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Summary

ParaMonte (standing for Parallel Monte Carlo) is a serial and MPI/Coarray-parallelized library of
Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in
particular, the posterior distributions of Bayesian models in data science, Machine Learning, and
scientific inference. The ParaMonte library has been developed with the design goal of unifying
the automation, accessibility, high-performance, scalability, and reproducibility of Monte
Carlo simulations. The current implementation of the library includes ParaDRAM, a Parallel
Delayed-Rejection Adaptive Metropolis Markov Chain Monte Carlo sampler, accessible from a
wide range of programming languages including C, C++, Fortran, with a unified Application
Programming Interface and simulation environment across all supported programming languages.
The ParaMonte library is MIT-licensed and is permanently located and maintained at https:
//github.com/cdslaborg/paramonte.

Statement of need

Monte Carlo simulation techniques (Metropolis & Ulam, 1949), in particular, the Markov Chain
Monte Carlo (MCMC) (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) are among
the most popular methods of quantifying uncertainty in scientific inference problems. Extensive
work has been done over the past decades to develop Monte Carlo simulation programming
environments that aim to partially or fully automate the problem of uncertainty quantification
via Markov Chain Monte Carlo simulations. Example open-source libraries in C/C++/Fortran
include MCSim in C (Bois, 2009), MCMCLib and QUESO (Prudencio & Schulz, 2012) libraries
in C++, and mcmcf90 in Fortran (Haario, Laine, Mira, & Saksman, 2006). These packages,
however, mostly serve the users of one particular programming language environment. Some
can perform only serial simulations while others are inherently parallelized. Furthermore,
majority of the existing packages have significant dependencies on other external libraries. Such
dependencies can potentially make the build process of the packages an extremely complex
and arduous task due to software version incompatibilities, a phenomenon that has become
known as the dependency-hell among software developers.

The ParaMonte library presented in this work aims to address the aforementioned problems by
providing a standalone high-performance serial/parallel Monte Carlo simulation environment
with the following principal design goals,

• Full automation of the library’s build process and all Monte Carlo simulations to
ensure the highest level of user-friendliness of the library and minimal time investment
requirements for building the library as well as running and post-processing the Monte
Carlo simulations.

• Interoperability of the core of the library with as many programming languages as
currently possible, including C, C++, Fortran, as well as MATLAB and Python via
the ParaMonte::MATLAB (Kumbhare & Shahmoradi, 2020) and ParaMonte::Python
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(Shahmoradi, Bagheri, & Osborne, 2020) libraries.

• High-Performance, meticulously-low-level implementation of the library that guarantees
the fastest-possible Monte Carlo simulations without compromising the reproducibility
of the simulations or the extensive external reporting of the simulation progress and results.

• Parallelizability of all simulations via both MPI and PGAS/Coarray communication
paradigms while requiring zero-parallel-coding efforts from the user.

• Zero external-library dependencies to ensure hassle-free library builds and Monte
Carlo simulation runs.

• Fully-deterministic reproducibility and automatically-enabled restart functionality
for all ParaMonte simulations (up to 16 digits of decimal precision if requested by the
user).

• Comprehensive-reporting and post-processing of each simulation and its results as
well as their efficient compact storage in external files to ensure the reproducibility and
comprehensibility of the simulation results at any time in the future.

The origins of ParaMonte

The ParaMonte library grew out of the need for a free user-friendly high-performance parallel
software for stochastic optimization, sampling, and integration problems in scientific inference
and Data Science applications. The project started in 2012 to aid the research goals of the
primary author of the package in the field of High Energy Astrophysics and Bioinformatics
(Shahmoradi, 2013), (Shahmoradi, 2013), (Shahmoradi & Nemiroff, 2014), (Shahmoradi &
Nemiroff, 2015), (Shahmoradi & Nemiroff, 2019), (J. A. Osborne, Shahmoradi, & Nemiroff,
2020). It remained in private usage over the years until summer 2020, when version 1.0 of the
library was released as an open-source project for public usage and contributions.

Many of the contemporary research problems are computationally demanding and require
the analysis of vast amounts of high-dimensional data by a community of non-computer-
science domain researchers who might be neither familiar with details of software dependencies,
build processes, and complexities nor even with the inner-workings of the various stochastic
optimization and sampling techniques. As such, since its inception, the ParaMonte library has
been built upon the two pillars of user-friendliness and high-performance.

The build process

The ParaMonte library is permanently located on GitHub and is available to view at: https:
//github.com/cdslaborg/paramonte. The build process of the library is fully automated.
Extensive detailed instructions are also available on the documentation website of the library.

For the convenience of users, each versioned release of the library’s source code also includes
prebuilt, ready-to-use, copies of the library for x64 architecture on Windows, Linux, macOS,
in all supported programming languages, including C, C++, Fortran. These prebuilt libraries
automatically ship with the language-specific example codes and build scripts that fully
automate the process of building and running the examples. Users can either adapt the
example’s source files and build scripts to their own needs or in more sophisticated scenarios,
they can simply link their applications against the supplied prebuilt library.

Where the prebuilt libraries cannot be used, users can readily call the Unix-Bash and Windows-
Batch build-scripts that are provided with the source code of the library to fully automate
the build process of the library. These build scripts have been developed to automate the
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installation of any missing components that may be required for the successful build of the
library, including the cmake build software, the GNU C/C++/Fortran compilers, as well as the
MPI/Coarray libraries. All of these tasks are performed with the explicit permission granted by
the user. The ParaMonte build scripts are heavily inspired by the impressive OpenCoarrays
open-source software (Fanfarillo et al., 2014) developed and maintained by the Sourcery
Institute.

The ParaMonte samplers

The current implementation of the ParaMonte library includes the Parallel Delayed-Rejection
Adaptive Metropolis Markov Chain Monte Carlo (ParaDRAM) sampler (Shahmoradi & Bagheri,
2020), (Shahmoradi & Bagheri, 2020a), (Shahmoradi & Bagheri, 2020b), (Kumbhare &
Shahmoradi, 2020), and several other samplers whose development is in progress as of writing
this manuscript. The ParaDRAM algorithm is a variant of the DRAM algorithm of (Haario et
al., 2006) and can be used in either serial or parallel mode.

In brief, the ParaDRAM sampler continuously adapts the shape and scale of the proposal
distribution throughout the simulation to increase the efficiency of the sampler. This is in
contrast to the traditional MCMC samplers where the proposal distribution remains fixed
throughout the simulation. The ParaDRAM sampler provides a highly customizable MCMC
simulation environment whose complete description goes beyond the scope and limits of this
manuscript. All of these simulation specifications are, however, expensively explained and
discussed on the documentation website of the ParaMonte library. The description of all of
these specifications are also automatically provided in the output *_report.txt files of every
simulation performed by the ParaMonte samplers.

Several additional more advanced samplers are also currently under development and are
scheduled for release in 2021.

Parallelism
Two modes of parallelism are currently implemented for all ParaMonte samplers,

• The Perfect Parallelism (multi-Chain): In this mode, independent instances of a
particular ParaMonte sampler of choice run concurrently. Once all simulations are
complete, the sampler compares the output samples from all processors with each other
to calculate various statistics and to ensure that no evidence for a lack of convergence
to the target density exists in any of the output chains.

• The Fork-Join Parallelism (single-Chain): In this mode, a single processor is responsible
for collecting and dispatching information, generated by all processors, to construct the
full sample from the target density function.

For each parallel simulation in the Fork-Join mode, the ParaMonte samplers automatically
compute the speedup gained compared to the serial mode. The speedup for a wide range of the
number of processors is also automatically computed and reported in the output *_report.txt
files that are automatically generated for all simulations. The processor contributions to the
construction of the final output sample are also reported along with all visited states in the
output *_chain.* files. Such information is particularly useful for finding the optimal number
of processors for a given problem at hand, by first running a short simulation to predict the
optimal number of processors from the sampler’s output information, followed by the full
production run using the optimal number of processors. For a comprehensive description and
algorithmic details see (Shahmoradi & Bagheri, 2020), (Shahmoradi & Bagheri, 2020a).
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Figure 1: An illustration of the contributions of 512 Intel Xeon Phi 7250 processors to a ParaMonte-
ParaDRAM simulation parallelized via the Fork-Join paradigm. The predicted best-fit Geometric
distribution from the post-processing phase of the ParaDRAM simulation is shown by the black line.
The data used in this figure is automatically generated for each parallel simulation performed via any
of the ParaMonte samplers.

As we argue in (Shahmoradi & Bagheri, 2020, Shahmoradi & Bagheri (2020a)) for the particular
case of MCMC simulations, the distribution of processor contributions to the construction
of a final sample from an objective function in the Fork-Join parallelism paradigm follows
a Geometric curve. Figure 1 depicts the processor contributions to an example ParaDRAM
simulation of a variant of Himmelblau’s function. Superposed on the distribution of processor
contributions is the Geometric fit to the data. Figure 2 illustrates an example strong-scaling
behavior of the sampler and the predicted speedup by the sampler for a range of processor
counts.

The exact strong scaling behavior of Fork-Join parallel simulations is highly dependent on the
sampling efficiency of the problem. For a fixed number of processors, the parallel efficiency of
the samplers monotonically increases toward the maximum theoretical speedup with decreasing
sampling efficiency. This theoretical maximum parallel speedup and the corresponding predicted
optimal number of processors are also computed for each parallel simulation and reported in
the final output *_report.txt files.
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Figure 2: A comparison of the actual strong scaling behavior of an example ParaMonte-ParaDRAM
simulation from 1 to 1088 processors with the strong-scaling behavior predicted during the post-
processing phases of the corresponding individual ParaDRAM simulations. The data used in this figure
is automatically generated for each parallel simulation performed via any of the ParaMonte samplers.
The black dashed line represents the perfect parallelism.

Efficient compact storage of the output samples
Efficient continuous external storage of the output of Monte Carlo simulations is essential for
both post-processing of the results and the restart functionality of the simulations, should any
interruptions happen at runtime. However, as the number of dimensions or the complexity
of the target density increases, such external storage of the output can easily become a
challenge and a bottleneck in the speed of an otherwise high-performance sampler. Given the
currently-available computational technologies, input/ouput (IO) to external hard-drives can
be 2-3 orders of magnitude slower than the Random Access Memory (RAM) storage.

To alleviate the effects of such external-IO speed bottlenecks, the ParaMonte samplers have
been devised to carefully store the resulting samples in a small compact, yet ASCII human-
readable format in external output files. This compact storage, as opposed to the verbose (or
in the case of the ParaDRAM sampler, the Markov-chain) storage format, leads to significant
speedup of the simulations while requiring 4-100 times less external memory to store the output
samples in the external output files. The exact amount of reduction in the external memory
usage depends on the runtime sampling efficiency of the samplers. Additionally, the format of
output files can be set by the user to binary, further reducing the memory foot-print of the
simulations while increasing the simulation speed. The implementation details of this compact
storage format are extensively discussed in (Shahmoradi & Bagheri, 2020), (Shahmoradi &
Bagheri, 2020a).
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The restart functionality
Each ParaMonte sampler is automatically capable of restarting an existing interrupted simula-
tion, whether in serial or parallel. All that is required is to rerun the interrupted simulation with
the same prefix for the simulation output file names. The ParaMonte samplers automatically
detect the presence of an incomplete simulation in the output files and restart the simulation
from where it was left off.

Furthermore, if the user sets the seed of the random number generator of the sampler before
running the simulation, the ParaMonte samplers are capable of regenerating the same output
sample that would have been produced if the simulation had not been interrupted in the first
place. Such fully-deterministic reproducibility into-the-future is guaranteed with 16 digits
of decimal precision for the results of any ParaMonte simulation, whether serial or in parallel.
To our knowledge, this is a unique feature of the ParaMonte library that does not appear to
exist in any of the contemporary libraries for Monte Carlo simulations.

The ParaMonte Application Programming Interface

Special care has been made to develop highly-similar (if not the same) Application Programming
Interface (API) to the ParaMonte library samplers across all supported programming languages.
Ensuring backward-compatibility has been also one of the high priorities in the development of
the library and will remain a priority for any future development and expansion of the project.

The project currently uses semantic versioning to readily inform the users about the backward-
compatibility of each release. This semantic versioning, however, only applies to the ParaMonte
samplers’ API. Conversely, the API to the foundational procedures of the ParaMonte kernel
tend to be dynamic and subject to changes without incrementing the library’s major version.
This is line with the primary purpose of the library as a Monte Carlo optimization and sampling
toolbox.

Nevertheless, the kernel documentation is well developed and accessible to all, including
the end-users, should they decide to use any of the basic routines in the library beyond the
samplers. The kernel API documentation is permanently available on GitHub at its dedicated
repository: https://cdslaborg.github.io/paramonte-kernel-doc/html/ and is accessible from
the ParaMonte’s main documentation portal.

Tests and code coverage

The entire kernel routines of the ParaMonte library are currently tested with over 866 individual
tests. Out of these, 510 test units currently cover and verify the functionalities of the basic
building-block routines of the library and 156 tests verify the semantics and different aspects
of the ParaMonte samplers built on top of the basic routines.

The code coverage report analyses of the ParaMonte kernel library can be generated for a
wide range of input build configurations. For example, corresponding to each programming
language (C, C++, Fortran, MATLAB, Python, R, . . . ), a separate code coverage report
for the kernel routines can be generated. Similarly, different library builds (debug, testing,
release), library types (static, dynamic), and memory allocation schemes (stack or heap) can
lead to different code coverage reports. This is primarily because the kernel routines heavily
utilize compiler preprocessor directives to accommodate the support for multiple programming
languages, Operating Systems and architectures, as well as multiple parallelism paradigms.

Among all build configurations, however, the single most important specification that yields
the largest differences in code coverage reports is the parallelism paradigm (serial, mpi, and
Coarray parallelism). The code coverage reports for the serial, MPI, and Coarray modes are
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remarkably different since each parallelism paradigm activates a different set of codes in the
ParaMonte kernel routines.

Thus, with each tagged release of the library, the code coverage reports for the three parallelism
paradigms are also generated and stored in a separate repository dedicated to the code
coverage analyses of the ParaMonte library. This repository is permanently located on GitHub
at: https://www.cdslab.org/paramonte/notes/codecov/ and the reports are automatically and
conveniently accessible from the ParaMonte documentation website.

The current set of 866 unit tests in version 1.5.0 release of the ParaMonte library collectively
cover 47565 out of 48384 lines of code (∼ 98% line coverage) and 4467 out of 4476 procedures
(∼ 100% function coverage) in the library’s kernel for the three serial, MPI, and Coarray
parallelism paradigms.

Documentation and Repository

Extensive documentation and examples in C, C++, Fortran (as well as other programming
languages) are available on the documentation website of the library at: https://www.cdslab.
org/paramonte/. The ParaMonte library is MIT-licensed and is permanently located and
maintained at https://github.com/cdslaborg/paramonte.

A high number of comments in a codebase are frequently indicative of an organized well-
documented project and considered a sign of a helpful and disciplined development team. As
of January 2021, comments approximately make up 31% of the entire ParaMonte codebase.
Currently, the Open Hub indexer service ranks the ParaMonte project’s level of documentation
as “impressive” and among the top 10% of all projects in the same category on Open Hub.
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