
Cross Origin Resource Sharing CORS. This proxy is the
only interface that the outside world can access.
Enforcing a secure HTTPS connection using a valid SSL
certificate.

Nginx 1.16.1
Docker 19.03.5

Rapid
Prototyping

Jupyter Notebook integrated with ROS, Python and any
other tool that a developer might use for testing an idea
quickly in the browser without tedious installation and
configuration of the ROS environment. The component
can make request to any service running in the
environment.

IPython 5.1.4
IOctave 0.31.1
ROS Kinetic
OpenCV 4.2.0
TensorFlow 2.1.0
Docker 19.03.5

HoloLens
Application

The HoloLens application provides an augmented reality
AR environment for defining semantic poses and
controlling the navigation using gestures. This
component is not part of this thesis implementation.

Microsoft
HoloLens
Unity 2019.3.0
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Component Purpose Technologies

Pose Evaluator
API

The Pose Evaluator API provides methods to measure the
positional and rotational error using a manual reference
measurement and current measurements from the
OptiTrack system. This component is not part of this
thesis implementation.

Async API 2.0
MQTT
Python3.6
JSON
Docker 19.03.5

Single-Page Web
Application

This web application is one user interface component
that is used by the administrator. It is its own
independent application and is executed in the browser.
The application requests data via HTTP from services.

Nginx 1.14.1
Vuetify 1.4.3
ROSLibJS 1.0.1
Docker 19.03.5

Tab. 3.13.: Overview of microservice components and subsystems

Single-Page Web Application

This section gives an impression on the views
created in this thesis using some screenshots
in action. More screenshots can be found in
the Appendix A.5.

GUI Dashboard Figure 3.17 shows the
dashboard of the web application. This view

contains debugging and monitoring tools
such as ROS Topics, ROS Services, ROS Ac-
tions and the state of the robot’s navigation.
On the left hand side, the navigation state is
rendered together with the TeleOp Mobility
Base TOMB tool for controlling the base with
the keyboard.

Fig. 3.17.: GUI Dashboard
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GUI for Mapping, Exploration and Navigation
In Figure 3.18, the view for all mapping and
navigation related tasks is rendered. This
includes a 3D environment with a 2D occu-
pancy grid representation of the generated
map. Furthermore, this view shows the cur-
rent robot pose with a 30 Hz refresh rate us-

ing an arrow for its position and rotation,
which leads to smooth movements of the
robot. Finally, the controls in this view pro-
vides the ability to start an exploration of
previously unseen areas of the map and the
(de)serialization of created maps for contin-
uous mapping.

Fig. 3.18.: GUI for mapping, exploration and navigation

GUI for Creating Known Pose The GUI in
Figure 3.19 allows the addition of semantic
poses using a simple interface. A descrip-
tive name can be entered in the text box
and clicking the button to create the pose
at the current location will show 2 options.
The user then can choose the accuracy of the
final pose, which will save the pose in the

Known Pose DB. The newly created pose will
be shown in the Table below together with
other information gathered from the ROS en-
vironment. These created poses can be set as
targets that will be added to the goal of the
navigation stack. Using the bin, a pose can
be deleted from the database.
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Fig. 3.19.: GUI for creating a known pose

Known Poses API

A Known Poses API5 was developed to de-
fine and retrieve (accurate) semantic poses
in a 3D environment. Because of some
features that are specified in the OpenAPI
Specification 3.0 but not yet implemented,
some design compromises were made. One
features that are not yet implemented in-
clude a anyOf response type, which can then
be used to return different subschemas.6

Another feature that was missing is the

discriminator keyword, which facilitates
polymorphism by allowing consumers to de-
tect the object type.7

The data schema in 3.20 shows how known
poses are stored in the database. The
workaround is that the sub-components Ba-
sicPose and InaccuratePose are reference ob-
jects inside their respective parent model.

HTTP Method Resource Description

GET /poses Searches poses with optional search parameters

POST /poses Adds an inaccurate pose item

DELETE /poses/{id} Deletes a pose from the system using the uuid

GET /poses/accurate Searches accurate poses with optional search parameters

POST /poses/accurate Adds an accurate pose item

Tab. 3.14.: Operations of the Known Poses API available to developers

5Documentation available publicly here: https://app.swaggerhub.com/apis/kw90/known-pose-api/1.1.0
6More information at: https://swagger.io/docs/specification/data-models/oneof-anyof-allof-not
7More information at https://swagger.io/docs/specification/data-models/inheritance-and-polymorphism
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Table 3.14 shows the 5 operations that are
available to developers in the interface. Sep-
arate endpoints for the different data types
were created as a workaround to the miss-
ing response type feature. Using the HTTP
GET method on /poses to retrieve inaccurate

poses will actually return all poses, includ-
ing the accurate ones. The accurate poses
amongst will have the InaccuratePose type
with the boolean attribute isAccurate set
to True.

C Point

double x
double y
double z

C Quaternion

double x
double y
double z
double w

C BasicPose

string name
string description
Point position
Quaternion orientation

C InaccuratePose

string id
string dns
string description
BasicPose basicPose
boolean isAccurate
DateTime takenAt

C AccuratePose

string description
InaccuratePose inaccuratePose
string referenceScan

Building an AccuratePose
by aggregating an InaccuratePose
with a current reference scan
from the laser scanner

C InaccuratePoseArray

string description
InaccuratePose[] inaccuratePoses

Return types are arrays
of Accurate, resp. InaccuratePose

C AccuratePoseArray

string description
AccuratePoseArray[] accuratePoses

Fig. 3.20.: Data schema for known poses stored in the Known Poses DB

Rapid Prototyping with Jupyter

Dealing with ROS tools normally requires
the widget toolkit Qt to get a GUI and ei-
ther C++ or Python. The tedious process
of building, running and shipping ROS ap-

plication for non-experts in ROS and the
formidable learning curve as described in
Chapter 2.1 requires a simpler ecosystem. A
simpler ecosystem using Jupyter Notebooks
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is proposed by [65, 19] to bring the user
closer to the code.

Using the template of [65], a virtualized ver-
sion using Docker was created in this the-
sis, allowing the service to run anywhere.
With this approach, fast initial testing of
our approach presented in the next chapter
was possible due to the interactive nature of
these notebooks. As the code can be writ-
ten in different cells that can be run indepen-
dently, it is easy to execute, modify seperate
lines and execute again to see the effects in-
stantly. Also, the notebooks can embed data

and markdown8 text besides the code. Pro-
viding this component to other developers
makes their life easier, as they can perform
experiments rapidly. There’s no need to in-
stall anything but a browser locally as every-
thing runs on the server. The component can
also be deployed on a local development ma-
chine and can be connected to the robot over
the network if need be. Only the Docker en-
gine is required in that case. This approach
can also be used together with the simulator
as can be seen in Figure 3.21. In that Figure
it is seen, how a navigation goal is given to
the base using rospy.

Fig. 3.21.: Jupyter Notebook showing an interactive experience for robotics research

ROS Core System

The ROS Core System implements the Mo-
bile Base Task Control Architecture discussed
in the previous chapter. This pipeline ar-
chitecture processes data as it comes, trans-

forms it and passes it through the compo-
nents discussed in Table 3.15. In the fol-
lowing subsections, the important and con-
tributed components are discussed in more

8A lightweight markup language with easy syntax
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Fig. 3.22.: Component diagram zooms into ROS Core subsystem showing the building components

detail. Isolating the ROS Core System into its
own module and network allows the rest of
the system to be independent from ROS, use
different programming langues and tools,
and prevent changes to propagate out. A
WebSocket API called ROS Bridge bridges
communications between networks. It al-

lows clients to subscribe to topics using sim-
ple JSON or BSON objects. Even though the
connections from the API Reverse Proxy
are drawn directly into the Navigation and
Accuracy components, they are first routed
through the ROS Bridge.

Component Purpose Technologies

ROS Master Mandatory ROS node that provides naming and
registration services to the rest of the nodes in the ROS
system. This component is maintained by the ROS
community and requires no configuration.

ROS Kinetic
Docker 19.03.5

Mobility Base
Driver

Provides a ROS wrapper to the Linux hardware driver or
simulation thereof. This component is maintained by
Dataspeed Inc and respective device manufacturer.

ROS Kinetic
C++11
Docker 19.03.5
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Component Purpose Technologies

Motion Model Models the robot’s motion and uncertainty by computing
the odometry given the velocities of the robot stemming
from the geometry_msgs/Twist topic. Additionally, this
node provides a continuous transform at a frequency of
30 Hz to the /robot_pose topic for a fluid motion of the
model in AR/VR and the web interface.

ROS Kinetic
C++11
Docker 19.03.5

Mapper&Localizer Component runs the slam_toolbox that provides
lifelong mapping and localization. Using the laser and
motion data, it creates a 2D occupancy grid and creates
the ICP-based pose-graph for improving localization and
multi-session mapping.

ROS Melodic
Docker 19.03.5

Navigation This component plans and executes paths using the
Mobility Base and a map as OccupancyGrid and
attempts to reach a given goal with a tolerance of
approximately 5 cm.

ROS Kinetic
Docker 19.03.5

Accuracy If a pose is declared accurate, this component performs
fine adjustments, once the Navigation component
triggers the event Goal reached. For this, it uses the
precise odometry pose and goal pose and tries to match
them up.

ROS Kinetic
C++11
Docker 19.03.5

Safety This safety component takes motor control commands
from multiple sources and checks them for obstacles
within 1.5 m. If no obstacle is detected the controls are
forwarded to the driver to be executed.

ROS Kinetic
C++11
Docker 19.03.5

ROS Bridge Bridge that converts syntax ROS Topic into JSON/BSON
over a WebSocket API.

ROS Kinetic
Docker 19.03.5

Tab. 3.15.: Components of the ROS Core System

Mobility Base Driver

This containerized package contributed in
our work contains all necessary drivers and
dependencies. It is however required to in-
stall the SDK from Dataspeed Inc. on the
platform beforehand. The container also
needs to be run in privileged mode, in order
to have access to the devices exposed under
/dev. A script that takes care of the SDK in-
stallation for a fresh install is provided. Dur-

ing initial testing with the laser scanner, a
problem was identified, where some range
readings are considered twice. The fix de-
scribed in chapter 4.1 was reported on the
official GitHub project using a Pull Request
PR.

An integrated simulation environment can
be used in order to test coding increments
faster without being bound to hardware.
This simulation should reflect the real world
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as closely as possible such that the coding in-
crements can be deployed with only minimal
changes to the real robot. Testing social nav-
igation behavior in the official Gazebo simu-
lator is therefore required. Scripting actors
such as humans to move around and inter-
act in the simulation environment requires
at least Gazebo version 8.x9. Dataspeed
provides a plugin of the Mobility Base for
Gazebo that supports versions up to 7.x. A
major API change was introduced in version
8.x that switched the internal math library
to Ignition Math10. This API change required
to migrate the Dataspeed plugin to the new
software version using the migration guide11

from Gazebo. The migrated plugin we devel-
oped is available publicly on GitHub12.

Mapper & Localizer

Component runs the slam_toolbox that pro-
vides lifelong mapping and localization. Us-
ing the laser and motion data it creates a
2D occupancy grid and the ICP-based pose-
graph for improving localization and allow-
ing multi-session mapping.

The Kinetic branch of that package does not
compile due to a dependency on a newer ver-
sion of a visualization plugin for the ROS
Visualization RViz. Therefore, the Melodic
branch has to be used. The message defini-
tions did not change between both ROS ver-
sions, therefore this should be fine. The con-
tainerization of that component is allowed
to use a different ROS version isolated for
that component without affecting other com-

ponents. The second contribution adds con-
figuration files to start a new mapping or to
continue from a previous mapping session.
To allow continuing a previous mapping ses-
sion, a persistent storage in form of a file sys-
tem has to be mapped inside the container. A
tutorial for setting this node up can be found
in the Appendix A.6.1

Navigation

This component plans and executes paths
using the Mobility Base and an Occupancy-
Grid as map. Currently, the containeriza-
tion developed in this thesis offers configu-
rations and tunings for 3 global and 3 lo-
cal planners. During startup time, the plan-
ners can be defined and the parameters can
be tuned during runtime. Provided are the
following global planners: GlobalPlanner,
Navfn and CarrotPlanner as well as the
following local planners: Timed Elastic
Band TEB, Dynamic Window Approach DWA
and Trajectory Planner TP.

They all provide strength and weaknesses
in different situations. The evaluation of
the planners is beyond the scope of this the-
sis. Nevertheless, a stable navigation was
needed to test it’s accuracy reliably and fur-
ther improve upon it. Some tuning of the
configurations was done following the guide
from [54] and using the navigation config
from [66] as a template. The final configu-
rations used for this thesis can be found in
the Appendix A.6.1. The modifications were
done purely to make the robot differential

9More information at http://gazebosim.org/blog/gazebo8
10More information at https://ignitionrobotics.org/api/math/6.4/index.html
11Available at https://bitbucket.org/osrf/gazebo/src/default/Migration.md
12Available at https://github.com/kw90/mobility_base_simulator
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drive and reduce the velocities and acceler-
ations in all linear and angular movements,
and goal tolerances.

The costmaps configurations in the Appendix
A.10 until A.12 specify the parameters used
in the navigation stack. The main changes
to the configuration files happened to the in-
flation layer and the global costmap. The in-
flation layer is inflating obstacles, in order
to propagate cost values out from occupied
cells that decrease with distance. For the
costmap configuration a rolling window ap-
proach has to be defined using a window
that is at least the size in meters of the envi-
ronment the robot has the potential to map.
This is a workaround in order to allow explo-
ration of unknown territory at the same time
as doing SLAM and navigation.

To add social navigation, the social
navigation plugin layers from [67]
were added to the costmaps using
the social_navigation_layers, namely
ProxemicLayer and PassingLayer. First,
the proxemic layer adds a Gaussian Distribu-
tion around detected people in the direction
of their velocity. An example of this can be
seen in Figure 3.23. The cost is increased
in proportion to the detected people’s veloc-
ities. Second, the passing layer adds cost
to the right of a detected person, such that
the robot always prefers to pass a human on
the left side. While such modifications can
lead to suboptimal situations as discussed in
section 2.3, it is better than having no mod-
ifications. In order to make the movements
of the base more predictable and more nat-
ural, the local path planner was adjusted,
such that movements in forward direction
are preferred by decreasing the maximum
backward velocity.

Fig. 3.23.: Social navigation plugin layer added
to costmaps seen in RViz above and
the scenario in Gazebo in the image
below

Good performance with respect to robust
navigation was achieved using the Glob-
alPlanner in combination with either DWA or
TEB using differential contraints. The TEB
planner had real troubles reaching destina-
tions in tight spaces. This could also be due
to some costmap or planner misconfigura-
tion. Testing and tuning of the local planners
has to be done to find the optimal values, as
it was not in the scope of this thesis. In the
end, the combination GP and DWA planner
was set.

Accuracy

The accuracy node’s responsibility is to drive
to target poses as accurately as possible af-
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ter the navigation stack has reached the goal
with a tolerance of 5 cm and 0.1 rad. Only
a short overview is given here, as the con-
tributed odometry-based algorithm that runs
in this node is explained in the next chap-
ter in section 4.4. The node interacts with 3
other nodes as depicted in Figure 3.25.

Interactions The node acts on one side in-
directly for the ROS Bridge as an endpoint
that provides point clouds. On the other side
it receives a trigger event from the naviga-
tion that it has reached its destination and
that the fine adjustment can begin. The ac-
curacy node then sends motion controls over
the safety node to reach the goal precisely.

C IcpPerformer

PointMatcher<float>::TransformationParameters PerformICP(string reference_scan_string)

C PcdIo

Eigen::Vector4f TransformReferenceOriginTo(string fixed_frame, Eigen::Affine3d transform)
Eigen::Quaternionf TransformReferenceOrientationTo(string fixed_frame, Eigen::Affine3d transform);
string SaveCloudPcd(pcl::PCLPointCloud2 cloud)
string SaveReferenceCloudPcd(string cloud)
string ReadPcdAsString(string file_name)
string GetPcdReading()

C IcpAdjustment

bool FineAdjustmentAtTarget(request, response)

C OdomAdjustment

bool FineAdjustmentAtTarget(request, response)

C IntervalGenerator

AssembleScans2 GetSecondIntervalFromCurrentTime(double scan_seconds)

C ScanAssembler

CreateReferenceScan(request, response)

Fig. 3.24.: Class diagram of the accuracy node

Accuracy

Navigation ROS Bridge

Safety

Perform Fine
Adjustment

Robot Pose
& Scan

Motion
Controls

Event
(Goal reached)

Get pose
and scan

Fig. 3.25.: Accuracy node interactions

As a new known pose gets created, it re-
quires a reference scan as PCD file. The
reference scan is used for estimates of how
good the robot can estimate the positioning
error itself. At the same time, the known
pose requires the current pose that is with
reference to the map coordinates. This cur-
rent pose with map reference is the only in-
put the odometry-based method needs. For
an ICP-based method, which was not devel-
oped in this thesis, the reference scan is ad-
ditionally needed. When the user wants to
navigate to an accurate pose previously de-
fined and the navigation stack reaches it, an
event will occur in that triggers the fine ad-
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justment. In order to do this, the node lis-
tens to the current_goal topic of the navi-
gation stack, which returns the 6D goal pose.
The reference scan for the ICP-based method
has to come over the ROS Bridge from the
Known Pose API. This reference scan is then
matched with a current reading from the
laser scanner after the fine adjustment fin-
ished. This matching step yields an error es-
timate that is returned over the rosbridge to
the user.

Safety

The safety node is an example of a reac-
tive component that checks if an obstacle
is in the proximity and adapts its speed to
that distance. This check ensures that ev-
ery node that produces motion controls such
as Navigation and Accuracy do not collide
with any abstacles. Also, it adapts to speed
based on the distance of the nearest obstacle.
The measure of slowing down when close to
obstacles is computed by the logistic curve
f(x) = 1.5

1+2·exp(−nx)−0.5 where x is the near-
est distance, n is a steepness factor of the
curve and y is the speed in m s−1.

A logistic curve with n = 2 is plotted in
Figure 3.26. The plot shows distance rang-

ing from 0 m to 2 m on the x-axis and m s−1

in the y-axis. This function has the prop-
erty to slow down conservatively in the be-
ginning and reducing faster when getting
closer. When the MB is driving with a speed
of 1 m s−1 and an obstacle is approaching be-
low 2 m, this function needs to be evaluated
with a high frequency (120 Hz) in order to
avoid accidents. Tests using a cardboard box
have shown that collisions can be avoided
when producing motion cotrolls that drive at
1 m s−1 straight in direction of the box.
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Fig. 3.26.: Logistic curve to compute a safe
speed

For people standing or walking next to the
robot, this slowing down should give some
comfort. This is especially the case when
the base is driving around people, as it
would not drive with 1 m s−1, but rather with
a speed somewhere between 0.5 m s−1 and
0.7 m s−1.
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3.3.2 Runtime View

To show how the building blocks of the sys-
tem behave concretely and interact, 2 UML
activity diagrams are modeled. The first di-
agram in Figure 3.27 shows the interaction
of all components discussed when an admin-

istrator adds a new semantic pose using the
web dashboard. In the next diagram in Fig-
ure 3.28, the interactions between compo-
nents are shown, which need to cooperate in
order to reach a given pose by the worker.

Creating a New Known Pose

Administrator

Administrator

Web Dashboard

Web Dashboard

Known Pose API

Known Pose API

Accuracy

Accuracy

laser_scan_assembler

laser_scan_assembler

Known Pose DB

Known Pose DB

1 Add semantic pose

2 addPose(name)

3 get_robot_pose

4 geometry_msgs/Pose

alt [IsAccuratePose]
5 create_reference_scan

6 assemble_scans2

7 PointCloud2

8 .pcd

9 savePose(AccuratePose)

[InaccuratePose]
10 savePose(InaccuratePose)

11 Pose created (201)

12 Display pose in list

Fig. 3.27.: UML Activity diagram for adding an (in)accurate pose
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Sending a Known Pose as Action Goal

Worker

Worker

HoloLens

HoloLens

Known Pose API

Known Pose API

ROS Bridge

ROS Bridge

Accuracy

Accuracy

Navigation

Navigation

Safety

Safety

1 Go to pose

alt [IsAccuratePose?]
2 searchAccuratePose(id)

3 AccuratePose

4 Goal(Pose)

5 GoalStatus

6 GoalPose

loop [GoalReached?]
7 Controls

8 GoalReached

9 GoalReached

alt [IsAccuratePose?]

10 CallService(’fine_adjustment’,
reference_scan)

11 fine_adjustment(
reference_scan)

loop [PoseAccurate?]
12 Controls

13 Pose reached
accurately

14 Error estimation

15 Pose reached
accurately

[InaccuratePose]
16 Pose reached

Fig. 3.28.: UML Activity diagram for reaching a pose (in)accurately
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3.3.3 Deployment View

Fig. 3.29.: Deployment diagram illustrating how containers in the static model are mapped to infras-
tructure

Extensibility Examples

The extensability and flexibility of the Archi-
tecture is briefly discussed using 4 examples
that have occurred in the past or could hap-
pen in the near future.

1. Add a 3D RGBD camera for SLAM

• only affects the ROS Core System
• adds 2 nodes (driver and a 3D

point cloud to 2D laserscan con-
verter)

2. SLAM container on a central server for
enabling multi-mapping using multiple
robots

• only affects the ROS Core System
• with Docker SDN the server can

be added to the virtual network
• a new SLAM node runs on the

server building a shared map
• the current SLAM node has to be

replaced

3.3 Architectural Views 71



3. Platforms without possibility to deploy
containers

• cross-compile all ROS files inside
a container using the CPU archi-
tecture of the platform

• the compiled files can be run on-
board the robot without tethered
computer or superuser privileges

4. Platforms without access to OS

• run containers on a remote ma-
chine

• configure navigation to the robots
kinematic constraints

• connect to robot’s ROS master
over a network connection

• listen to sensors and send control
commands over the network

A deployment as described in Item 4 can be
seen in Figure 3.30. The MiR platform does
not provide access to the OS but exposes the
ROS Master over port 11311 on the robot’s
IP. This means we can deploy all containers
on a remote controlling machine minus the
MB driver node, which is provided by the
robot itself.

Fig. 3.30.: Deployment diagram illustrating how containers in the static model are mapped to another
infrastructure that does not provide access to its OS
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3.3.4 Technologies

Various technology decisions had to be con-
sidered, of which some were constrained by
the environment. For example, using ROS
for controlling the robot at high frequencies
is constrained to using C++11 or Python3.6.
All decisions concerning technology are doc-
umented below.

Container Runtime Environments

Development and operations are not isolated
concerns, as software should work in devel-
opment as well as in operations. Initially,
this comes at some cost of setting up all re-
quired nuts and bolts such as the build and
delivery pipeline of the infrastructure, which
is discussed in the next Section. Providing
the same runtime environment in develop-
ment on a local machine using the simula-
tor as in production on the robot, makes this
process more efficient. Different alternatives
that offer container runtime environments
nowadays mainly include

• Docker
• Linux Containers LXC
• CoreOS rkt (Rocket)
• Mesos Containerizer

Docker still seems to be the quasi-standard
and many tools exist as a result of that. Be-
cause the simulation environment and vi-
sualization components require a GPU ac-
celerated runtime environment, the NVIDIA
Container Toolkit13 is needed. This toolkit
requires Docker containers to automatically
configure the leverage of a NVIDIA GPU.

While alternatives for AMD exists as Radeon
Open Compute Platform ROCm14 for Docker,
most computers in the MRK 4.0 lab at DFKI
are equipped with NVIDIA graphics cards.
Therefore, this technology combination of
Docker with nvidia-docker was chosen.

Programming Languages

A multitude of programming languages ex-
ist with different strength and weaknesses.
Choosing the right programming for a prob-
lem is an important aspect in solving the
problem efficiently. The ROS Kinetic envi-
ronment in the ROS Core Subsystem sets a
constraint that limits these choices to either
C++11 or Python3.6. For components out-
side the ROS ecosystem, developers are free
to choose their language of choice. The de-
velopers can possess know-how in the follow-
ing programming languages.

• Java
• Python
• C++
• Go
• JavaScript

To achieve a certain modifiability accross de-
velopers, it should be restricted to the lan-
guages mentioned above if possible.

13More information at https://github.com/NVIDIA/nvidia-docker
14More information at https://github.com/RadeonOpenCompute/ROCm-docker
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Web Servers

For Python the following web servers were
investigated

• Flask
• CherryPy
• Tornado
• Django

As Django offers a complete solution from
web server to database – it is not light-weight
enough. The rest are light-weight web-server
only technologies with different request han-
dling mechanisms. Tornado works with a
multi-threading request handler, which is
not needed for this project. Flask and Cher-
ryPy are somewhat similar in the sense, that
they serve requests using a single thread.
Flask has more community traction and
many resources are availble for it. A web
server with Flask is easy to set up and needs
only few lines of code to get it working.

Therefore, Flask is chosen as the web server
technology for python services.

Frameworks for Web Applications

The frameworks considered for implement-
ing web applications were the following

• Angular
• Vue
• React

Angular is a complete solution that has a
steep learning curve and uses TypeScript as
its programming language. Vue is a light-
weight framework that is also easy to learn.
Vue claims to have more performance which
is important for a good user experience and
it is driven entirely by the open-source com-
munity without contributions from big com-
panies such as Google and Facebook. For
these reasons, the Vue framework was cho-
sen for the web application part.
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3.3.5 Infrastructure

For this project, various resources from the
Enterprise Lab of the Hochschule Luzern
HSLU is used. All links and information
about code, artifacts, docker images, API
documentation, API clients and container
runtime can be found in the Appendix A.7.

DevOps

The use of Docker Swarm makes it pos-
sible to implement a complete DevOps15

toolchain. Such a chain makes it possible,
that a developer only has to push his code to
the GitLab repository. The rest is taken care
of by the Continuous Integration / Continu-
ous Deployment CI/CD toolchain that auto-
mates the process of software delivery and
infrastructure changes. These set of tools aid
in delivery, development and in the end man-
agement of application throughout the life
cycle of software development.

Developer

CI Runner

Repohub

MB Robot

1) Commit new code

2) Create CI
Runner(s)

4) Notify success

3) Push image

5) New version
notification

6) Fetch

7) Trigger
re-deploy

Fig. 3.31.: Continuous Integration / Continuous Deployment Overview

15Practices that automates the processes between software development and IT teams; stands for Development and
Operations
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Updating the API Spec

Creating a new version of an API requires
re-building all client and server packages to
reflect the new interface. As the official im-
age from OpenAPI did not allow easy call-
ing from an CI environment such as GitLab
CI Runners, the image was modified to allow
that using the official Java binary and mount-
ing volumnes inside the CI runner. In order
for the Runner to be allowed to push to a reg-
istry, a key has to be generated and stored
in the registry. Updating the Spec and with
it the Client SDKs as well as Server Stubs
works as follows

1. Edit the yaml at SwaggerHub for con-
venience and validation and save the
changes

2. Commit and push the changes to the
repository

3. Magic
4. Find the client SDKs and server stubs

over at the registries

The magic part will build all new clients de-
fined in the CI chain using the new API doc-
umentation. Once done, the artifacts are
pushed to the corresponding registries such
as PyPI or NPM.
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Precise Positioning of Mobile
Robots at Semantic Poses based
on Pose Graph Localization

4

„Programs must be written for people to read, and only
incidentally for machines to execute

— Abelson and Sussman
(Structure and Interpretation of Computer Programs)

In this chapter the findings from the previous
chapters are summarized and improvement
opportunities are presented. A contributed
bugfix that improves the accurate conversion
of scan points from the laser scanner into
2D coordinates for the laser scanner is dis-

cussed. Finally, the approach proposed in
this thesis for improving the positioning us-
ing an pose graph-based approach that can
deal with changes in the environment when
converging accurately to a goal pose is de-
scribed.

4.1 Fencepost error correction

The 2D laser scanner in use is the R2000
ODMM30M from Pepperl+Fuchs [68]. This
scanner is designed to periodically measure
distances within a full 360° field of view FoV
while rotating with a constant frequency de-
fined by scan_frequency. Measurements
are aggregated into scans where a single
scan corresponds to one revolution of the
sensor head around the FoV. One such scan
yields a sequence of scan points (or sam-
ples) that can also be defined using the
samples_per_scan parameter. Scan data ac-
quisition is performed sequentially in the di-
rection of head rotation around the origin of
the scan plane.

0°180°

90°

270°

Fig. 4.1.: Polar coordinate system with direction
of scan head rotation
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As shown in Figure 4.1, this data is typically
represented within a polar coordinate sys-
tem. In this coordinate system it shows the
sensor from the top-down view. The origin is
located at the point of intersection of the axis
of rotation and the axis of the laser beam.
The pole of this coordinate system where
the sensor sits is defined by the axis of rota-
tion. Scan points are continuously recorded
during operation using an uniform angle
increment and direction of rotation. By de-
fault the scan head rotates in mathematically
positive direction, which is called counter-
clockwise (abbreviated with ccw). The angle
increment has a positive value between two
subsequent scan points because of the scan
direction.
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Fig. 4.2.: LiDAR scanning from 0 (0°) to 2π
(360°) with an angle increment of π

4
(45°)

The package pepperl_fuchs1 supplies a
driver and ROS wrapper for this scan-
ner. The current r2000_node.cpp creates
scans within the range of (0, 2π) with a
dynamic angle_increment that is defined
in samples_per_scan variable. Figure 4.2

shows an example for a simplified laser scan
with an angle increment of 45°.

1 2 3 4 5 6 7 8 9

0° 360°180°90° 270°

: Angle increment

Fig. 4.3.: LiDAR scanning from 0 to 2π

Using this full range leads to a fencepost er-
ror, where the scan in 0° direction is regis-
tered two times. The error becomes more ev-
ident looking at the fence sections and posts
in Figure 4.3 where 9 scans (posts) are sepa-
rated by 8 angle increments (fence sections).
The scans at 0° and 360° actually represent
the same scan. Some ROS libraries (e.g.
navigation_2d) complain about that error
and others ignore it. Ignoring it leads to an
incorrect conversion of the scan points into
2D coordinates. This conversion, however, is
important for doing accurate SLAM.

anglemin = 0 (4.1)

anglemax = 2π − angleincrement (4.2)

Therefore, we redefined the maximal angle,
keeping the minimal angle as is. Equations
4.1 and 4.2 show the new range for my
adapted ROS driver node. In the example
the range would be from 0° to 315°.The pull
request PR2 was submitted to the official
repository and can be tracked there. To fix
the issue for the time being my fork3 has
to be used, because the pull request has not
been merged into the master branch yet.

1Found at https://github.com/dillenberger/pepperl_fuchs
2Pull request at https://github.com/dillenberger/pepperl_fuchs/pull/11
3Fork at https://github.com/kw90/pepperl_fuchs
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4.2 Mapping and Localization
Mapping sensor measurements into internal
representations of the environment is the
task of robotic perception. As defined in
the previous chapter decribing the robotic
agent and environment in 3.2.1, this per-
ception is difficult because of noisy sensors,
and the partial observability, unpredictability

and dynamics of the environment. This sec-
tion summarizes the navigation aspects and
its accuracy incorporated so far in the pro-
posed architecture. With these insights, an
opportunity to leverage the benefits of life-
long mapping and accurate localization us-
ing the pose-graph SLAM is also discussed.

4.2.1 SLAM and Map Resolution

Mapping The most promising mapping re-
sults were achieved with the slam_toolbox
described in [69]. This solution produced
qualitatively good maps in a larger environ-
ment such as a 80 · 42 = 3360 m hall area
with demonstrators for research and testing
purposes. This package also offers the ability
for lifelong mapping, which is the concept of
mapping a space completely, and over time
to refine and update that map as the robot
continues to interact with that space. All
environments tend to change more or less
over time, such as displacing or rotating fur-
niture, opening and closing doors. Updating
the internal map with changes in the envi-
ronment helps the robot to better localize it-
self in that map and produce better paths. At
this time, the lifelong mapping feature in the
slam_toolbox package is still highly experi-
mental and could substantially impact the
computational performance.

Map Resolution All SLAM solutions tested
provides a map resolution parameter, that
sets the size of the occupancy grid block.
An occupancy grid map discretizes the world
around the robot into individual blocks.
Such a block defines a state of the environ-

ment at that location in space. The states
can either be assumed to be occupied or free.
Increasing the map resolution means reduc-
ing the size of the blocks.

Unfortunately, reducing the size of the blocks
has a drastic impact on the amount of mem-
ory consumed that is required to track the
occupancy grid. At the same time, this in-
creases the computation, which is required
to keep those grid cells updated. Together
with the people tracking, this leads to a lot
of computation that has to be done for each
individual cell. The increment in memory is
easy to calculate, as halving the grid gran-
ularity from 5 cm to 2.5 cm squares would
quadruple the memory requirement.

A second issue in reducing block sizes stem
from sensor precision. Especially low cost
LiDAR can return noisy distance readings,
which can vary over time. If this noise ex-
ceeds the defined map resolution, the occu-
pancy grid starts to get fuzzy. This can lead a
solid wall to being no longer a single surface,
but several nearby surfaces. This shows, a
trade-off and finding the right map granular-
ity for each robot platform could be investi-
gated further.
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Localization Odometry-like localization is
provided by the same slam_toolbox pack-
age. Taken from the idea of KartoSLAM,
the localization is built upon point cloud reg-
istration (process of aligning two or more
point clouds of the same scene) along
the robot trajectory. These point clouds
are then used to build a graphical model
called the pose graph on top that uses the
Iterative Closest Points ICP algorithm.
Results from ICP provide transformations be-
tween registrations used to connect refer-
ence frames are defined along the robots’ tra-
jectory. Using this information to build a
pose graph enables the correction of the path
of the robot as well as the map of the environ-
ment, for the occurrence of a loop closure.
These loop closures at graph level also helps
in reducing the overall drift of the system.

As opposed to (A)MCL with KDL sampling
used in [3], the localization approach using
the pose graph is not bound to a static map
image as a .pgm file. Thus, it can incorporate
changes in the environment and use them for
localization. This should result in better lo-
calization accuracy than (A)MCL if the ICP
algorithm is well tuned for the task. For the
Navigation Stack, a map as occupancy grid is
required for both path planning and tracking.
As this map defines a resolution of 5 cm as
described, the Navigation Stack is only able
to ideally achieve a final pose accuracy in-
side that defined block size. The localization
using a rolling buffer of recent scans in the
pose graph can be more accurate than that
and be used for a fine adjustment at target
poses using the algotithm developed in this
thesis (described in section 4.4).

4.3 Robust Navigation Strategy

4.3.1 Goal Tolerances

Local planners, which adhere to the BaseLo-
calPlanner4 interface, provides a controller
that drives a mobile base in the plane. The
wiki page in [70] describes this controller as
a service to connect to the path planner. A
kinematic trajectory using a map is created
for the robot, to get from a start to a goal
location.

For the local planner to determine if a goal
has been reached with success, two toler-
ance parameters can be set. A parame-

ter xy_goal_tolerance sets the positional
tolerance and another yaw_goal_tolerance
sets the angular tolerance for goal precision.
Lower tolerances give bad results in terms of
planning success rates. This can make to the
robot continually rotating about its goal. Set-
ting the xy_goal_tolerance too small, the
robot may try endlessly to make small adjust-
ments around the goal position. Similarly,
setting yaw_goal_tolerance too small, may
cause the robot to oscillate near the goal.

1 # Goal Tolerance Parameters

4Found at http://wiki.ros.org/base_local_planner
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2 xy_goal_tolerance : 0.05
3 yaw_goal_tolerance : 0.1
4 latch_xy_goal_tolerance : false

Listing 4.1: Local planner parameters for goal tolerances

Generally, a lower value for both means
a closer and harder to achieve range and
makes it difficult for the navigation stack to
conclude that it has reached the goal. The
parameters shown in listing 4.1 are probably
not optimal. They seemed to work in the lab
environment as well as in the simulator, how-
ever, no rigorous testing has been done to
evaluate those parameters empirically. One

general guideline for the positional tolerance
is the used map resolution. That resolution
sets the minimum possible tolerance. The
map resolution was fixed at 0.05 m, which
was used as positional goal tolerance. As for
the angular tolerance, there is no such con-
straint and has to be found through experi-
mentation.
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4.4 High Accuracy Pose Convergence

A method for converging accurately to a goal
pose has been developed. The method uses
a motion model approach using a odometry-
like localization from different sources. On
the integrated platform, the Mobility Base
this odometry stems from the laser scanner
and calculates distances from velocity com-
mands. These sources could be combined
with an IMU to get more accurate estima-
tions. The IMU on the MB however can not
be used due to technical reasons explained
in chapter 3.2. The pose-graph approach
from the slam_toolbox provides a combined
odometry from all sources that is used in the
algorithm presented next.

The x and y tolerances that trigger the goal
reached event for a goal pose has been con-
figured to 5 cm. Therefore, the goal can ei-
ther be in front, to the back or sideways to
the current odometry pose as seen in Fig-
ure 4.4. This thesis proposes the compu-
tation described in Algorithm 1 that solves
the problem of aligning a given goal pose
with the current odometry pose frame that
corresponds to the robot pose. This com-
putation gets triggered once the navigation
stack reports that it has arrived within the
tolerances of the goal pose. Figures 4.5

to 4.12 show step-by-step the computations
and executions of the Algorithm 1 in a visual
fashion. Because movements in y direction
(left, right) are either impossible (with non-
holonomic wheel drives) or more inaccurate
(with holonomic robots) than movements in
x direction (forward, backward), the algo-
rithm only uses movements in x direction
and turns around the z axis. The following
computations assume a right-handed coordi-
nate system when viewed from the z axis the
system is counter-clockwise CCW.
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Fig. 4.4.: Navigation reaches the goal with a tol-
erance

Algorithm 1 Pose Graph Odometry Accurate Goal Pose Convergence
Require: 6D Pose of the goal to be achieved Posegoal and odometry Poseodometry

Ensure: Align odometry pose with goal pose in 3D
1: function ODOMETRYFINEADJUSTMENT

2: TURNTOWARDSANGLETOGOAL

3: DRIVEALONGROBOTXTOGOAL

4: FINALGOALORIENTATIONALIGNMENTROTATION
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After the navigation stack triggers the Goal
reached event, the angle to the goal θ is de-
termined by first calculating the difference
in x and y between both positions and then
computing tan−1( y

x). Computing the inverse
tangent if x is negative or equal to 0 requires
special case consideration. By using the func-
tion atan2(y, x) from the C++11 cmath stan-
dard library, it is possible to abstract away
from that. This function returns the four-
quadrant inverse tangent of the difference in
y and x. Computing θ as the angle from the
odometry pose orientation to the goal can
be seen in Figure 4.5. The full odometry
is implemented by the pose-graph localiza-
tion approach. Once computed, this angle
can help to determine if the odometry pose
lies in front, to the side or behind the goal
pose. This is helpful in order to minimize
the amount of on spot rotation effort of the
robot, which normally leads to drift and bad
estimates.
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Fig. 4.5.: Compute the angle θ to the goal posi-
tion
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Fig. 4.6.: Sectors that if odom has perfect angle
will trigger backward motion

In order to minimize those errors induced
by long rotations, it is beneficial to restrict
the angle below some threshold. This thresh-
old is set to π

4 resulting in a defined bad sec-
tor as illustrated in bright red in Figure 4.6.
Although this sector only holds true if the
odometry pose orientation exactly matches
the goal pose orientation, it does help in vi-
sualizing the problem. With differing angles
between goal and odometry pose of −1 rad
and 1 rad, the borders between the sectors
behind the goal pose is able to move.

In case the odometry pose starts in the bad
sector, it first backs up until the angle θ is be-
low the defined threshold. Figure 4.7 shows
an example where the odometry lies in front
of the goal and has to back up into the good
sector. The result of that motion together
with the new angle θ, which is below π

4 is il-
lustrated in Figure 4.8. Having a small angle,
the rotation towards the goal can now be ex-
ecuted. In case the odometry lies to the left,
clockwise rotation needs to be applied and
vice-versa. Due to the right-hand coordinate
system, this means increasing the z compo-
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nent (also called yaw) of the angular vector.
The computation and matching is defined in
Algorithm 2. With frequent updation of the
odometry pose and a single goal pose, the
function TurnTowardsAngleToGoal ensures
a matching odometry orientation and angle
to goal with a sub milliradian accuracy.
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Fig. 4.7.: Navigation overshot target and landed
in front and to the left of the goal
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Fig. 4.8.: Difference has to be smaller than π
4
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Fig. 4.9.: Turn base’s x-axis towards goal pose

Finding the shortest relative rotation from
the odometry orientation to the goal orien-
tation it is simpler to convert to quaternions.
Using quaternions, it is possible to find the
shortest path of rotation by simply invert-
ing the current orientation quaternion and
right-multiplying it with the goal position ori-
entation. To do that, we first compute the
quaternion to the goal which is defined in
Algorithm 3. This function computes the
angle to the goal as described earlier using
the atan2 function and converts the result-
ing angle into the quaternion Qg. The func-
tion named ComputeQuaternionFromRPY re-
turns a quaternion using rotation around
fixed axes roll, pitch and yaw respectively. To
do that, it uses the setRPY from the Bullet 3D
physics library, and further computes the an-
gle using the current pose as well as the goal
pose.
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Algorithm 2 Align with angle to goal θ by minimizing rotation required
Require: 6D Pose of the goal to be achieved Posegoal and odometry Poseodometry

Ensure: Odometry yaw matching the angle to the given goal with a sub milliradian accuracy
1: function TURNTOWARDSANGLETOGOAL

2: while | θ − ϕ |> 0.001 do
3: Qg ←COMPUTEQUATERNIONTOGOAL(Posegoal)
4: Qo ←COMPUTEQUATERNION(Poseodom)
5: Qδ ← Qg ·Q−1

o

6: θ ←GETANGLE(Qg)
7: ϕ←GETANGLE(Qo)
8: δrot ←GETYAW(Qδ)
9: if |δrot| < π

4 then
10: if δrot > 0 then TURNCCW(speed)
11: elseTURNCW(speed)
12: elseDRIVEBACKWARDSALONGX(distance)

Computing the odometry quaternion in the
ComputeQuaternion just requires to convert
from the geometry_msgs/Quaternion.msg
message definiton in ROS to a
tf2::Quaternion using the provided
tf2::convert function. With these quater-
nions, it takes simply the multiplication on
line 5 to compute the shortest angle of ro-
tation Qδ. The functions GetAngle are
provided by the tf::Quaternion and the

tf::Transform ROS Transform tf library
that returns the angle of rotation in the in-
terval [0, 2π]. As seen in the illustrations be-
fore, if δrot is positive and below π

4 , we rotate
counter-clockwise and if its negative, clock-
wise. If however, δrot is above the threshold,
we drive backwards along the x-axis and re-
evaluate the situation until the threshold is
reached.

Algorithm 3 Compute angle to goal from current pose
Require: 2D Positions of the goal to be achieved and odometry
Ensure: Angle to goal in radians

1: function COMPUTEQUATERNIONTOGOAL(Posegoal, Poseodometry)
2: ∆x ← goalx − odomx

3: ∆y ← goaly − odomy

4: θ ← arctan2(∆x, ∆y)
5: Qg ←COMPUTEQUATERNIONFROMRPY(0, 0, θ)
6: return Qg

Algorithm 4 Drive along robots’ x-axis to goal position forwards
Require: 6D Pose of the goal to be achieved Posegoal and odometry Poseodometry

Ensure: Drives the odometry position to the goal position with a sub millimetre accuracy
1: function DRIVEALONGROBOTXTOGOAL

2: while | goalx − odomx |> 0.001 &&
| goaly − odomy |> 0.001 do DRIVEALONGX(speed)
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The rotations are performed with a con-
stant and slow speed of 50 mrad s−1, which
amounts to 3

2π ≈ 0.477 rpm. Two important
factors that needs to be considered are – a)
δrot is recalculated in each while iteration
with updated odometry as drifts in odometry
can occur anytime and b) that the executed
angular movements exceed the tolerance of
1 mrad as defined. Both of these issues tend
to affect the rotation direction.
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Fig. 4.10.: Drive forward towards goal

After aligning the odometry with the angle
to the goal θ, x direction is further moved
towards the goal position, with respect to its
(x, y) on the map frame. This step can be
seen visually in Figure 4.10 and its goal in
Figure 4.11. The function is defined in Algo-
rithm 4. In order to make this movement
more precise, it is performed with a con-
stant and slow speed. This speed is defined
as 0.05 m s−1. When the goal pose reaches
the position (x, y) with an odometry error of

1 mm on both axes, the final rotation is in-
voked. The Algorithm 5 takes care of align-
ing the odometry orientation with the goal
pose orientation. This is similar to the task
of Algorithm 2 in the sense that it has to
find the angle of shortest rotation and the
direction. To do this, it requires the cur-
rent and goal poses. Using these poses, it
creates the quaternions of orientation, in-
verts the current orientation Qo and right-
multiplies it with the goal quaternion Qg to
get the required minimal rotation needed to
align both. Likewise, in a right-handed co-
ordinate system, if δrot is positive, we have
to apply a counter-clockwise rotation and
vice-versa. The rotation is applied until
the error in rotation exceeds 1 mrad. Same
as TurnTowardsAngleToGoal, this function
also turns the robot with a fixed and slow
speed of 3

2π rpm to reduce errors.
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Fig. 4.11.: Reaching goal height with different
orientation
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Algorithm 5 Final rotation on spot to align odometry to goal pose
Require: 6D Pose of the goal to be achieved Posegoal and odometry Poseodometry

Ensure: Rotates the angular odometry to the goal orientation with sub milliradian accuracy
1: function FINALGOALORIENTATIONALIGNMENTROTATION

2: while | θ − ϕ |> 0.001 do
3: Qg ←COMPUTEQUATERNION(Posegoal)
4: Qo ←COMPUTEQUATERNION(Poseodom)
5: Qδ ← Qg ·Q−1

o

6: θ ←GETANGLE(Qg)
7: ϕ←GETANGLE(Qo)
8: δrot ←GETYAW(Qδ)
9: if δrot > 0 then TURNCCW(speed)

10: elseTURNCW(speed)

The final result of all these operations should
yield a situation as depicted in Figure 4.12.
As drift and estimation errors still can hap-
pen, this pose is not guaranteed to be perfect.
The positional and rotation error that can
be expected using this pose-graph odometry-
based method using these algorithms that
were explained in the current section are
evaluated in the next chapter.
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Fig. 4.12.: Final rotation to align with goal pose
orientation
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Experimental Evaluation 5
This thesis wants to answer the question of
how accurate the standard navigation stack
move_base can navigate to target poses and
how it can be improved. The proposed solu-
tion should be able to deal with the dynam-
ics in the environment while still being able
to estimate its pose with a higher accuracy.
An extensible solution architecture has been
developed in this thesis that can be deployed
to different platforms. Improvements for the
accuracy at target poses are suggested by the
pose-graph odometry-based algorithm. Also,
some open software issues have been fixed
and released to the community. While the
accuracy in dynamic environments have not
been evaluated due to time constraints, a
solid groundwork has been laid for more in-
depth experimentation as well as extending

the solution with further sensors and algo-
rithms. All of the code is open-sourced.

In this chapter, the algorithm developed in
the previous chapter using the pose-graph
odometry localization is evaluated using an
external measurement. First, the method-
ology for real-world evaluation of the com-
plete system is presented. Using this setup
and the proposed architecture, the experi-
ments are repeatable and results of this the-
sis reproducible. Second, the OptiTrack Mo-
tion Capture System that was used as exter-
nal measurement system is described. Lastly,
the results achieved with move_base and the
proposed algorithm are presented and dis-
cussed.

5.1 Evaluation Methodology
Different authors have measured the posi-
tioning error of mobile robots in a variety
of ways. In [3] they used an external mo-
tion capture system with 9 cameras to deter-
mine the pose of the robot operating in the
environment. This setup was beneficial as
it provided a means to evaluate the perfor-
mance of the navigation system at different
locations with precision. Using an external
measurement system such as OptiTrack Mo-
tion Capture System, which is available in the
MRK 4.0 Lab allows to determine the pose of

the robot accurately up to about 1 mm if cal-
ibrated correctly.

The robot used for the evaluation is the Mo-
bility Base from Dataspeed Inc. is described
in 3. The pose-graph for the localization
system has been built by steering the robot
through the environment using the TOMB
tool developed and integrated in the web
dashboard. This pose-graph can be compiled
into an occupancy grid seen in Figure 5.1
and is used by the move_base. The Figure
also shows the 2 evaluation locations marked
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with the red squares. These locations were
used for the robot to repeatedly approach
with both methods and each time the robot
stops, the motion capture system would take
a measurement. Figure 5.2 shows the lab
environment, which is the evaluation site
where the tests were run. The Figure below
in 5.3 shows 3 out of 9 OptiTrack cameras
that were used to track the robot.

1 m

Fig. 5.1.: 2D Occupancy grid of the evaluation
environment with a 5 cm resolution

In order for the motion capture system to
work accurately, it has to be calibrated be-
forehand. If the calibration successfully runs
and achieves an excellent rating from the con-
trol software, it should produce a positional
error of less than 0.3 mm and rotational error
less than 0.05°. The motion capture system
provides a 6D pose of the marker configura-
tion that is teached-in. The set of markers
and their configuration is tracked by the sys-
tem. These markers were hot-glued on top
of the robot, where they can be easily seen
by the OptiTrack cameras. The correct func-
tioning of the system was tested by driving
multiple times to the same location and see-
ing if the measurements match up.

Fig. 5.2.: Lab environment that was used as
evaluation site

Fig. 5.3.: Three of the 8 OptiTrack Motion Cap-
ture System cameras

As discussed in chapter 3 the navigation sys-
tem has many individual components that
work together to produce and execute a path
robustly and to eventually reach the target
pose. The dynamics of real world environ-
ments are difficult to capture and are largely
ignored in this evaluation. To measure the
accuracy quantitatively, an evaluation metric
that measures the positional and rotational
error of the robot relative to manual refer-
ence locations is used. For the position met-
ric the translational error in the x, y-plane is
computed using Equation 5.1.

PE =
√

(x1 − x2)2 + (y1 − y2)2 (5.1)

The angles measured by the motion capture
system are Euler angles with XYZ represen-
tation. This representation corresponds, re-
spectively to pitch, roll and yaw. Therefore,
only the z rotation component is of interest
to us. This component has values in the inter-
val [−180°, 180°]. Computing the rotational
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error RE in degrees as the angle difference
in the general case, the Equation in 5.2 was
used. In this Equation, z1 corresponds to
the manual reference rotation and z2 to the
reached rotation. The order does not matter,
but it’s important to grasp that one variable
is the fixed manual reference and the other
represents the rotation that is measured in
each test run.

RE =| z1 | − | z2 | (5.2)

In this evaluation only the positioning error
of the robot is determined. This positioning
error means how accurate the robot can po-
sition itself. The error of the localization sys-
tem is not evaluated in this thesis and should
be a content for future work. This localiza-
tion error gives a measure of how well the
robot can estimate its own pose, which could
indicate limitations of the motion execution
in the low-level controller or hardware of the
platform. The test procedure for the eval-
uation is described in Table 5.1. The pro-
cedure defines the purpose and the precon-
ditions that have to be met along with the
procedure steps to be executed. All steps
can be executed in the developed web dash-
board, which also includes a live evaluation
of the errors at the test runtime. Figures A.9
and A.10 in the Appendix shows the view in
action.

We start a test run by driving to a pose us-
ing TOMB and creating an accurate pose by
giving it a distinguishable semantic name.
This pose addition creates a reference scan
that gets transformed to a point cloud and
is saved to the Known Pose API. At the
same time, this triggers an OptiTrack mea-
surement which is saved in the local browser
database for later evaluation. The next step
involves driving the base to different random
starting positions. This navigation to differ-
ent locations includes random changes in po-
sition as well as orientation of the robot. Dur-
ing our tests, this was made using TOMB but
could be imagined to be executed by a soft-
ware component that sends the robot to ran-
dom but reachable positions in the map. This
second step should be repeated a lot of times
to get a sample size that yields a significant
result. Each test run also includes, besides
an OptiTrack measurement, a final transfor-
mation estimate of the robot. This estimate
can be used to determine the localization er-
ror, which is not included in this evaluation.
After each run, the evaluation refreshes a Ta-
ble containing both errors as well as a scatter
plot, which shows the distribution of the test
measurements including their rotation. Af-
ter running a multitude of test runs, the test
data can be downloaded as JSON to be pro-
cessed further, if the evaluation in the web
dashboard is not enough.

Test Procedure: Positioning Error

Purpose This test procedure creates an initial manual measurement at a
reference location using OptiTrack. It then evaluates the positional
and rotational error with repeating autonomous navigation runs of
a method in reaching the exact pose again.
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Test Procedure: Positioning Error

Preconditions
1. Pose-graph of the environment created
2. Complete navigation stack up and running
3. Known Poses API running
4. OptiTrack system calibrated and tracking the robot

Procedure steps
1. Create new pose

a) Drive to a desired pose inside of the range of the motion
capture system accurately using a Joystick or TOMB

b) Create new accurate pose on web dashboard by
providing a semantic name

• Get reference scan
• Save OptiTrack measurement

2. Run test using the web dashboard (Repeat n times)

a) Navigate to different starting positions randomly
b) Give the robot the task to navigate back exactly to the

manually defined goal pose
c) Capture measurements once robot stops moving

3. Download data

a) Save to a JSON file

• Pose Name
• ICP Transformation estimate
• Reference OptiTrack measurement
• Test OptiTrack measurement

Tab. 5.1.: Test protocol for evaluation
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5.2 Benchmark Pose Accuracy of Odometry-Based
Algorithm

After calibrating the OptiTrack system as de-
scribed above with an excellent rating the ex-
periments were executed. For the tests, the
two poses marked in the map in Figure 5.1
were defined manually. Both move_base and
odometry-based methods were tested with
142 runs. Thereof, 82 were conducted with
the odometry-based method and 60 with the
move_base. In this thesis, we focus on in-
creasing accuracy (trueness and precision).

Improving trueness requires decreasing sys-
tematic errors by getting the mean of the
measurements closer to the actual reference
value, in this case the manual measurement.
In order to get better precision, the amount
of random errors needs to be decreased to
get more closeness between results. Simple
statistical analysis was used to compare the
results of both move_base and the odometry-
based method.

Position Error
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Fig. 5.4.: Scatter and Histogram axis plots of the obtained positioning results at the first reference loca-
tion for the two different methods

Figures 5.4 and 5.5 show a scatter plot of
the positioning error of the robot at the two
different locations. In both Figures, the po-
sitioning error of move_base is shown on
the left side and the odometry-based method
method on the right. In the move_base re-
sult, as can be seen from the graph in both
the Figures there is a systematic error. This

error affects all measurements in the same
way. At the first pose above, most mea-
surements overshot the target and landed
slightly to the left. For the second pose it
also overshot the target but landed slightly
to the right (see histograms for x-axis above
the scatter plot). The common denominator
in this case is the clear overshooting of the
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measurements. There is also some random
error that affects the measurements in an
unpredictable manner. The odometry-based
method does not show such a clear system-
atic error. In Figure 5.5, some overshooting
is noted, however, this is not visible in Fig-
ure 5.4, where the average and mean mea-
surement is on target (although there are
some outliers). There is also random er-
ror in both results, which is seen to reduce
considerably in the results of the right-hand-

sided plots. Random errors will always occur
when doing measurements, however their
magnitude can be minimized. Comparing
the odometry-based method to move_base it
can be said that it has higher precision and
medium trueness meaning that it is more ac-
curate. The odometry-based method is more
accurate from a positional point of view. The
rotational errors are also plotted but barely
visible and are discussed in the next sec-
tion.
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Fig. 5.5.: Scatter and Histogram axis plots of the obtained positioning results at the second reference
location for the two different methods
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Fig. 5.6.: Box plot showing the position accuracy at both target locations using the two methods
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Looking closer at the positional error of both
methods at the two locations in the box plots
in Figure 5.6 it can be seen, that the means
and variances of both methods are clearly
different. There are 6 outliers in the box
plot of the odometry-based method, that lie
in the move_base ranges with two suprass-
ing the means of the move_base method.
A more detailed view of the position error
of the odometry-based method can be seen
in Figure 5.7. We construct Table 5.2 by
computing the measures of central tendency
for both methods using the data of both
locations. The plots in the Appendix A.8
and these measures show that both distribu-
tions have a positive skew, which comes from
the fact that the mean constitutes the most
weight, followed by the median and mode.
This means, that there is a longer tail in the
distribution to the right, which makes the
mean less meaningful than with a symmetri-
cal normal distribution. This skew is marked
in the first location using the move_base
approach, because of some outliers, which
could be due to the small sample size.

The mean, median and mode positional er-
ror is seen to be quartered, and the range
values have nearly been halved using the

odometry-based method. Furthermore, 85%
of positional errors using move_base and
7.3% using the odometry-based method are
greater than 25 mm. The most frequently
occurring position error for move_base is
a mode of 4 cm, compared to 1 cm for that
of the odometry-based method. This can
also be observed in the histogram men-
tioned in the Appendix. Histograms plots
the frequencies of positional square error in
metres. The lack of symmetry as well as
the clear outliers in both samples can also
be observed in the normal quantile-quantile
Q-Q plot mentioned in the Appendix. Be-
cause the ordered data points from our
tests do not match up with the theoreti-
cal quantiles from the normal distribution.
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Fig. 5.7.: Box plot of the detailed position accu-
racy of the odometry-based method

Measure move_base Odometry-based

Mean 4.86 1.24

Median 4.07 0.92

Mode 4.0 1.0

Range Interval [1.73, 13.69] [0.08, 6.71]

Range 11.96 6.63

Variance 0.07 0.01

Standard Deviation σ 2.59 1.12
Tab. 5.2.: Measures of central tendency for position errors
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A way to test if the improvement is signifi-
cant would be by conducting a statistical test.
Due to the lack of symmetry in the normal
distribution (skewness) and the possibility of
outliers this can not be done easily and re-
quires more work. A possible solution to
both problems could be to employ a trans-

formation. Such a transformation applies a
function to every data point, such as a log-
arithm that reduces positive skewness. Re-
moving the outliers in the datasets could be
done by gathering more data, also at other
locations with different orientations.

Rotation Error

In the scatter plots above it was difficult to
grasp the rotation differences of both meth-
ods and compare them. Similar to the box
plot in the previous section for the posi-
tion error, Figure 5.8 shows histograms but
for the rotation error over both target loca-
tions for both methods. For the move_base
method there seems to be a systematic error
towards a left rotation, which is reversed for
the odometry-based method, as most mea-

surements were inclined towards next to the
origin on the right hand side. The rotation er-
ror is seen to be more prominent and wider
spread for the move_base results. While the
values on the left are contained within a
big range interval of [6.30, 2.71] with a total
range of 9.01° as compared to 3.11° on the
right. This range difference also suggests an
improvement regarding random errors when
using the odometry-based method.
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Fig. 5.8.: Histogram of the obtained rotation errors over both reference locations for the two different
methods

The rotation mean, median and mode errors
of both methods are different at the first lo-
cation. Especially the variance at the first lo-

cation is more prominent for the move_base
method. At the second location, the means
are same but the skewness and variance of
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the move_base method is larger. It seems
that there is one outlier present in the box
plot for the move_base method that reports a
rotation error of more than 6 degrees. While
the variance has been divided by 13, the
mean, median and mode are improved by a
factor of 4.5 on average. The most frequently
occurring angular error for the move_base

navigation is a mode of 2.13°, as compared
to 0.28° using the odometry-based method.
This can also be observed in the histogram
in the Appendix A.12. This histogram plots
the frequencies of absolute angular error in
degrees. However, the mean is high for both
methods, the median is much lower.
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Fig. 5.9.: Box plot of the rotation accuracy at both target locations using the two methods

Measure move_base Odometry-based

Mean 2.05 0.61

Median 1.27 0.49

Mode 2.13 0.28

Range Interval [−6.30, 2.71] [−2.08, 1.03]

Range 9.00 3.11

Variance 3.21 0.24

Standard Deviation σ 1.79 0.49
Tab. 5.3.: Measures of central tendency for rotation errors

Comparing the methods using a 1.5° rota-
tion error, we get a total of 45% of rota-
tions that were bigger than the threshold
for move_base. Using the same threshold
for the odometry-based method yields a per-

centage rise by 6.1%. The distributions seen
from the viewpoint of the histogram is less
skewed than the ones in the position error
plot. Although looking at the Q-Q plots
in 5.11 and 5.12 we can clearly see the non-
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linearity in the move_base distribution, the
odometry-based method seems to fit more
nicely to the quantiles of a normal distribu-
tion. The odometry-based method seems to
have some skewness to the right and a thin
tail, which can be seen in the Q-Q plot 5.12
as well. Therefore, it also requires more
work to get a powerful test without violating
a distribution assumption.
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Fig. 5.10.: Box plot showing the detailed rota-
tion accuracy of the odometry-based
method
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Fig. 5.11.: Normal Q-Q plot comparing rotation
errors from move_base on the verti-
cal axis to theoretical quantiles
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Fig. 5.12.: Normal Q-Q plot comparing rotation
errors from odometry-based method
on the vertical axis to theoretical
quantiles

Discussion of Results

Both the position and rotation error is seen
to improve for both trueness and precision,
which results in an overall better accuracy
using the odometry-based method. Both ac-
curacy goals of 1° and 1 cm could not suc-
cessfully be achieved. Although the require-
ments could not be achieved in this work,
the improvements are considerable. The
experimental evaluation in a industrial set-
ting achieves a position error below 25 mm
in 92.7%, and a rotation error below 1.5°

in 93.9% of the tests. Although the signifi-
cance of the improvement could not be sta-
tistically shown in this thesis due to skewed
data and some possible outliers, the results
show an improvement in both trueness and
precision, which leads to an overall more ac-
curate positioning. Furthermore, by using
the pose graph-based approach for localiza-
tion, we avoid manual teach-in of static ref-
erence scans that can degenerate in dynamic
environments over time.
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In oder to show a statistical significant
improvement using the odometry-based
method over the standard navigation stack
requires some further statistical analysis.
More experimental evaluation has to be
done in order to determine how the meth-
ods can handle obstruction of the sensor and
moving objects. The same experimental eval-
uation should also be carried out with other
robotic platforms, especially robots with dif-
ferential drives.

While testing we observed a possible bene-
fit in the localization when driving further

backwards as this would provoke a jump in
the odometry pose, which probably is a cor-
rection from the pose-graph localization. An-
other benefit of driving further back is that
the amount of rotation is reduced. In turn
this could increase the error induced by the
small amount of error that can happen when
matching the angle to the goal, which ide-
ally should be below 1 mrad but is not guar-
anteed. This needs to be investigated further
and could lead to a improved version of the
odometry-based algorithm.

5.2 Benchmark Pose Accuracy of Odometry-Based Algorithm 99





Conclusion 6
This thesis project was undertaken to design
and implement an extensible architecture for
mobile robot navigation and evaluate the po-
sitioning accuracy of the complete system. It
was expected, that the errors lie somewhere
over 5 cm positioning and 1 rad rotational er-
ror, which can lead to process failures. Using
the insights gained during design and imple-
mentation, the second goal of this thesis was
to propose an algorithm that improves the
final positioning accuracy and is able to han-

dle changing environments. To show that
the proposed algorithm improves the final
positioning accuracy of the robot navigation
an empirical experiment was conducted and
discussed.

In this last chapter, the proposals and evalua-
tions are discussed in retrospect. This allows
to summarize the thesis project by discussing
the achieved successes and what could be im-
proved in future projects.

6.1 Summary of Thesis Findings

The proposed solution architecture in Chap-
ter 3 has been designed and implemented
with the architectural forces in mind. The
forces were defined by defining the context
of the system, stating its vision and func-
tional requirements, and identifying the con-
straints of the environment. Most impor-
tantly, the quality attributes modifiability, us-
ability and testability to be addressed were
specified using scenarios to indicate the sys-
tem’s satisfaction of the stakeholders needs.
For the solution architecture we then ana-
lyzed the robotic agents’ task environment
specification and specified requirements and
agent types to get an appropriate architec-
ture for navigation with final fine position-
ing. This appropriate Mobile Base Task Con-
trol Pipeline Architecture combines delibera-

tive planning with reactive control in a lay-
ered hybrid approach, where multiple pro-
cesses are executed in parallel.

After specifying the robotic agent and its en-
vironment, the architectural style micro ser-
vices was chosen, mainly because of the pos-
itive consequences of the system subdivision.
While this decision lead to a considerable
time investment, in order to initially set up
all the nitty-gritty1 of this elaborate and dis-
tributed architecture, it payed off in impor-
tant system qualities. The required quality
attributes specified have then been achieved
using tactics that were implemented in the
system in order to achieve the quality goals
specified earlier. All of the chosen tactics
guided to a set of architectural decisions, out

1The specific practical details
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of which the most important ones were dis-
cussed in detail.

The individual subsystems and individual
components are explained using different
views at varying levels of abstraction and
from different perspectives. These perspec-
tives show the divisions of the system (build-
ing block view), the behavior of important
building blocks (runtime view) and differ-
ent deployment (deployment view) strategies.
Important interfaces and API’s built are doc-
umented in detail. Four exensibility exam-
ples for the architecture are given, that mod-
ify or add behavior to the system. Along
the way, technology decisions that had to be
considered, which are documented together
with the rationale. The architecture proposal
finishes by showing the DevOps toolchain
set up in the infrastructure of the Enterprise
Lab, which enables CI/CD that automates
the process of software testing, building and
delivery, and also if needed infrastructure
changes. Using this infrastructure and the
containerized simulation solution, a devel-
oper can develop and test components lo-
cally in the simulator. Once a coding in-
crement is done and the code committed to
the repository, it gets deployed on the real
robot.

This solution architecture for mobile robot
navigation yields a robust navigation strat-
egy that uses social navigation layers to plan
paths from a starting to a target pose. These
social navigation layers give the robot a
more friendly behavior following the general
preferences of human-robot interaction. To
improve the final pose accuracy of mobile
robots an algorithm for precise positioning
at semantic poses based on the pose-graph
localization is proposed in Chapter 4. This

method improves the final pose accuracy of
the standard navigation stack, which defines
a 5 cm and 1 rad tolerance. The proposed al-
gorithm converges an odometry pose with an
goal pose using only minimal rotation and
lateral movements in x direction, to be com-
patible with differential drive robots. During
implementation an error with the laser scan-
ner in use has been identified and fixed in a
pull request that was submitted to the official
driver GitHub repository.

Because of drift and estimation errors the
proposed fine adjustment algorithm was
evaluated experimentally in Chapter 5 using
an external measurement system. The used
evaluation methodology together with the
proposed navigation solution architecture al-
lows repeatable reproducibile results. Due
to time constraints, only the positioning er-
ror of the robot was determined. Evaluation
of the position error using the translational
error in the x, y-plane yielded improvements
in both trueness and precision. Achieving a
positional error below 25 mm in 92.7% of the
tests. The range of the position error was al-
most halved compared to the standard navi-
gation. As for the rotational error, the angle
difference in degrees was used. The results
for rotation yielded better results, as 93.9%
of the rotations ended up being less than 1.5°
off. The range of the rotation error was al-
most divided by 3 compared to the standard
navigation. There seem to be some outliers
present in both errors, which increase the
range intervals.

The position error of the standard navigation
stack was determined to be below 13.69 cm,
but at best 1.73 cm. As for the rotation error,
the standard navigation achieved all poses
with under 6.3° error. The odometry-based
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strategy achieved all positions below 6.71 cm,
and at best with 0.08 cm. For the rotation er-
ror, it achieved all poses with a maximum
error of 2.08°.

Compared to the results of [3] both errors
seems rather large. However, it does not re-
quire to use a static reference scan and in-

stead the desired outcome is achievable by
updating the pose graph-approach continu-
ously. Also, there are some limitations of
the integrated platform that does not pro-
vide an IMU reading, nor a second laser scan-
ner. The proposed algorithm works not only
for holonomic wheel drives, but for all mo-
bility types.

6.2 Future Work

The proposed solution architecture from
Chapter 3 only lays a solid ground work to
build upon. Although the system was de-
signed as a generic solution for mobile robot
navigation, it has only been deployed on the
Mobility Base so far. For future work, we
want to deploy it to other platforms that pro-
vide different sensors, such as 3D lidars or
3D cameras and different types of mobility
types. Because of the modifiability and testa-
bility qualities of the architecture and sup-
port for rapid prototyping or template con-
tainers, the addition and evaluation of new
sensors should be doable in one day.

This thesis has provided a deeper insight into
the pose accuracy of a default ROS naviga-
tion stack designed using state-of-the-art al-
gorithms. An ICP-based pose graph approach
for simultaneous localization and mapping
brings two major benefits from lifelong and
continuous mapping to precise optimization-

based localization. Future research should
evaluate the accuracy of the localization sys-
tem and compare it to the positioning error,
in order to determine how well this system
can estimate its own pose. Such an anal-
ysis provides insight into the limitations of
the low-level controllers of the platform, sim-
ilar to what [3] did. This should be a rather
straight forward analysis, as most of the
data is already captured. Furthermore, the
impact of backwards movement along the
x-axis should be investigated by extending
the odometry-based strategy. This extended
strategy should always perform that back-
wards movement for a greater distance and
it should then be analyzed if that helps to im-
prove the odometry-like localization. Finally,
the SLAM system will be extended by fusing
3D cameras and an IMU with the laser scan-
ner and see how much of an improvement
this brings towards a better localization and
positioning.
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Fig. A.1.: Related work analysis for pose accuracy with laser and wireless receivers
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Fig. A.2.: Related work analysis for pose accuracy with 2D/3D Cameras
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A.2 Guiding Quality Design Decisions: Design Checklists
A.2.1 Modifiability

This checklist supports the design and analy-
sis process for modifiability.

Allocation of Responsibilities

Determine which changes or categories
thereof are likely to occur. To make that
change,

• which responsibilities would need to
be added, modified or deleted?

• what responsibilities need to be consid-
ered for impact?

Add 3D Mapping or Gesture Control Re-
quires some responsibilities that need to be
added to the ROS environment. Defined in-
terfaces would not change. No other respon-
sibilities are affected by that change.

Change Navigation Behavior Requires to
modify only responsibilities in the ROS node
move_base. Defined interfaces would not
change. No other responsibilities are af-
fected by that change.

Improve Fine Adjustment at Target Pose Re-
quires to modify only responsibilities in the
ROS node accuracy. Defined interfaces
would most likely not change. Depending on
what the improved algorithm needs as addi-
tional data. No other responsibilities are af-
fected by that change.

Coordination Model

Which functionality or quality attribute can
change at runtime? How does it affect coor-
dination?

Only information being communicated can
change at runtime over the fixed defined in-
terfaces and communication protocols.

Which devices, protocols and communica-
tion paths for coordination are likely to
change?

The platform on which NavAjust runs can
change as well as the deployment structure.
This requires a coordination model that re-
duces coupling, such as dynamic lookup of
modules, masking interface identity changes,
convert syntax of a service into another form,
removing producer’s knowledge of its con-
sumers and defer binding to as late as possi-
ble.

• Reducing coupling: Use an intermedi-
ary

– Dynamic lookup of modules: soft-
ware defined networking adds
deployment flexibility (Docker
SDN)

– Masking interface identity
changes: broker to make connec-
tion between modules (ROS Mas-
ter)

– Convert syntax of a service into
another form: prevent changes
from inside ROS environment to
propagate out (ROSBridge)
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– Removing producer’s knowl-
edge of its consumers: publish-
subscribe wherever possible (ROS
Topics, MQTT)

• Defer binding to as late as possible:

– Configuration files at deployment
time (Environment Variables)

– Startup time binding of values
(Docker/Docker-Compose)

Data Model

Which changes can occur to the data ab-
stractions, operations and their properties?
Which changes involve the creation, initial-
ization, persistence, manipulation, transla-
tion, or destruction of data abstractions?

Add 3D Information to Point Cloud Data for
Known Poses This change would be made
by a developer. The change would involve
switching from 2D to 3D point clouds. For
the point cloud representation, Point Cloud
Library Format PCD, was chosen in version
0.7 (PCD_V7) for the JSON database, which
specifies a point cloud using a header that
identifies and declares certain properties of
the point cloud data. PCD can already store
n-D point clouds. Other formats such as
PLY, STL, OBJ, X3D and many others do not
offer the flexibility and speed of PCD files.
The data abstractions can be left unchanged.
Only the algorithm in the accuracy ROS node
would be affected.

Mapping among Architectural Elements

The current mapping of functionality to com-
putational elements (e.g. processes, threads,
processors) is at runtime. Some execution
dependencies are present in the ROS en-
vironment. The ROS environment can be
seen as a data transformation and control
pipeline. Data that comes from the sensors
is processed and mapped to internal mod-
els. Decisions are made based on that mod-
els and a users goals, and converted into mo-
tion controls. Adding, deleting or modifying
a node inside that chain therefore needs care-
ful consideration.

Resource Management

Adding 3D Mapping or Gesture Control might
require more graphical processing resources.
In case of this requirement, the system or sin-
gle modules can be moved to a more pow-
erful computer, as all modules are encapsu-
lated and bindings are deferred to an extent
that allows different deployments. Network
resources have to be checked, if big amounts
of data or time-critical data is transferred.

Binding Time

Each foreseen change that adds adds the
functionality mentioned or changes the fine
adjustment without changing the interfaces
can be made at runtime.
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Choice of Technology

The modifications are made easier by the
technology choices ROS, Docker, MQTT,
OpenAPI. ROS, MQTT and OpenAPI are
open standards. Docker furthermore allows
relocatable containers that can be rebuilt
anytime and deployed at a whim, which is
critical to protect from vendor lock-in.

A.2.2 Usability

This checklist supports the design and analy-
sis process for usability.

Allocation of Responsibilities

Additional system responsibilities have been
allocated to assist the user in

• learning how to use the system
• efficiently achieving the task at hand
• adapting and configuring the system
• recovering from user and system errors

Change User Interface Separating the user
interface aids in rapid UI prototyping and
facilitate experimentation with UI. An API
gateway as a single entry point for clients
handles requests in two ways.

Coordination Model

How do the system coordination properties
timeliness, currency, completeness, correctness
and consistency affect the user?

Long-running events should be canceled in-
stantly if a user choses to abort the task.

Data Model

Determine the major data abstractions that
are involved with user-perceiveable behav-
ior.

The data abstractions are designed to sup-
port cancel and aggregate operation. Cancel
operation for long-running navigation and
exploration tasks. In order to avoid repeti-
tive actions of the user, an aggregate oper-
ation to delete multiple not needed known
poses is abstracted. No need for an undo op-
eration could be envisioned in the system.

Mapping among Architectural Elements

For the end user the architectural elements
seem to be cloud-based and should not affect
the ways in which the user interacts with the
system.

Resource Management

The user is not able to adapt or configure the
system’s use of resources.

Binding Time

The user can decide at run-time the system’s
deployment strategy and configuration.
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Choice of Technology

The usability is made easier by separating
the different UIs from the rest using an ng-
inx API Gateway. HoloLens and VueJS are
specifically designed with usability in mind
by experts in the field. Measurment results
are outputted as JSON for increased compat-
ibility with analysis tools.

A.2.3 Testability

This checklist supports the design and analy-
sis process for testability.

Allocation of Responsibilities

All system responsibilities are to be tested on
their own. The most critical system responsi-
bilities that need to be most thorougly tested
are all related to the pose accuracy subsys-
tem. Allocation of additional responsibilities
for:

• execution of test suite
• log all activities that could lead to a

fault or unexpected behavior
• control and observe relevant system

state for testing

Testing modules Provide templates to
self-test different module types such as
ROS Nodes (Python3.6, C++11) or pure
Python3.6 services using unit tests. Isola-
tion of modules is key, to exclude external
influences.

Testing Pose Accuracy with Navigation
Goes hand-in-hand with modifiability to
make sure that the allocation of function-
ality provides high cohesion, low coupling,
strong separation of concerns, and low struc-
tural complexity. This allocation of function-
ality comes as an external test that requires
a user to manually define a precise pose to
be re-created in N runs. The test suite then
drives to different locations in known map
randomly and tries to re-create the manuelly
defined pose as accurately as possible.

Coordination Model

Coordination and communication mecha-
nisms for the system support the execution
of the test suite and capture the results
within a system. Activity that resulted in a
fault within a system are captured in log files
of the concerned module (container logs).
Injection and monitoring of state into the
communication channels within a system is
supported by echoing ROS topics or message
queues. The mechanisms do not introduce
needless nondeterminism.

Data Model

Modules should get and produce data as de-
fined by their interfaces. Data abstractions
for the known pose API, final measurement
data, the localization estimations and naviga-
tion paths are the data abstractions that have
to be tested in order to ensure correct opera-
tion of the system. All these values are cap-
turable and injectable into the system, such
that a fault may be recreated (Record/play-
back ROS bag, Measurements and Known
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Poses as JSON output). Also, all creation, ini-
tialization, persistence, manipulation, trans-
lation and destruction of instances of these
data abstractions can be exercised and cap-
tured.

Mapping among Architectural Elements

Possible mapping of architectural elements
not considered.

Resource Management

Sufficient resources to execute the test suite
and capture the results is available if the sys-
tem can run on the deployed hardware. The
test environment has to be representative of
the environment in which the system will
run.

Binding Time

Modules that are bound at runtime can be
tested in that late-bound context. Late bind-
ings can be captured in the log files of the
concerned module.

Choice of Technology

ROS with Gazebo and Docker as Technolo-
gies allows sandbox testing. Using such a
virtualized resource that simulates the imor-
tant aspects of the real world system offers
the benefit of building a version of the re-
source whose behavior is under the devel-
opers control. Virtualization provides the
ability to operate the system that it has no
permanent consequences or that any conse-
quences can be rolled back. JSON as data-
interchange format allows humans to read
and write and machines to parse and gener-
ate data easily.
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A.3 Cohesion Analysis

A.3.1 Known Pose API

“This module’s purpose is to provide known
poses to various clients by gathering the
robot current state and sensor readings.”

This module has following cohesion bind-
ings

1. compound sentence: sequential, due
to a particular order to be used when
adding a pose and gathering current
state and sensor readings

2. words relating to time: none
3. sentence predicate without object:

gathering different objects has func-
tional binding because there is a coop-
eration of 2 elements to carry out a sin-
gle function

4. No temporal binding

A.3.2 Web Dashboard
Application

“This module’s purpose is to serve the UI
to the administrator to create and evaluate
semantic poses, and see the robot current
state.”

This module has following cohesion bind-
ings

1. compound sentence: sequential, due
to a particular order to be used when
evaluating a pose

2. words relating to time: none

3. sentence predicate without object:
none

4. No temporal binding

A.3.3 Accuracy ROS Node

“This module’s purpose is to perform a quali-
tative fine adjustment after reaching the tar-
get pose of a mobile robot.”

This module has following cohesion bind-
ings

1. compound sentence: none
2. words relating to time: after reaching

the target pose has sequential binding
3. sentence predicate without object:

none
4. No temporal binding

A.3.4 Pose Evaluator

“This module’s purpose is to compute the
positional and rotational error of the final
pose.”

This module has following cohesion bind-
ings

1. compound sentence: none, positional
and rotation error has no sequence

2. words relating to time: after reaching
the target pose has sequential binding

3. sentence predicate without object:
none

4. No temporal binding
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A.4 Detailed Architectural Views

Fig. A.3.: Context Diagram shows how the software system in scope fits into the world around it
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A.5 More Web Dashboard Screenshots

Fig. A.7.: Starting an accuracy measurement
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Fig. A.8.: Dashboard ROS Topics
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A.5.1 Accuracy Tests UI

Fig. A.9.: Scatter Plot for OptiTrack measurements
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Fig. A.10.: Computed position and rotation error
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A.6 Tutorials

A.6.1 LifeLong Mapping Using slam_toolbox

Extensive 2D SLAM library for creating and maintaining mobile robot navigation maps. Check
out the project on GitHub for more information.

Introduction This project creates a Docker images to be used in any environment. It was
originally built for the Mobility Base for Baxter but should be easily portable to other platforms
using the provided image and compose files.

Clone the repository using git and build the image using

1 docker build -t ros -slam - toolbox .

Listing A.1: Build Docker image for slam_toolbox

Use It in Your Compose To use this node in conjunction with the rest of the environment add
it to the same network. Define the dependencies of the node, which usually should be some
odometry source. Further, to be able to (de-)serialize maps create and add a volume to the
node. Also give some names and set the ROS environment variables. Finally, run the lifelong
mapping node using the shell script provided in the container or create your own.

1 ros -slam - toolbox :
2 image : ros -slam - toolbox : latest
3 depends_on :
4 - ros -odom
5 container_name : ros -slam - toolbox
6 hostname : ros -slam - toolbox
7 networks :
8 - ros - overnet
9 environment :

10 - ROS_HOSTNAME =ros -slam - toolbox
11 - ROS_MASTER_URI =http://ros - master :11311
12 volumes :
13 - maps:/root /. ros/
14 command : /run - shells / lifelong .sh

Listing A.2: YAML config for running the image
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Serializing a Map Serializing a map to the file system can be done by simply calling the ROS
service /slam_toolbox/serialize_map with a file name as argument.
NOTE: Set a known pose as a dock where SLAM starts

1 rosservice call / slam_toolbox / serialize_map map_name

Listing A.3: Call serialization service with map name

Deserializing a Map Deserialize a map from the file system by calling the ROS service
/slam_toolbox/deserialize_map with the following YAML definition.

1 {
2 filename : map_name ,
3 match_type : 2,
4 initial_pose :
5 {
6 x: 0.0,
7 y: 0.0,
8 theta : 0.0
9 }

10 }

Listing A.4: YAML config for deserializing a specified map

Call map deserialization using a approximate starting location defined as dock using the match
/ process type PROCESS_NEAR_REGION from the enumeration type ProcessType.

1 enum ProcessType
2 {
3 PROCESS = 0,
4 PROCESS_FIRST_NODE = 1,
5 PROCESS_NEAR_REGION = 2,
6 PROCESS_LOCALIZATION = 3
7 };

Listing A.5: ENUM of ProcessType

This will localize the mobile base near the initial pose provided and apply scan matching using
the actual laser scans. The mapping will continue from this pose in the graph.
NOTE: Fill in a previously saved known pose as a dock for SLAM starts

1 $ rosservice call / slam_toolbox / deserialize_map \
2 "{ filename : map_name , match_type : 2, \
3 initial_pose : {x: 0.0, y: 0.0, theta: 0.0}}"

Listing A.6: Call deserialization service with yaml config
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Tuning move_base

1 GlobalPlanner :
2 old_navfn_behavior : false
3 use_quadratic : true
4 use_dijkstra : true
5 use_grid_path : false
6

7 allow_unknown : true
8

9 planner_window_x : 0.0
10 planner_window_y : 0.0
11 default_tolerance : 0.0
12

13 publish_scale : 100
14

15 lethal_cost : 253
16 neutral_cost : 66
17 cost_factor : 0.55
18 publish_potential : true

Listing A.7: GlobalPlanner configuration

1 DWAPlannerROS :
2 # Robot Configuration Parameters
3 max_vel_x : 1.0
4 min_vel_x : -0.5
5

6 max_vel_y : 0.0
7 min_vel_y : 0.0
8

9 # The velocity when robot is moving in a straight line
10 max_trans_vel : 1.5
11 min_trans_vel : 0.11
12

13 max_rot_vel : 2.75
14 min_rot_vel : 1.37
15

16 acc_lim_x : 1.75
17 acc_lim_y : 0.0
18 acc_lim_theta : 3.2
19

20 # Goal Tolerance Parametes
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21 xy_goal_tolerance : 0.05
22 yaw_goal_tolerance : 0.1
23 latch_xy_goal_tolerance : false
24

25 # Forward Simulation Parameters
26 sim_time : 1.5
27 vx_samples : 20
28 vy_samples : 0
29 vth_samples : 40
30 controller_frequency : 10.0
31

32 # Trajectory Scoring Parameters
33 path_distance_bias : 32.0
34 goal_distance_bias : 20.0
35 occdist_scale : 0.02
36 forward_point_distance : 0.325
37 stop_time_buffer : 0.2
38 scaling_speed : 0.25
39 max_scaling_factor : 0.2
40

41 # Oscillation Prevention Parameters
42 oscillation_reset_dist : 0.05
43

44 # Debugging
45 publish_traj_pc : true
46 publish_cost_grid_pc : true

Listing A.8: Dynamic Window Approach DWA local planner configuration

1 TebLocalPlannerROS :
2 odom_topic : odom
3 map_frame : map
4

5 teb_autosize : True
6 dt_ref : 0.3
7 dt_hysteresis : 0.1
8 min_samples : 3
9 global_plan_overwrite_orientation : True

10 global_plan_viapoint_sep : 0.5
11 max_global_plan_lookahead_dist : 3.0
12 force_reinit_new_goal_dist : 1.0
13 feasibility_check_no_poses : 5
14 publish_feedback : false
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15 shrink_horizon_backup : true
16 allow_init_with_backwards_motion : true
17 exact_arc_length : false
18 shrink_horizon_min_duration : 10
19

20 max_vel_x : 1.2
21 max_vel_x_backwards : 1.0
22 max_vel_theta : 1.0
23 max_vel_y : 0 # not used, is differential
24 acc_lim_y : 0 # not used, is differential
25 acc_lim_x : 0.2
26 acc_lim_theta : 0.2
27 min_turning_radius : 0.0
28 wheelbase : 0.0 # not used, is differential
29 cmd_angle_instead_rotvel : false # not used, is differential
30 footprint_model :
31 type: " polygon "
32 vertices : [[0.5, 0.5],[-0.5, 0.5],[-0.5, -0.5],[0.5, -0.5]]
33

34 xy_goal_tolerance : 0.05
35 yaw_goal_tolerance : 0.1
36 free_goal_vel : False #False
37

38 min_obstacle_dist : 0.435
39 include_costmap_obstacles : True
40 costmap_obstacles_behind_robot_dist : 1.0
41 obstacle_poses_affected : 30
42 inflation_dist : 0.7
43 legacy_obstacle_association : false
44 obstacle_association_force_inclusion_factor : 1.5
45 obstacle_association_cutoff_factor : 5.0
46 costmap_converter_plugin : " costmap_converter ::

CostmapToPolygonsDBSMCCH "
47 costmap_converter_spin_thread : True
48 costmap_converter_rate : 5
49

50 no_inner_iterations : 5
51 no_outer_iterations : 4
52 optimization_activate : True # optimize
53 optimization_verbose : False
54 penalty_epsilon : 0.1
55 weight_max_vel_x : 1
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56 weight_max_vel_y : 0
57 weight_max_vel_theta : 1
58 weight_acc_lim_x : 1
59 weight_acc_lim_y : 0
60 weight_acc_lim_theta : 1
61 weight_kinematics_nh : 10000 # is a nonholonomic robot
62 weight_kinematics_forward_drive : 10
63 weight_kinematics_turning_radius : 1
64 weight_optimaltime : 10
65 weight_obstacle : 50
66 weight_inflation : 1
67 weight_viapoint : 1
68 weight_adapt_factor : 2
69

70 enable_homotopy_class_planning : False
71 simple_exploration : False
72 enable_multithreading : True
73 max_number_classes : 4
74 selection_cost_hysteresis : 1.0
75 selection_obst_cost_scale : 4.0
76 selection_viapoint_cost_scale : 1.0
77 selection_alternative_time_cost : False
78 roadmap_graph_no_samples : 15
79 roadmap_graph_area_width : 6
80 h_signature_prescaler : 1.0
81 h_signature_threshold : 0.1
82 obstacle_heading_threshold : 0.45
83 roadmap_graph_no_samples : 15
84 roadmap_graph_area_width : 5
85 obstacle_keypoint_offset : 0.1
86 visualize_hc_graph : False

Listing A.9: Timed Elastic Band TEB local planner configuration

1 global_frame : /map
2 robot_base_frame : / base_footprint
3

4 obstacle_range : 8.0
5 raytrace_range : 8.0
6 footprint : [[0.5, 0.5], [-0.5, 0.5], [-0.5, -0.5], [0.5, -0.5]]
7

8 update_frequency : 5.0
9 publish_frequency : 1.0

142 Appendix A Appendix



10 transform_tolerance : 10.0
11

12 resolution : 0.05
13

14 static_layer :
15 map_topic : /map
16 # subscribe_to_updates : true
17 unknown_cost_value : 99
18 # track_unknown_space : true
19 lethal_cost_threshold : 150
20 trinary_costmap : true
21

22 # robot_radius = ir_of_robot
23

24 obstacle_layer :
25 observation_sources : laser_scan_sensor
26 unknown_threshold : 15
27 mark_threshold : 0
28 combination_method : 1
29 track_unknown_space : false # true needed for disabling

global path planning through unknown space
30 obstacle_range : 4.0
31 raytrace_range : 5.0
32 laser_scan_sensor : {
33 sensor_frame : laser_birdcage_r 2000,
34 data_type : LaserScan ,
35 topic : laser_birdcage_r 2000/ scan_filtered ,
36 marking : true,
37 clearing : true
38 }
39

40 inflation_layer :
41 cost_scaling_factor : 2.58 #1 #2.58
42 inflation_radius : 1.75
43

44 proxemic_layer :
45 amplitude : 150.0
46 covariance : 0.3
47 factor : 7.0
48 passing_layer :
49 enabled : false

Listing A.10: Common Costmap Parameters
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1 global_costmap :
2 global_frame : /map
3 robot_base_frame : / base_footprint
4 update_frequency : 2.0
5 publish_frequency : 1.0
6 map_type : costmap
7 static_map : false
8 rolling_window : true
9 width : 70.0

10 height : 70.0
11 always_send_full_costmap : true
12

13 plugins :
14 - {name: static_layer , type: " costmap_ 2d:: StaticLayer "}
15 - {name: obstacle_layer , type: " costmap_ 2d:: ObstacleLayer "}
16 - {name: inflation_layer , type: " costmap_ 2d:: InflationLayer "}
17 - {name: proxemic_layer , type: " social_navigation_layers ::

ProxemicLayer "}
18 - {name: passing_layer , type: " social_navigation_layers ::

PassingLayer "}

Listing A.11: Global Costmap

1 local_costmap :
2 global_frame : /odom
3 robot_base_frame : / base_footprint
4 update_frequency : 5.0
5 publish_frequency : 2.0
6 static_map : false
7 rolling_window : true
8 width : 6.0
9 height : 6.0

10 resolution : 0.05
11

12 plugins :
13 - {name: obstacle_layer , type: " costmap_ 2d:: ObstacleLayer "}
14 - {name: inflation_layer , type: " costmap_ 2d:: InflationLayer "}
15 - {name: proxemic_layer , type: " social_navigation_layers ::

ProxemicLayer "}
16 - {name: passing_layer , type: " social_navigation_layers ::

PassingLayer "}

Listing A.12: Local Costmap
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A.7 Infrastructure Resources

Contributed Source Code Resources

The code is managed with Gitlab (https://gitlab.enterpriselab.ch) of the Enterpriselab. All com-
ponents are categorized in different GitLab Groups and subcomponents are stored in different
GitLab Projects.

Project URL

ROS Indigo Subgroup for ROS Indigo based projects (these are old projects, as I moved
to ROS Kinetic).
Contains 16 Git projects from containerized drivers and simulation
environments to different SLAM approaches and custom built ROS nodes.
The whole navigation stack in ROS Indigo with various configurations.
https://gitlab.enterpriselab.ch/mt-kawa/ros-indigo-mb-docker

ROS Kinetic Subgroup for ROS Kinetic based projects.
Contains 17 Git projects from containerized drivers and simulation
environments to different SLAM approaches and custom built ROS nodes.
The whole navigation stack in ROS Kinetic with various configurations.
https://gitlab.enterpriselab.ch/mt-kawa/ros-kinetic-mb-docker

Message
Definitions

Subgroup for ROS message definitions.
Contains 2 Git project defining message definitions that are used with the
custom built ROS nodes such as Accuracy and a Known Pose Converter.
https://gitlab.enterpriselab.ch/mt-kawa/ros-kinetic-mb-docker

Web Frontends Subgroup for web frontends containing 2 Git projects for different
interfaces.
https://gitlab.enterpriselab.ch/mt-kawa/web-frontends

Proxies Subgroup for proxy configuration containing 1 Git project.
https://gitlab.enterpriselab.ch/mt-kawa/proxies

Templates Subgroup containing 2 templates for ROS Kinetic and Indigo integrated
with Python and C++.
https://gitlab.enterpriselab.ch/mt-kawa/ros-templates

Rapid
Prototyping

Subgroup for enabling rapid prototyping using 4 different Jupyter
Notebook integrations.
https://gitlab.enterpriselab.ch/mt-kawa/rapid-prototyping

Tools Subgroup for simulation tools such as a containerized blender OBJ to
gazebo DAE file converter. This is handy to convert models and worlds
designed with a more appropriate tool such as Blender and import them
into the Gazebo Simulator.
https://gitlab.enterpriselab.ch/mt-kawa/simulation-environment
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Project URL

Tab. A.1.: Source code resources

Artifacts

The artifacts for the thesis as Python Package Index PyPI or Node Package Manager NPM pack-
ages are stored in the corresponding public artifact repositories. All artifacts are BSD licensed,
which make them easier to reuse, especially in the development environment and Continuous
Integration / Continuous Deployment CI/CD chain.

Project URL

Known Pose
Clients

Generated Python client publicly available on Python Package Index PyPI
https://pypi.org/project/known-pose-client

Generated JavaScript client publicly available on Node Package Manager
NPM
https://www.npmjs.com/package/known-pose-client

Other clients for java, csharp on GitLab
https://gitlab.enterpriselab.ch/mt-kawa/api-clients

Server stubs for the Known Pose API on GitLab
https://gitlab.enterpriselab.ch/mt-kawa/api-servers

Tab. A.2.: Artifact resources

Docker Images

Project URL

Docker Registry 51 Docker images hosted in the Docker Registry of the Enterprise Lab
available at repohub.enterpriselab.ch:5002/kawa. There are 7 out of those
51 that are variation of the original image used to differentiate
environments and configurations.
List of all Docker images

Tab. A.3.: Docker images
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API Documentation

REST APIs are documented using the OpenAPI 3 specification. The documentation is hosted
publicly on SwaggerHub https://app.swaggerhub.com/apis/kw90/known-pose-api/1.1.0. The
Documentation shows the available operations of the API as well as the defined schema. This
documentation allows to generate client SDKs and server stubs for nearly all thinkable lan-
guages.

Thesis Documentation

Documentations like this thesis and various presentations can be found in the mt-docs group
at https://gitlab.enterpriselab.ch/mt-kawa/mt-docs.

Project URL Technologies

Thesis Project for this thesis. Project adds filters for PlantUML
diagrams, pandoc (for markdown) and watchexec to
rebuild latex when changes are saved to file. This thesis
build on the CleanThesis theme.

CleanThesis 0.4.0
Pandoc 2.7.2
TexLive 2019
Docker 19.03.5

Intermediate
Presentation

Project for making presentations fastly using markdown
then using Pandoc to convert it to a nice LaTeX Beamer
presentation. Supports PlantUML, GanttCharts, revealjs,
and other plugins. Can also be used to create LaTeX
documents using simple markdown syntax.

Pandoc 2.7.2
TexLive 2019
Docker 19.03.5

Tab. A.4.: Documentation resources

Container Runtime

The configurations for the desired deployment tool, which for this thesis was simply Docker-Compose
are defined for multiple scenarios. These configurations become complex rather quickly for
multipart applications. For simulation environments, a script is provided to forward the display
environment inside virtual containers. Different platforms require different runtime configura-
tions. Therefore, different repositories were created in this thesis for simulation and real-world
scenarios.

A.7 Infrastructure Resources 147

https://app.swaggerhub.com/apis/kw90/known-pose-api/1.1.0
https://gitlab.enterpriselab.ch/mt-kawa/mt-docs


Project URL Technologies

MB Robot
Runtime

Project hosting all docker-compose
configurations for navigation and exploration
using different algorithms, lifelong mapping
and forwarding the robots desktop using a
browser based VNC solution. This is for the
real robot.
https://gitlab.enterpriselab.ch/mt-kawa/ros-
kinetic-compose/ros-kinetic-mb-sim-compose

Docker-Compose 1.25.0
Docker 19.03.5

Simulation
Runtime

Project hosting all docker-compose
configurations for navigation and exploration
using different algorithms, lifelong mapping
and forwarding the host display inside a
container environment. This is for simulating a
robot on a powerful machine.
https://gitlab.enterpriselab.ch/mt-kawa/ros-
kinetic-compose/ros-kinetic-robot-compose

Docker-Compose 1.25.0
Docker 19.03.5

ROS Indigo GitLab Group containing 3 Runtimes for ROS
Indigo (Deprecated).
https://gitlab.enterpriselab.ch/mt-kawa/ros-
indigo-compose

Docker-Compose 1.25.0
Docker 19.03.5

Tab. A.5.: Container runtime resources

DevOps

Updating the API Specification Updating the Spec and with it the Client SDKs as well as Server
Stubs works as follows

1. Edit the yaml at SwaggerHub for convenience and validation and save the changes
2. Export or copy the yaml and replace the openapi.yaml in this project
3. Commit and push the changes to the repository
4. Magic
5. Find the client SDKs and server stubs over at the api-clients/mrk40-known-poses-clients

project
6. Merge Branch SwaggerHub with the master branch to pull the clients built over there
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The magic is actually the swagger-codegen-cli1 that generates the defined client SDKs de-
fined in the CI/CD chain of that specific project. The official image from OpenAPI doesn’t allow
easy calling in a CI environment like Gitlab CI. The image contributed in the GitLab project
swagger-codegen-cli here allows exactly that. To do that it gets the swagger-codegen-cli.jar
maven artifact from Swagger and mounts volumes from the container to the host.
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Fig. A.11.: Histogram position error move_base
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Fig. A.12.: Histogram rotation error move_base
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Fig. A.13.: Histogram position error odometry-
based method
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Fig. A.14.: Histogram rotation error odometry-
based method

1Found at https://gitlab.enterpriselab.ch/mt-kawa/api-docs/swagger-codegen-cli
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QQ and PP Plots
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Ex. 1 - qqplot - residuals of OLS fit

Fig. A.15.: Normal Q-Q plot com-
paring position errors
from move_base on
the vertical axis to the-
oretical quantiles
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Ex. 1 - qqplot - residuals of OLS fit

Fig. A.16.: Normal Q-Q plot com-
paring position errors
from odometry-based
method on the verti-
cal axis to theoretical
quantiles

1 0 1 2 3 4
Quantiles of 2nd Sample

1

0

1

2

3

4

Qu
an

til
es

 o
f 1

st
 S

am
pl

e

Fig. A.17.: Q-Q plot comparing
position errors from
move_base method
on the vertical axis
to odometry-based
method
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Ex. 1 - qqplot - residuals of OLS fit

Fig. A.18.: Normal Q-Q plot com-
paring rotation errors
from move_base on
the vertical axis to the-
oretical quantiles
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Ex. 1 - qqplot - residuals of OLS fit

Fig. A.19.: Normal Q-Q plot com-
paring rotation errors
from odometry-based
method on the verti-
cal axis to theoretical
quantiles
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Fig. A.20.: Q-Q plot comparing
rotation errors from
move_base method
on the vertical axis
to odometry-based
method
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A.9 Pipelines

• Total: 58 pipelines
• Successful: 48 pipelines
• Failed: 10 pipelines
• Success ratio: 82

Navigation Stack

Fig. A.21.: Navigation stack pipeline
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