
stringi: Fast and Portable
Character String Processing in R

Marek Gagolewski
Deakin University, Australia

Abstract

Effective processing of character strings is required at various stages of data analysis
pipelines: from data cleansing and preparation, through information extraction, to report
generation. Pattern searching, string collation and sorting, normalisation, transliteration,
and formatting are ubiquitous in text mining, natural language processing, and bioinfor-
matics. This paper discusses and demonstrates how and why stringi, a mature R package
for fast and portable handling of string data, should be included in each statistician’s or
data scientist’s repertoire.

Keywords: stringi, character strings, text, ICU, Unicode, regular expressions, data cleansing,
natural language processing, R.

This is a draft version of a paper on stringi, last updated on September 17, 2020.
Please cite as: Gagolewski M (2020). stringi: Fast and Portable Character String Processing
in R. URL https://stringi.gagolewski.com.

1. Introduction
Stringology, see (Crochemore and Rytter 2003), deals with the algorithms and data struc-
tures used for processing of character strings (Jurafsky and Martin 2008; Szpankowski 2001).
From the perspective of applied statistics and data science, it is worth stressing that many
interesting datasets first come in an unstructured or contaminated form, for instance when
fetched from different APIs or when gathered by means of web scraping techniques. Diverse
data cleansing and preparation operations (Dasu and Johnson 2003; van der Loo and de Jonge
2018; see also this paper’s Section 2 for a real-world example) need to be applied before an
analyst can begin to enjoy an orderly and meaningful data frame, matrix, or spreadsheet
being finally at their disposal. Amongst them we may find: string concatenation, substring
extraction, collation, sorting, Unicode normalisation, transliteration, pattern matching, and
date-time parsing. Activities related to information retrieval, computer vision, bioinformat-
ics, natural language processing, or even musicology can also benefit from including them in
the data processing pipelines, see (Jurafsky and Martin 2008; Kurtz et al. 2004).
Base R (R Development Core Team 2020) provides a few functions for dealing with charac-
ter strings, see (Chambers 2008, Chapter 8) and Table 1. However, it is the stringr package
(Wickham 2010), first released in November 2009, that marks the first milestone of implement-
ing the idea of a “tidier” API for text data processing. In version 0.6.2 (dated 2012–12–06)
of stringr’s README, we read that this package:

https://stringi.gagolewski.com
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stringr Base R Purpose
str_c() paste() join strings
str_count() gregexpr() count pattern matches
str_detect() grepl() detect pattern matches
str_dup() duplicate strings
str_extract(),
str_extract_all()

extract (first, all) pattern matches

str_length() nchar() compute string length
str_locate(),
str_locate_all()

regexpr(),
gregexpr()

locate (first, all) pattern matches

str_match(),
str_match_all()

regexec() extract (first, all) matches to regex cap-
ture groups

str_pad() add whitespaces at beginning or end
str_trim() remove whitespaces from beginning or end
str_replace(),
str_replace_all()

sub(), gsub() replace (first, all) pattern matches with a
replacement string

str_split(),
str_split_fixed()

split up a string into pieces

str_sub(), `str_sub<-`() substring() extract or replace substrings
str_wrap() strwrap() split strings into text lines
word() extract words from a sentence

Table 1: Functions in (the historical) stringr 0.6.2 and their base R counterparts.

• processes factors and characters in the same way,
• gives functions consistent names and arguments,
• simplifies string operations by eliminating options that you don’t need 95%

of the time,
• produces outputs than can easily be used as inputs. This includes ensuring

that missing inputs result in missing outputs, and zero length inputs result in
zero length outputs,

• completes R’s string handling functions with useful functions from other pro-
gramming languages.

The list of the functions available in stringr at that time is given in Table 1.
Nevertheless, stringr was developed as a set of wrappers around its base R counterparts,
which not only limited its scope but also could cause many portability issues. In particular,
the same code may yield different results on different operating systems, some services such
as the processing of particular languages may be unavailable whatsoever, and so forth. For
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instance, varied variants of the PCRE (versions 8.x or 10.x thereof) pattern matching libraries
may be linked to during compilation. On Windows, there is a custom implementation of iconv
that has a set of character encoding IDs not fully compatible with that on GNU/Linux: to
select the Polish locale, we are required to pass "Polish_Poland" to Sys.setlocale() on
Windows whereas "pl_PL" on Linux. Moreover, R can be build against the system ICU so
that it uses its Collator for comparing strings, however this is only optional.
For example, let us consider the matching of “all letters” by means of the built-in gregexpr()
function and the TRE (perl=FALSE) and PCRE (perl=TRUE) libraries using a POSIX-like
and Unicode-style character set (see Section 5 for more details):

R> library("stringi") # substring extraction with stri_sub(), see below
R> x <- "AEZaezĄĘŻąęż"
R> stri_sub(x, gregexpr("[[:alpha:]]", x, perl=FALSE)[[1]], length=1)
R> stri_sub(x, gregexpr("[[:alpha:]]", x, perl=TRUE)[[1]], length=1)
R> stri_sub(x, gregexpr("\\p{L}", x, perl=TRUE)[[1]], length=1)

On Ubuntu Linux 20.04 (UTF-8 locale), the respective outputs are:

[1] "A" "E" "Z" "a" "e" "z" "Ą" "Ę" "Ż" "ą" "ę" "ż"
[1] "A" "E" "Z" "a" "e" "z"
[1] "A" "E" "Z" "a" "e" "z" "Ą" "Ę" "Ż" "ą" "ę" "ż"

On Windows, when x is marked as UTF-8, we get:

[1] "A" "E" "Z" "a" "e" "z"
[1] "A" "E" "Z" "a" "e" "z"
[1] "A" "E" "Z" "a" "e" "z" "Ą" "Ę" "Ż" "ą" "ę" "ż"

And again on Windows using the Polish locale but x marked as natively-encoded (CP-1250
in this case):

[1] "A" "E" "Z" "a" "e" "z" "Ę" "ę"
[1] "A" "E" "Z" "a" "e" "z" "Ą" "Ę" "Ż" "ą" "ę" "ż"
[1] "A" "E" "Z" "a" "e" "z" "Ę" "ę"

In order to overcome such portability problems, in 2013 I have developed the stringi package
(pronounced “stringy”, IPA [stringi]). Its API has been designed so as to be compatible and
consistent with that of stringr’s, which has already proven effective and convenient. All the
functions have been written from scratch to guarantee that they are as efficient as possible.
For the processing of text in different languages, which are plentiful, the ICU library (see
http://site.icu-project.org/) is relied upon to assure full conformance to the Unicode
standards.
Over the years, stringi confirmed itself as robust, production quality software. Interestingly,
from version 1.0, stringr has been rewritten as a set of wrappers around stringi instead of
base R routines; it aims to be more beginner-friendly, see (Wickham and Grolemund 2017,
Chapter 14). On the other hand, stringi provides many more functions (250 vs. 52); some of

http://site.icu-project.org/
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them are more specialised or equipped with more control parameters to enable fine-tuning.
This paper describes the facilities provided by stringi in-depth so that the package’s users can
get the most out of them. It also demonstrates the wide range of tools that more advanced
statisticians and data scientists may find useful in their daily activities.

What remains is set out as follows. Section 2 gives some motivational examples that illus-
trate the importance of string processing in data preparation activities. Basic string oper-
ations such as substring extraction and concatenation are discussed in Section 3. Section 4
discusses searching for fixed substrings. Section 5 details pattern matching with ICU regular
expressions. Section 6 deals with the locale-aware ICU Collator, suitable for natural language
processing activities. Section 7 introduces other operations such as text boundary analysis or
date-time formatting and parsing. Section 8 details on encoding conversion and detection as
well as Unicode normalisation. Finally, Section 9 concludes the paper.
All the code chunks’ outputs presented in this paper were obtained using R 4.0.2. The R
environment itself and all the packages used herein are available from CRAN at https:
//CRAN.R-project.org/.

R> # install.packages("stringi") # to download from CRAN and install
R> library("stringi") # load and attach the package's namespace

Here we describe stringi 1.5.3, which has been built against the following version of the ICU
library:

R> cat(stri_info(short=TRUE))

stringi_1.5.3 (en_AU.UTF-8; ICU4C 61.1 [bundle]; Unicode 10.0)

stringi is an open source project distributed under the terms of the BSD-3-clause license.
Its most recent development snapshot is available through GitHub at https://github.com/
gagolews/stringi. The bug- and feature request tracker can be accessed from https://
github.com/gagolews/stringi/issues. Moreover, its homepage – which includes a detailed
documentation of the package’s API – is located at https://stringi.gagolewski.com/.

2. Motivational example: Data preparation
Before going into technical details on the stringi package itself, let us first demonstrate that
string processing is indeed a relevant part of the statistical analysis workflow. What follows
is a short case study where we prepare a web-scraped data set for further processing.
Assume we wish to gather and analyse climate data for major cities around the world based
on information downloaded from Wikipedia. For each location from a given list of settle-
ments (e.g., gathered from one of the pages linked under https://en.wikipedia.org/wiki/
Lists_of_cities), we would like to harvest the relevant temperature and precipitation data.
Without harm in generality, let us focus on the city of Melbourne, VIC, Australia.
The parsing of the city’s Wikipedia page can be done by means of the functions from the xml2
(Wickham, Hester, and Ooms 2020) and rvest (Wickham 2020) packages.

https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://github.com/gagolews/stringi
https://github.com/gagolews/stringi
https://github.com/gagolews/stringi/issues
https://github.com/gagolews/stringi/issues
https://stringi.gagolewski.com/
https://en.wikipedia.org/wiki/Lists_of_cities
https://en.wikipedia.org/wiki/Lists_of_cities
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R> library("xml2")
R> library("rvest")

First, we load and parse the downloaded HTML file.

R> # downloaded from https://en.wikipedia.org/wiki/Melbourne on 2020-09-17,
R> # see https://github.com/gagolews/stringi/tree/master/datasets
R> f <- read_html("20200917_wikipedia_melbourne.html")

Second, we extract all <table> elements and gather them in a list of HTML nodes, all_tables.
We then extract the underlying raw text data and store them in a character vector named
text_tables.

R> all_tables <- html_nodes(f, "table")
R> text_tables <- sapply(all_tables, html_text)
R> str(text_tables, nchar.max=65, vec.len=5, strict.width="wrap") # preview

chr [1:45] "MelbourneVictoriaFrom top, left to right: Flinde"| __truncated__
"Mean max temp\n Mean min temp\n Annual rainfal"| __truncated__ "This
section needs additional citations for veri"| __truncated__ "Climate data
for Melbourne Regional Office (1991"| __truncated__ "Country of Birth
(2016)[178]Birthplace[N 1]\nPop"| __truncated__ ...

Most Wikipedia pages related to particular cities include a table labelled as “Climate data”.
We need to pinpoint it amongst all the other tables. For this, we will rely on stringi’s
stri_detect_ fixed() function that, in the configuration below, is used to extract the index
of the relevant table.

R> library("stringi")
R> (idx <- which(stringi::stri_detect_fixed(text_tables, "climate data",
+ case_insensitive=TRUE, max_count=1)))

[1] 4

Of course, the detailed description of all the facilities brought by stringi is covered in the
sequel. In the meantime, let us use rvest’s html_table() to convert the above table to a
data frame object.

R> (x <- html_table(all_tables[[idx]], fill=TRUE))

Climate data for Melbourne Regional Office (1991–2015)
1 Month
2 Record high °C (°F)
3 Average high °C (°F)
4 Daily mean °C (°F)
5 Average low °C (°F)



6 stringi: Fast and Portable Character String Processing in R

6 Record low °C (°F)
7 Average rainfall mm (inches)
8 Average rainy days (� 1mm)
9 Average afternoon relative humidity (%)
10 Mean monthly sunshine hours
11 Source: Bureau of Meteorology.[85][86][87]

Climate data for Melbourne Regional Office (1991–2015).1 ...
1 Jan ...
2 45.6(114.1) ...
3 27.0(80.6) ...
4 21.6(70.9) ...
5 16.1(61.0) ...
6 5.5(41.9) ...
7 44.2(1.74) ...
8 5.6 ...
9 47 ...
10 279 ...
11 Source: Bureau of Meteorology.[85][86][87] ...

Climate data for Melbourne Regional Office (1991–2015).3
1 Year
2 46.4(115.5)
3 20.8(69.4)
4 16.2(61.2)
5 11.6(52.9)
6 −2.8(27.0)
7 600.9(23.66)
8 90.6
9 51
10 2,191
11 Source: Bureau of Meteorology.[85][86][87]

It is evident that this object requires some significant cleansing and transforming before it
can be subject to any statistical analyses. First, for the sake of convenience, let us convert
it to a character matrix so that the processing of all cells can be vectorised (a matrix in R is
just a single “long” vector, whereas a data frame is a list of many atomic vectors).

R> x <- as.matrix(x)

The as.numeric() function (which we would soon like to use) may find parsing the Unicode
MINUS SIGN (U+2212, “−”) difficult, therefore let us call the transliterator to replace it
(and other potentially problematic characters) with its simpler equivalent:

R> x[, ] <- stri_trans_general(x, "Publishing-Any; Any-ASCII")

Note that it is the first row that in fact gives the column names. Moreover, the last row just
gives the data source and hence may be removed.
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R> dimnames(x) <- list(x[, 1], x[1, ]) # row, column names
R> x <- x[2:(nrow(x)-1), 2:ncol(x)] # skip 1st/last row and 1st column
R> x[, c(1, ncol(x))] # example columns

Jan Year
Record high °C (°F) "45.6(114.1)" "46.4(115.5)"
Average high °C (°F) "27.0(80.6)" "20.8(69.4)"
Daily mean °C (°F) "21.6(70.9)" "16.2(61.2)"
Average low °C (°F) "16.1(61.0)" "11.6(52.9)"
Record low °C (°F) "5.5(41.9)" "-2.8(27.0)"
Average rainfall mm (inches) "44.2(1.74)" "600.9(23.66)"
Average rainy days (>= 1mm) "5.6" "90.6"
Average afternoon relative humidity (%) "47" "51"
Mean monthly sunshine hours "279" "2,191"

Commas that are used as thousands separators (commas that are surrounded by digits) should
be dropped:

R> x[, ] <- stri_replace_all_regex(x, "(?<=\\d),(?=\\d)", "")

The numbers and alternative units in parentheses are redundant, therefore these should be
taken care of as well:

R> x[, ] <- stri_replace_all_regex(x,
+ "(\\d+(?:\\.\\d+)?)\\(\\d+(?:\\.\\d+)?\\)", "$1")
R> dimnames(x)[[1]] <- stri_replace_all_fixed(dimnames(x)[[1]],
+ c(" (°F)", " (inches)"), c("", ""), vectorise_all=FALSE)

At last, as.numeric() can be used to interpret the all the strings as numbers:

R> x <- structure(as.numeric(x), dim=dim(x), dimnames=dimnames(x))
R> x[, c(1, 6, ncol(x))] # example columns

Jan Jun Year
Record high °C 45.6 22.4 46.4
Average high °C 27.0 15.1 20.8
Daily mean °C 21.6 11.7 16.2
Average low °C 16.1 8.2 11.6
Record low °C 5.5 -2.2 -2.8
Average rainfall mm 44.2 49.5 600.9
Average rainy days (>= 1mm) 5.6 8.6 90.6
Average afternoon relative humidity (%) 47.0 61.0 51.0
Mean monthly sunshine hours 279.0 108.0 2191.0

We now have a cleansed matrix at our disposal. We can, for instance, compute the monthly
temperature ranges:
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R> x["Record high °C", -ncol(x)]-x["Record low °C", -ncol(x)]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
40.1 41.9 38.9 33.4 29.8 24.6 26.1 28.6 31.9 36.8 38.4 39.3

or average daily precipitation:

R> sum(x["Average rainfall mm", -ncol(x)]) / 365.25

[1] 1.6463

and so forth.
For the climate data on other cities, very similar steps are needed – the whole process of
scraping and cleansing data can quite easily be automatised, perhaps with some minor ad-
justments. The above functions are not only convenient to use, but also efficient and portable
across different platforms.

3. Basic string operations
Let us proceed with a detailed description of the most important facilities in the stringi
package. First and foremost, we should emphasise that the R language itself does not provide
access to any classical scalar types. Individual character strings are wrapped around atomic
vectors of type character:

R> "spam" # or 'spam'

[1] "spam"

R> typeof("spam")

[1] "character"

R> length("spam") # a character vector of length 1 - a single string

[1] 1

Not having a separate scalar type is quite convenient from the practical side; the so-called
vectorisation strategy encourages writing of code for processing whole collections of objects
all at once, regardless of their size. For example, let’s consider the following data frame:

R> # see https://github.com/gagolews/stringi/tree/master/datasets
R> (birth_dates <-
+ head(read.csv(header=TRUE, comment="#", file="birth_dates.csv"), n=3))
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Name BirthDate
1 Eckehard Grünfeld 01.11.1911
2 Zbyněk Slavík 29.03.1966
3 Marx Crowell 17.03.2009

The Name column is of type character. For instance (with all the details provided in a section
to follow), here is how we can separate the first and the last names from each other (assuming
for simplicity that no middle names are given), using just a single function call:

R> (birth_names <- stri_split_fixed(birth_dates$Name, " ",
+ n=2, simplify=TRUE))

[,1] [,2]
[1,] "Eckehard" "Grünfeld"
[2,] "Zbyněk" "Slavík"
[3,] "Marx" "Crowell"

Due to vectorisation, we can generally avoid using for/while loops, which makes the code
much more readable, maintainable, and faster to execute.

3.1. Computing length and width
First we shall review the functions related to counting the number of entities in each string.

Length. Let’s consider the following character vector:

R> x <- c("spam", "bacon", "", "sausage", NA, "spam")
R> length(x) # vector length

[1] 6

stri_length() computes the length of each string. More precisely, the function gives the
number of Unicode code points in each string, see Section 8.1 for more details.

R> stri_length(x)

[1] 4 5 0 7 NA 4

stri_length(x) returns a numeric vector l, with the same number of elements as x, such
that, for every i, l[i] is the length of the string x[i]. Note that the 3rd element in x is an
empty string, "", hence its length is 0. Moreover, there is a missing (NA) value at index 5, so
the corresponding length is undefined as well. stringi applies this rule consistently across all
its functions.
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Zero-length. To quickly determine which of the items are empty strings, we may call:

R> stri_isempty(x)

[1] FALSE FALSE TRUE FALSE NA FALSE

Note that we distinguish between an empty character vector (character(0), i.e., a zero-length
sequence) and an empty string, i.e., a string of length 0 wrapped in a vector of length 1.

R> length(character(0)) # no strings at all

[1] 0

R> stri_length(character(0))

integer(0)

R> length("") # one empty string

[1] 1

R> stri_length("")

[1] 0

Width. Sometimes merely knowing the number of characters in a string is not enough. For
instance, when preparing a formatted output (e.g., in an automatically generated report), a
string’s width estimate – an approximate number of text columns it occupies when printed
using a mono-spaced font – may be more informative. In particular, many CJK (Chinese,
Japanese, Korean) or emoji characters take up two text cells. Some code points, on the other
hand, are of width 0 (e.g., the ZERO WIDTH SPACE, U+200B).

R> stri_length(c(" 你好", "\u200b\u200b\u200b\u200b", "123456"))

[1] 2 4 6

The first string (a greeting) consists of 2 Chinese characters (U+4F60, U+597D), the second
is comprised of 4 zero-width spaces, and the third one carries 6 ASCII digits. Here are their
corresponding widths:

R> stri_width(c(" 你好", "\u200b\u200b\u200b\u200b", "123456"))

[1] 4 0 6

3.2. Joining
Below we describe the functions that are based on string concatenation.
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Operator %s+%. To join (concatenate) the corresponding strings in two character vectors,
we may use the binary %s+% operator:

R> "tasty" %s+% "spam"

[1] "tastyspam"

R> c("tasty", "delicious") %s+% c("spam", "bacon") # elementwise

[1] "tastyspam" "deliciousbacon"

R> c("tasty", "delicious") %s+% "spam" # recycling rule

[1] "tastyspam" "deliciousspam"

R> c("tasty", "delicious", "savoury", "yummy") %s+% c("spam", "bacon")

[1] "tastyspam" "deliciousbacon" "savouryspam" "yummybacon"

R> character(0) %s+% c("spam", "bacon")

character(0)

This operator is vectorised in exactly the same manner as other arithmetic operators in
R. In particular, the recycling rule is used if the inputs are of different lengths and if one
of the arguments is empty, the result is a zero-length vector as well. Moreover, stringi does
enforce the consistent propagation of missing values (unlike in the case of the built-in paste()
function):

R> x %s+% "!"

[1] "spam!" "bacon!" "!" "sausage!" NA "spam!"

For dealing with missing values, we may use convenience functions such as stri_replace_na(),
stri_omit_na(), and if additionally we would like to get rid of empty strings in a vector,
stri_omit_empty_na():

R> stri_replace_na(x, "<NA>") %s+% "!"

[1] "spam!" "bacon!" "!" "sausage!" "<NA>!" "spam!"

R> stri_omit_empty_na(x) %s+% "!"

[1] "spam!" "bacon!" "sausage!" "spam!"
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Flattening. The elements in a character vector can be joined altogether to form a single
string via a call to stri_flatten():

R> stri_flatten(stri_omit_empty_na(x)) # collapse="" by default

[1] "spambaconsausagespam"

R> stri_flatten(stri_omit_empty_na(x), collapse=", ")

[1] "spam, bacon, sausage, spam"

Generalisation. Both the %s+% operator and the stri_flatten() function are generalised
by stri_join() (alias: stri_paste(), stri_c()):

R> stri_join(c("X", "Y", "Z"), 1:6, "!") # sep="", collapse=NULL

[1] "X1!" "Y2!" "Z3!" "X4!" "Y5!" "Z6!"

R> stri_join(c("X", "Y", "Z"), 1:6, "+", sep=".", collapse="; ")

[1] "X.1.+; Y.2.+; Z.3.+; X.4.+; Y.5.+; Z.6.+"

Note how the two (1st, 3rd) shorter vectors were recycled to match the longest vector’s
(2nd) length. The latter was of numeric type, but it was implicitly coerced with a call to
as.character(). More examples:

R> stri_join(birth_names[,2], birth_names[,1], sep=", ")

[1] "Grünfeld, Eckehard" "Slavík, Zbyněk" "Crowell, Marx"

R> outer(LETTERS[1:3], 1:5, stri_join, sep=".") # outer product

[,1] [,2] [,3] [,4] [,5]
[1,] "A.1" "A.2" "A.3" "A.4" "A.5"
[2,] "B.1" "B.2" "B.3" "B.4" "B.5"
[3,] "C.1" "C.2" "C.3" "C.4" "C.5"

Duplicating. To duplicate given strings, call stri_dup() or the %s*% operator:

R> stri_dup(letters[1:5], 2)

[1] "aa" "bb" "cc" "dd" "ee"

R> stri_dup("spam", 1:3)
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[1] "spam" "spamspam" "spamspamspam"

R> stri_dup(letters[1:3], 1:3)

[1] "a" "bb" "ccc"

R> "a" %s*% 5

[1] "aaaaa"

Again, we see a vectorisation with regards to all the arguments.

Within-list joining. There is also a convenience function that applies stri_flatten() on
each character vector in a given list:

R> words <- list(c("spam", "bacon", "sausage", "spam"), c("eggs", "spam"))
R> stri_join_list(words, sep=",")

[1] "spam,bacon,sausage,spam" "eggs,spam"

R> stri_join_list(words, sep=",", collapse="; ")

[1] "spam,bacon,sausage,spam; eggs,spam"

We shall see that such lists of strings are generated by stri_sub_all(), stri_extract_all(),
and similar functions.

3.3. Extracting and replacing substrings
The next group of functions deals with the extraction and replacement of particular sequences
of code points in given strings.

Indexing vectors. In order to pick a subsequence from any R vector, we use the square-
bracket operator1 with an index vector consisting of either non-negative integers, negative
integers, or logical values2.

R> x[1:3] # from 1st to 3rd string

[1] "spam" "bacon" ""

R> x[c(1, length(x))] # 1st and last
1More precisely, x[i] is a syntactic sugar for a call to `[`(x, i). Moreover, if x is a list, x[[i]] can be

used to extract its i-th element (alias `[[`(x, i)). Knowing the “functional” form of the operators allows us
to, for instance, extract all first elements from each vector in a list by simply calling sapply(x, "[[", 1).

2If an object’s names attribute is set, indexing with a character vector is also possible.
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[1] "spam" "spam"

R> x[-1] # all but 1st

[1] "bacon" "" "sausage" NA "spam"

R> x[!stri_isempty(x) & !is.na(x)] # filtering based on a logical vector

[1] "spam" "bacon" "sausage" "spam"

Extracting substrings. A character vector is, in its very own essence, a sequence of se-
quences of code points. To extract specific substrings from each string in a collection, we can
use the stri_sub() function.

R> y <- "spam, egg, spam, spam, bacon, and spam"
R> stri_sub(y, 18) # from 18th code point to end

[1] "spam, bacon, and spam"

R> stri_sub(y, 12, to=15) # from 12th to 15th code point (inclusive)

[1] "spam"

R> stri_sub(y, 12, length=4) # 4 code points from 12th

[1] "spam"

Moreover, negative indices count from the end of a string.

R> stri_sub(y, -15) # from 15th last to end

[1] "bacon, and spam"

stri_sub_all(). The stri_sub() function is of course vectorised with respect to all its
arguments (the character vector, from, and to or length). If one of the vectors is of smaller
length than the other ones, the recycling rule is applied as usual. For instance:

R> stri_sub(y, c(1, 12, 18), length=4) # different substrings of one string

[1] "spam" "spam" "spam"

R> stri_sub(x[c(1, 2, 4)], from=-3) # same substrings of different strings

[1] "pam" "con" "age"
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R> stri_sub(x[c(1, 2, 4)],
+ c(-4, -2, -5)) # different substrings of different strings

[1] "spam" "on" "usage"

If some deeper vectorisation level is necessary, stri_sub_all() comes in handy. It allows to
extract multiple (possibly different) substrings from all the strings provided:

R> (z <- stri_sub_all(x[c(1, 2, 4)],
+ from= list(c(1, 3, 4), -2, c(1, 4)),
+ length=list(1, 2, c(4, 3))))

[[1]]
[1] "s" "a" "m"

[[2]]
[1] "on"

[[3]]
[1] "saus" "sag"

As the number of substrings to extract from each string might vary, the result is a list
of character strings. These may all be concatenated by means of the above-mentioned
stri_join_list() function.

R> stri_join_list(z, sep=", ")

[1] "s, a, m" "on" "saus, sag"

On a side note, there is also a more flexible version of the built-in simplify2array() function
whose aim is to convert such lists to matrices.

R> stri_list2matrix(z)

[,1] [,2] [,3]
[1,] "s" "on" "saus"
[2,] "a" NA "sag"
[3,] "m" NA NA

R> stri_list2matrix(z, byrow=TRUE, fill="", n_min=5)

[,1] [,2] [,3] [,4] [,5]
[1,] "s" "a" "m" "" ""
[2,] "on" "" "" "" ""
[3,] "saus" "sag" "" "" ""
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Again, let’s note that no explicit for/while loops are necessary. For example, here is a way
to extract non-consecutive substrings from each string – ones that consist of the first and the
last letter:

R> stri_join_list(stri_sub_all(x[c(1, 2, 4)], c(1, -1), length=1))

[1] "sm" "bn" "se"

Permuting code points. Somehow related to the above are different ways to construct
various permutations (possibly with replacement) of code points in a string:

R> stri_join_list(stri_sub_all("spam", c(4, 3, 2, 3, 1), length=1))

[1] "mapas"

R> stri_rand_shuffle("bacon") # random order

[1] "anobc"

R> stri_reverse("spam") # reverse order

[1] "maps"

from_to matrices. The second parameter of both stri_sub() and stri_sub_list() can
also be fed with a two-column matrix of the form cbind(from, to). Here, the first col-
umn gives the start indices and the second column defines the end ones. Such matrices are
generated, amongst others, by the stri_locate_*() functions (see below for details).

R> (from_to <- cbind(from=c(1, 12, 18), to=c(4, 15, 21))) # +optional labels

from to
[1,] 1 4
[2,] 12 15
[3,] 18 21

R> stri_sub(y, from_to)

[1] "spam" "spam" "spam"

Another example (the recycling rule):

R> (from_to <- matrix(1:8, ncol=2, byrow=TRUE))
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[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8

R> stri_sub(c("abcdefgh", "ijklmnop"), from_to)

[1] "ab" "kl" "ef" "op"

Now let’s note the difference between the above output and the following one:

R> stri_sub_all(c("abcdefgh", "ijklmnop"), from_to)

[[1]]
[1] "ab" "cd" "ef" "gh"

[[2]]
[1] "ij" "kl" "mn" "op"

Replacing substrings. stri_sub_replace() returns a version of a character vector with
each specified chunk replaced with another string:

R> stri_sub_replace(c("abcde", "ABCDE"),
+ from=c(2, 4), length=c(1, 2), replacement=c("X", "Y"))

[1] "aXcde" "ABCY"

R> stri_sub_replace("abcde",
+ from=c(2, 4), length=1, replacement=c("X", "Y"))

[1] "aXcde" "abcYe"

Similarly, stri_sub_replace_all() allows for replacing multiple substrings within each com-
ponent of a character vector:

R> stri_sub_replace_all(c("abcde", "ABCDE"),
+ from=c(2, 4), length=1, replacement=c("X", "Y"))

[1] "aXcYe" "AXCYE"

R> stri_sub_replace_all("abcde",
+ from=c(2, 4), length=1, replacement=c("X", "Y"))

[1] "aXcYe"

R> stri_sub_replace_all(c("abcde", "ABCDE"),
+ from=list(c(2, 4), c(1, 3)), length=list(1, c(1, 2)),
+ replacement=list("Z", c("XX", "YYYYY")))

[1] "aZcZe" "XXBYYYYYE"
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Replacing substrings in-place. The corresponding replacement functions allow for mod-
ifying a character vector in-place:

R> y2 <- y
R> stri_sub(y2, 7, length=3) <- "spam" # in-place replacement, egg → spam
R> print(y2) # y2 has been changed

[1] "spam, spam, spam, spam, bacon, and spam"

R> y3 <- "a b c"
R> stri_sub_all(y3, c(1, 3, 5), length=1) <- c("A", "B", "C")
R> print(y3) # y3 has been changed

[1] "A B C"

4. Code-pointwise comparing of strings
There are many situations where we are faced with testing whether two strings (or parts
thereof) consist exactly of the same Unicode3 code points, in the same order. These include,
for instance, matching a nucleotide sequence in a DNA profile and querying for system re-
sources based on file names or UUIDs. Such tasks, due to their simplicity, can be performed
very efficiently.

4.1. Testing for equality of strings
To quickly test whether the corresponding strings in two character vectors are identical (in a
code-pointwise manner), we can use the %s===% operator or the stri_cmp_eq() function.

R> "actg" %s===% c("ACTG", "actg", "act", NA) # recycling rule

[1] FALSE TRUE FALSE NA

Moreover, %s!==% and stri_cmp_neq(), respectively, are their negations.

4.2. Searching for fixed strings
Table 2 lists the string search functions available in stringi. Below we explain their behaviour
in the context of fixed pattern matching. Notably, their description is very detailed, because –
as we shall soon find out – similar search functions are available for the other string matching
engines (namely, those relying on regular expressions and the ICU Collator, see Section 5 and
Section 6).
For detecting if a string contains a given substring (code-pointwisely), the fast KMP (Knuth,
Morris, and Pratt 1977) search algorithm, with worst time complexity of O(n + p) (where n
is the length of the string and p is the length of the pattern), has been implemented in stringi
(with numerous tweaks for even faster matching).

3All functions in stringi automatically convert all R strings to Unicode, see Section 8.2 for discussion.
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Name(s) Meaning
stri_count() count pattern matches
stri_detect() detect pattern matches
stri_endswith() [all but regex] detect pattern matches at end of string
stri_extract_all(),
stri_extract_first(),
stri_extract_last()

extract pattern matches

stri_locate_all(),
stri_locate_first(),
stri_locate_last()

locate pattern matches

stri_match_all(),
stri_match_first(),
stri_match_last()

[regex only] extract matches to regex capture groups

stri_replace_all(),
stri_replace_first(),
stri_replace_last()

substitute pattern matches with a replacement string

stri_split() split up a string at pattern matches
stri_startswith() [all but regex] detect pattern matches at start of string
stri_subset(),
`stri_subset<-`()

return or replace strings that contain pattern matches

Table 2: String search/pattern matching functions in stringi. Each function, un-
less otherwise indicated, can be used in conjunction with any search engine, e.g., we
have stri_count_fixed() (see Section 4), stri_detect_regex() (see Section 5), and
stri_split_coll() (see Section 6).

Counting matches. The stri_count_fixed() function counts the number of times a fixed
pattern occurs in a given string.

R> stri_count_fixed("abcabcdefabcabcabdc", "abc") # search pattern is "abc"

[1] 4

Equivalently, we can call the more generic (see below) function stri_count() with the
fixed=pattern argument:

R> stri_count("abcabcdefabcabcabdc", fixed="abc")

[1] 4

Vectorisation. All the string search functions are vectorised with respect to both the
haystack and the needle arguments (and, e.g., the replacement string, if applicable). As
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usual, the shorter vector is recycled if necessary. The users, unaware of this rule, might find
this behaviour unintuitive at the beginning, especially if something does not go the way they
expect. Therefore, let us point out the most useful scenarios that are possible thanks to the
arguments’ recycling:

• many strings – one pattern:

R> stri_count_fixed(c("abc", "abcd", "abcabc", "abdc", "dab", NA), "abc")

[1] 1 1 2 0 0 NA

• one string – many patterns:

R> stri_count_fixed("abc", c("def", "bc", "abc", "abcde", NA))

[1] 0 1 1 0 NA

• each string – its own corresponding pattern:

R> stri_count_fixed(c("abc", "def", "ghi"), c("a", "z", "h"))

[1] 1 0 1

• each row in a matrix – its own corresponding pattern:

R> (A <- matrix(
+ do.call(stri_paste,
+ expand.grid(
+ c("a", "b", "c"), c("a", "b", "c"), c("a", "b", "c")
+ )),
+ nrow=3))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] "aaa" "aba" "aca" "aab" "abb" "acb" "aac" "abc" "acc"
[2,] "baa" "bba" "bca" "bab" "bbb" "bcb" "bac" "bbc" "bcc"
[3,] "caa" "cba" "cca" "cab" "cbb" "ccb" "cac" "cbc" "ccc"

R> matrix(stri_count_fixed(A, c("a", "b", "c")), nrow=3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 3 2 2 2 1 1 2 1 1
[2,] 1 2 1 2 3 2 1 2 1
[3,] 1 1 2 1 1 2 2 2 3

The above is due to the fact that matrices are represented as “flat” vectors of length
length nrow(A)*ncol(A), whose elements are read in a column-major (Fortran) order.
Therefore, in the above example, pattern "a" is being sought in the 1st, 4th, 7th, …
string in A, i.e., "aaa", "aba", "aca", …; pattern "b" in the 2nd, 5th, 8th, … string; and
"c" in the 3rd, 6th, 9th, … one.
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On a side note, to match different patterns with respect to each column, we can (amongst
others) apply matrix transpose twice (t(stri_count_fixed(haystack, t(needle))))
or use the rep() function to properly replicate the needles:

R> (At <- t(A)) # example haystack

[,1] [,2] [,3]
[1,] "aaa" "baa" "caa"
[2,] "aba" "bba" "cba"
[3,] "aca" "bca" "cca"
[4,] "aab" "bab" "cab"
[5,] "abb" "bbb" "cbb"
[6,] "acb" "bcb" "ccb"
[7,] "aac" "bac" "cac"
[8,] "abc" "bbc" "cbc"
[9,] "acc" "bcc" "ccc"

R> matrix(stri_count_fixed(At, rep(c("a", "b", "c"), each=nrow(At))), ncol=3)

[,1] [,2] [,3]
[1,] 3 1 1
[2,] 2 2 1
[3,] 2 1 2
[4,] 2 2 1
[5,] 1 3 1
[6,] 1 2 2
[7,] 2 1 2
[8,] 1 2 2
[9,] 1 1 3

A similar search in the case of a data frame-type input (any list of character vectors of
identical lengths) can be performed by means of a call to mapply():

R> (At.df <- as.data.frame(At))

V1 V2 V3
1 aaa baa caa
2 aba bba cba
3 aca bca cca
4 aab bab cab
5 abb bbb cbb
6 acb bcb ccb
7 aac bac cac
8 abc bbc cbc
9 acc bcc ccc

R> mapply(stri_count_fixed, At.df, c("a", "b", "c"))
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V1 V2 V3
[1,] 3 1 1
[2,] 2 2 1
[3,] 2 1 2
[4,] 2 2 1
[5,] 1 3 1
[6,] 1 2 2
[7,] 2 1 2
[8,] 1 2 2
[9,] 1 1 3

• all strings – all patterns:

R> x <- c("aaa", "bbb", "ccc", "abc", "cba", "aab", "bab", "acc")
R> y <- c("a", "b", "c")
R> structure(
+ outer(x, y, stri_count_fixed),
+ dimnames=list(x, y) # add row and column names
+ )

a b c
aaa 3 0 0
bbb 0 3 0
ccc 0 0 3
abc 1 1 1
cba 1 1 1
aab 2 1 0
bab 1 2 0
acc 1 0 2

A similar result (without the post-processing of the return value, which can be done
through a call to matrix()) may be obtained by calling:

R> stri_count_fixed(rep(x, each=length(y)), y)

[1] 3 0 0 0 3 0 0 0 3 1 1 1 1 1 1 2 1 0 1 2 0 1 0 2

Search engine options. The pattern matching engine may be tuned by passing further ar-
guments to the search functions (via “...”; they are be redirected as-is to stri_opts_fixed()).
Table 3 gives the list of available options.
First, we may switch on the simplistic4 case-insensitive matching.

R> stri_count_fixed("ACTGACGacgggACg", "acg", case_insensitive=TRUE)
4Which is not suitable for real-world NLP tasks, as it assumes that changing the case of a single code point

always produces one and only one item; This way, "groß" does not compare equal to "GROSS", see Section 6
(and partially Section 5) for a workaround.
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Option Purpose
case_insensitive logical; whether to enable the simple case-insensitive matching

(defaults to FALSE)
overlap logical; whether to enable the detection of overlapping matches

(defaults to FALSE); available in stri_extract_all_fixed(),
stri_locate_all_fixed(), and stri_count_fixed()

Table 3: Options for the fixed pattern search engine, see stri_opts_fixed().

[1] 3

Second, we can indicate whether we are interested in detecting overlapping pattern matches
or whether searching should continue at the end of each match (the latter being the default
behaviour):

R> stri_count_fixed("acatgacaca", "aca") # overlap=FALSE (default)

[1] 2

R> stri_count_fixed("acatgacaca", "aca", overlap=TRUE)

[1] 3

Detecting and subsetting patterns. A somehow simplified version of the above task
involves asking whether a pattern occurs in a string at all. Such an operation can be performed
with a call to stri_detect_fixed().

R> x <- c("abc", "abcd", "def", "xyzabc", "uabdc", "dab", NA, "abc")
R> stri_detect_fixed(x, "abc")

[1] TRUE TRUE FALSE TRUE FALSE FALSE NA TRUE

We can also indicate that a no-match is rather of our interest:

R> stri_detect_fixed(x, "abc", negate=TRUE)

[1] FALSE FALSE TRUE FALSE TRUE TRUE NA FALSE

What is more, there is an option to stop searching once a given number of matches has been
found in the haystack vector (as a whole):

R> stri_detect_fixed(x, "abc", max_count=3)

[1] TRUE TRUE FALSE TRUE NA NA NA NA
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R> stri_detect_fixed(x, "abc", negate=TRUE, max_count=2)

[1] FALSE FALSE TRUE FALSE TRUE NA NA NA

This can be useful in scenarios such as “find the first 5 matching resource IDs”.

There are also functions that verify whether a string starts or ends5 with a pattern match:

R> stri_startswith_fixed(x, "abc") # from=1 - match at start

[1] TRUE TRUE FALSE FALSE FALSE FALSE NA TRUE

R> stri_endswith_fixed(x, "abc") # to=-1 - match at end

[1] TRUE FALSE FALSE TRUE FALSE FALSE NA TRUE

Pattern detection is often performed in conjunction with character vector subsetting. This is
why we have a specialised (and hence slightly faster) function that returns only the strings
that match a given pattern:

R> stri_subset_fixed(x, "abc")

[1] "abc" "abcd" "xyzabc" NA "abc"

The above is equivalent to x[stri_detect_fixed(x, "abc")]. Moreover:

R> stri_subset_fixed(x, "abc", omit_na=TRUE)

[1] "abc" "abcd" "xyzabc" "abc"

R> stri_subset_fixed(x, "abc", negate=TRUE) # all but the matches

[1] "def" "uabdc" "dab" NA

There is also a replacement version of this function:

R> stri_subset_fixed(x, "abc") <- "" # modifies x in-place
R> x

[1] "" "" "def" "" "uabdc" "dab" NA ""
5Note that testing for a pattern match at the start or end of a string has not been implemented separately

for regex patterns, which support "^" and "$" anchors that serve exactly this very purpose.
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Locating and extracting patterns. The functions from the stri_locate() family aim
to pinpoint the positions of the matches to a pattern. First, we may be interested in the
location of the first or the last pattern match:

R> x <- c("aga", "actg", NA, "ggAGAGAgaGAca", "agagagaga")
R> stri_locate_first_fixed(x, "aga")

start end
[1,] 1 3
[2,] NA NA
[3,] NA NA
[4,] NA NA
[5,] 1 3

R> stri_locate_last_fixed(x, "aga")

start end
[1,] 1 3
[2,] NA NA
[3,] NA NA
[4,] NA NA
[5,] 7 9

In both examples we obtain a two-column (“from–to”) matrix with the number of rows de-
termined by the recycling rule (here: the length of x). Missing values correspond to either
missing inputs or no-matches.
Second, we may be yearning for the locations of all the matching substrings. As the number
of possible answers may differ from string to string, the result is a list of “from–to” matrices.

R> stri_locate_all_fixed(x, "aga")

[[1]]
start end

[1,] 1 3

[[2]]
start end

[1,] NA NA

[[3]]
start end

[1,] NA NA

[[4]]
start end

[1,] NA NA
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[[5]]
start end

[1,] 1 3
[2,] 5 7

Note that, for compatibility with stringr, a no-match is indicated by a single-row matrix with
two missing values. This behaviour can be changed by setting the omit_no_match argument
to TRUE. Here is an example that additionally asks for overlapping, case insensitive matches:

R> stri_locate_all_fixed(x, "aga", omit_no_match=TRUE,
+ overlap=TRUE, case_insensitive=TRUE)

[[1]]
start end

[1,] 1 3

[[2]]
start end

[[3]]
start end

[1,] NA NA

[[4]]
start end

[1,] 3 5
[2,] 5 7
[3,] 7 9
[4,] 9 11

[[5]]
start end

[1,] 1 3
[2,] 3 5
[3,] 5 7
[4,] 7 9

Let us recall that such kinds of “from-to” matrices constitute particularly convenient inputs
to stri_sub() and stri_sub_all(). However, if merely the extraction of the matching
substrings is needed, we can rely on the functions from the stri_extract() family:

R> (res <- stri_extract_first_fixed(x, "aga", case_insensitive=TRUE))

[1] "aga" NA NA "AGA" "aga"
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R> identical(res, stri_sub(x,
+ stri_locate_first_fixed(x, "aga", case_insensitive=TRUE)))

[1] TRUE

R> (res <- stri_extract_all_fixed(x, "aga",
+ overlap=TRUE, case_insensitive=TRUE, omit_no_match=TRUE))

[[1]]
[1] "aga"

[[2]]
character(0)

[[3]]
[1] NA

[[4]]
[1] "AGA" "AGA" "Aga" "aGA"

[[5]]
[1] "aga" "aga" "aga" "aga"

R> identical(res, stri_sub_all(x,
+ stri_locate_all_fixed(x, "aga",
+ omit_no_match=TRUE, overlap=TRUE, case_insensitive=TRUE)))

[1] TRUE

Replacing pattern occurrences. In order to replace each matching substring with a
corresponding replacement string, we can refer to stri_replace():

R> x <- c("aga", "actg", NA, "ggAGAGAgaGAca", "agagagaga")
R> stri_replace_first_fixed(x, "aga", "~", case_insensitive=TRUE)

[1] "~" "actg" NA "gg~GAgaGAca" "~gagaga"

R> stri_replace_last_fixed(x, "aga", "~", case_insensitive=TRUE)

[1] "~" "actg" NA "ggAGAGAg~ca" "agagag~"

R> stri_replace_all_fixed(x, "aga", "~", case_insensitive=TRUE)

[1] "~" "actg" NA "gg~G~GAca" "~g~ga"
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Note that the inputs that are not part of any match are left unchanged.
The function is vectorised with respect to all the three arguments (haystack, needle, replace-
ment string), with the usual recycling if necessary. If a different arguments’ vectorisation
scheme is required, we set the vectorise_all argument of stri_replace_all() to FALSE.
Compare the following:

R> stri_replace_all_fixed("The quick brown fox jumped over the lazy dog.",
+ c("quick", "brown", "fox", "lazy", "dog"),
+ c("slow", "yellow-ish", "hen", "spamity", "lama"))

[1] "The slow brown fox jumped over the lazy dog."
[2] "The quick yellow-ish fox jumped over the lazy dog."
[3] "The quick brown hen jumped over the lazy dog."
[4] "The quick brown fox jumped over the spamity dog."
[5] "The quick brown fox jumped over the lazy lama."

R> stri_replace_all_fixed("The quick brown fox jumped over the lazy dog.",
+ c("quick", "brown", "fox", "lazy", "dog"),
+ c("slow", "yellow-ish", "hen", "spamity", "lama"),
+ vectorise_all=FALSE)

[1] "The slow yellow-ish hen jumped over the spamity lama."

Here, for every string in the haystack, we observe the vectorisation independently over the
needles and replacement strings. Each occurrence of the 1st needle is substituted with the
1st replacement string, then the search is repeated for the 2nd needle in order to replace it
with the 2nd corresponding string, and so forth.

Splitting. To split each element in the haystack into substrings, where the needles define
the delimiters that separate the inputs into tokens, we call stri_split():

R> x <- c("a,b,c,d", "e", "", NA, "f,g,,,h,i,,j,")
R> stri_split_fixed(x, ",")

[[1]]
[1] "a" "b" "c" "d"

[[2]]
[1] "e"

[[3]]
[1] ""

[[4]]
[1] NA

[[5]]
[1] "f" "g" "" "" "h" "i" "" "j" ""
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The result is a list of character vectors, as each string in the haystack might be split into a
possibly different number of tokens.
There are also options to omit empty strings from the resulting vectors, or limit the number
of tokens.

R> stri_split_fixed(x, ",", n=3) # stringr compatibility mode

[[1]]
[1] "a" "b" "c,d"

[[2]]
[1] "e"

[[3]]
[1] ""

[[4]]
[1] NA

[[5]]
[1] "f" "g" ",,h,i,,j,"

R> stri_split_fixed(x, ",", n=3, tokens_only=TRUE, omit_empty=TRUE)

[[1]]
[1] "a" "b" "c"

[[2]]
[1] "e"

[[3]]
character(0)

[[4]]
[1] NA

[[5]]
[1] "f" "g" "h"
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5. Regular expressions
Regular expressions (regexes) provide us with a concise grammar for defining systematic
patterns which can be sought in character strings, in particular:

1. specific substrings,

2. emojis of any kind,

3. standalone sequences of lower-case Latin letters (“words”),

4. substrings that can be interpreted as real numbers (with or without fractional part, also
in scientific notation),

5. telephone numbers,

6. email addresses, or

7. URLs.

Theoretically, the concept of matching regular patterns dates back to the so-called regular
languages and finite state automata (Kleene 1951), see also (Hopcroft and Ullman 1979; Rabin
and Scott 1959). Regexes in the form as we know today have already been present in one of
the pre-Unix implementations of the command-line text editor qed (Ritchie and Thompson
1970; the predecessor of the well-known sed).
Base R gives access to two different regex matching engines (via functions such as gregexpr()
and regexec(), see Table 1):

• ERE6 (extended regular expressions that conform to the POSIX.2-1992 standard); used
by default,

• PCRE7 (Perl-compatible regular expressions), in use if perl = TRUE is set.

Other matchers are implemented in the ore (Clayden 2019; via the Onigmo library) and re2r
(Wenfeng 2020; RE2) packages.
Stringi, on the other hand, provides access to the regex engine implemented in ICU, which
was inspired by Java’s util.regex in JDK 1.4. Their syntax is mostly compatible with that of
PCRE, although certain advanced facets may not be supported (e.g., recursive patters). On
the other hand, ICU regexes fully conform to the Unicode Technical Standard #18 (Davis
and Heninger 2020) and hence provide comprehensive support for Unicode.
It is worth noting that most programming languages as well as advanced text editors and IDEs
(including RStudio) allow for finding or replacing patters with regexes. Therefore, they should
be amongst the instruments at every data scientist’s disposal. One general introduction to
regexes is (Friedl 2006). The ICU flavour is summarised at http://userguide.icu-project.
org/strings/regexp.
Below we provide a concise yet comprehensive introduction to the topic from the perspective of
the stringi package users. This time we will use the pattern search routines whose names end

6Via the TRE library (https://github.com/laurikari/tre/).
7Via the PCRE2 library (https://www.pcre.org/).

http://userguide.icu-project.org/strings/regexp
http://userguide.icu-project.org/strings/regexp
https://github.com/laurikari/tre/
https://www.pcre.org/
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Option Purpose
case_insensitive
[regex flag (?i)]

logical; defaults to FALSE; whether to enable (full) case-
insensitive matching

comments
[regex flag (?x)]

logical; defaults to FALSE; whether to allow white spaces and
comments within patterns

dot_all
[regex flag (?s)]

logical; defaults to FALSE; if set, “.” matches line termina-
tors, otherwise its matching stops at a line end

literal logical; defaults to FALSE; whether to treat the entire pattern
as a literal string; note that in most cases the code-pointwise
string search facilities (*_fixed() functions described in Sec-
tion 4) are faster

multi_line
[regex flag (?m)]

logical; defaults to FALSE; if set, “$” and “^” recognise line
terminators within a string, otherwise, they match only at
start and end of the input

unix_lines logical; defaults to FALSE; when enabled, only the Unix line
ending, i.e., U+000a, is honoured as a terminator by “.”, “$”,
and “^”

uword
[regex flag (?w)]

logical; defaults to FALSE; whether to use the Unicode defi-
nition of word boundaries (see Section 7.1), which are quite
different from the traditional regex word boundaries

error_on_unknown_escapes logical; defaults to FALSE; whether unrecognised backslash-
escaped characters trigger an error; by default, unknown
backslash-escaped ASCII letters represent themselves

time_limit integer; processing time limit for match operations in
∼milliseconds (depends on the CPU speed); 0 for no limit
(the default)

stack_limit integer; maximal size, in bytes, of the heap storage available
for the matcher’s backtracking stack; setting a limit is desir-
able if poorly written regexes are expected on input; 0 for no
limit (the default)

Table 4: Options for the regular expressions search engine, see stri_opts_regex().

with the *_regex() suffix. Apart from stri_detect_regex(), stri_locate_all_regex(),
and so forth, in Section 5.4 we introduce stri_match_all_regex(), stri_match_first_regex(),
and stri_match_last_regex(). Moreover, Table 4 lists the available options for the regex
engine.

5.1. Matching individual characters

We shall begin by discussing different ways to define sets of characters. In this part, the
length of all matching substrings will be quite easy to determine.
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First, let’s note that the following characters have special meaning to the regex engine:

. \ | ( ) [ { } ^ $ * + ?

Any regular expression that does not contain the above, behaves like a fixed pattern:

R> x <- "spam, egg, spam, spam, bacon, and spam"
R> stri_count_regex(x, "spam")

[1] 4

However, this time the case insensitive mode fully supports Unicode matching8:

R> stri_detect_regex("groß", "GROSS", case_insensitive=TRUE)

[1] TRUE

If we wish to make a special character part of a regular expression – so that it is treated
literally – we have to escape it with a backslash, “\”. Yet, the backlash itself has a special
meaning to R, see ?Quotes, therefore it needs to be preceded with another backslash.

R> stri_count_regex("spam...", "\\.") # "\\" is a way to input a single \

[1] 3

R> stri_count_regex("spam...", r"(\.)") # literal string - since R 4.0

[1] 3

In other words, the R string "\\." is seen by the regex engine as “\.” and interpreted as the
dot character (literally).

Matching any character. The (unescaped) dot, “.”, matches any character except the
newline.

R> x <- "Ham, spam, jam, SPAM, eggs, and spam"
R> stri_extract_all_regex(x, ".am")

[[1]]
[1] "Ham" "pam" "jam" "pam"

R> stri_extract_all_regex(x, ".am", case_insensitive=TRUE)
8This does not mean, though, that it considers canonically equivalent strings as equal, see Section 6.2 for

discussion and a workaround.
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[[1]]
[1] "Ham" "pam" "jam" "PAM" "pam"

R> stri_extract_all_regex(x, "..am", case_insensitive=TRUE)

[[1]]
[1] "spam" " jam" "SPAM" "spam"

The dot’s insensitivity to the newline character is motivated by the need to maintain the
compatibility with tools such as grep (when searching within text files in a line by line
manner). This behaviour can be altered by setting the dot_all option to TRUE:

R> x <- "ham, spam, jam\namalgam"
R> stri_extract_all_regex(x, ".am")

[[1]]
[1] "ham" "pam" "jam" "gam"

R> stri_extract_all_regex(x, ".am", dot_all=TRUE)

[[1]]
[1] "ham" "pam" "jam" "\nam" "gam"

Defining character sets. Sets of characters can be introduced by enumerating their mem-
bers between a pair of square brackets. For instance, “[abc]” denotes the set {a, b, c} – such
a regular expression matches one (and only one) symbol from this set. Moreover, in:

R> stri_extract_all_regex(x, "[hj]am")

[[1]]
[1] "ham" "jam"

the “[hj]am” regex matches: “h” or “j”, followed by “a”, followed by “m”. In other words,
"ham" and "jam" are the only two strings that are matched by this pattern (unless matching
is done case-insensitively).
The following characters, if used within square brackets, may be treated non-literally:

\ [ ] ^ - &

Therefore, to include them as-is in a character set, the backslash-escape must be used. For
example, “[\[\]\\]” matches the backslash or a square bracket.
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Complementing sets. Including “^” after the opening square bracket denotes the set
complement. Hence, “[^abc]” matches any character except “a”, “b”, and “c”.

R> x <- "Nobody expects the Spanish Inquisition!"
R> stri_extract_all_regex(x, "[^ ][^ ][^ ]")

[[1]]
[1] "Nob" "ody" "exp" "ect" "the" "Spa" "nis" "Inq" "uis" "iti" "on!"

The above matches any substring that consists of 3 non-spaces.
Defining Code Point Ranges. Each Unicode code point can be referenced by its unique
numeric identifier, see Section 8.1 for more details. For instance, “a” is assigned code U+0061
and “z” is mapped to U+007A. In the pre-Unicode era (mostly with regards to the ASCII
codes, ≤ U+007F, representing English letters, decimal digits, some punctuation characters,
and a few control characters), we were used to relying on specific code ranges; e.g., “[a-z]”
denotes the set comprised of all characters with codes between U+0061 and U+007A, i.e.,
lowercase letters of the English (Latin) alphabet.

R> x <- "In 2020, I had fun once."
R> stri_extract_all_regex(x, "[a-z]") # codes U+0061 - U+007A

[[1]]
[1] "n" "h" "a" "d" "f" "u" "n" "o" "n" "c" "e"

R> stri_extract_all_regex(x, "[0-9]") # codes U+0030 - U+0039

[[1]]
[1] "2" "0" "2" "0"

R> stri_extract_all_regex(x, "[A-Za-z0-9]") # union of 3 code ranges

[[1]]
[1] "I" "n" "2" "0" "2" "0" "I" "h" "a" "d" "f" "u" "n" "o" "n" "c" "e"

Using predefined character sets. Each code point is assigned a unique general category,
which can be thought of a character’s class, see (Whistler and Iancu 2020). Sets of characters
from each category can be referred to, amongst others, by using the “\p{category}” syntax:

R> x <- "aąbßÆAĄB 你 123,.;'! \t-+=[]©←→”„²³¾"
R> stri_extract_all_regex(x, "\\p{L}") # letter (equivalently: [\p{L}])

[[1]]
[1] "a" "ą" "b" "ß" "Æ" "A" "Ą" "B" " 你"

R> stri_extract_all_regex(x, "\\p{Ll}") # lowercase letter
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[[1]]
[1] "a" "ą" "b" "ß"

R> stri_extract_all_regex(x, "\\p{Lu}") # uppercase letter

[[1]]
[1] "Æ" "A" "Ą" "B"

R> stri_extract_all_regex(x, "\\p{N}") # number

[[1]]
[1] "1" "2" "3" "²" "³" "¾"

R> stri_extract_all_regex(x, "\\p{P}") # punctuation

[[1]]
[1] "," "." ";" "'" "!" "-" "[" "]" "”" "„"

R> stri_extract_all_regex(x, "\\p{S}") # symbol

[[1]]
[1] "+" "=" "©" "←" "→"

Characters’ binary properties and scripts can also be referenced in a similar manner. Some
other predefined classes include:

R> stri_extract_all_regex(x, "\\w") # word characters

[[1]]
[1] "a" "ą" "b" "ß" "Æ" "A" "Ą" "B" " 你" "1" "2" "3"

R> stri_extract_all_regex(x, "\\d") # decimal digits, \p{Nd}

[[1]]
[1] "1" "2" "3"

R> stri_extract_all_regex(x, "\\s") # spaces, [\t\n\f\r\p{Z}]

[[1]]
[1] " " "\t"

Moreover, e.g., the upper-cased “\P{category}” and “\W” is equivalent to “[^\p{category}]”
and “[^\w]”, respectively, i.e., denote their complements.
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Avoiding POSIX classes. The use of the POSIX-like character classes should be avoided.
The ICU User Guide states that in general they are not well-defined.
In particular, in POSIX-like regex engines, “[:punct:]” stands for the character class corre-
sponding to the ispunct() function in C (check out man 3 ispunct on Unix-like systems).
According to ISO/IEC 9899:1990 (ISO C90), ispunct() tests for any printing character ex-
cept for the space or a character for which isalnum() is true.
In our case, PCRE yields:

R> x <- ",./|\\<>?;:'\"[]{}-=_+()*&^%$€#@!`~×�„”"
R> stri_sub(x, gregexpr("[[:punct:]]", x, perl=TRUE)[[1]], length=1)

[1] "," "." "/" "|" "\\" "<" ">" "?" ";" ":" "'" "\"" "[" "]"
[15] "{" "}" "-" "=" "_" "+" "(" ")" "*" "&" "^" "%" "$" "#"
[29] "@" "!" "`" "~"

R> stri_sub(x, gregexpr("[^[:punct:]]", x, perl=TRUE)[[1]], length=1)

[1] "€" "×" "�" "„" "”"

However, in a POSIX setting, the details of the characters’ belongingness to particular classes
depend on the current locale. Therefore, “[:punct:]”, in POSIX-like regex engines, is not
portable.
ICU, on the other hand, gives:

R> stri_extract_all_regex(x, "[[:punct:]]") # equivalently: \p{P}

[[1]]
[1] "," "." "/" "\\" "?" ";" ":" "'" "\"" "[" "]" "{" "}" "-"
[15] "_" "(" ")" "*" "&" "%" "#" "@" "!" "�" "„" "”"

R> stri_extract_all_regex(x, "[^[:punct:]]") # complement

[[1]]
[1] "|" "<" ">" "=" "+" "^" "$" "€" "`" "~" "×"

R> stri_extract_all_regex(x, "\\p{S}") # symbols

[[1]]
[1] "|" "<" ">" "=" "+" "^" "$" "€" "`" "~" "×"

We strongly recommend, wherever possible, the use of the portable “[\p{P}\p{S}]” as an
alternative to the PCRE “[:punct:]”.

5.2. Alternating and grouping subexpressions
The alternation operator, “|”, allows us to match either its left or its right branch, for instance:
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R> x <- "spam, egg, ham, jam, algae, and an amalgam of spam, all al dente"
R> stri_extract_all_regex(x, "spam|ham")

[[1]]
[1] "spam" "ham" "spam"

It has a very low precedence. Therefore, if we wish to introduce an alternative of subexpressions,
we need to group them, e.g., between round brackets9:

R> stri_extract_all_regex(x, "(sp|h)am")

[[1]]
[1] "spam" "ham" "spam"

Matching is always done left-to-right, on a first-come, first-served basis. Hence, if the left
branch is a subset of the right one, the latter will never be matched, as in the example below:

R> stri_extract_all_regex(x, "(al|alga|algae)")

[[1]]
[1] "al" "al" "al" "al"

R> stri_extract_all_regex(x, "(algae|alga|al)")

[[1]]
[1] "algae" "alga" "al" "al"

Non-grouping parentheses. Some parenthesised subexpressions where the opening bracket
is followed by the question mark have distinct meaning. In particular, “(?#...)” denote free-
format comments that are ignored by the regex parser:

R> stri_extract_all_regex(x,
+ "(?# match 'sp' or 'h')(sp|h)(?# and 'am')am|(?# or match 'egg')egg")

[[1]]
[1] "spam" "egg" "ham" "spam"

Nevertheless, constructing more sophisticated regexes by concatenating subfragments thereof
may sometimes be more readable:

R> stri_extract_all_regex(x,
+ stri_paste(
+ "(sp|h)", # match either 'sp' or 'h'
+ "am", # followed by 'am'
+ "|", # ... or ...
+ "egg" # just match 'egg'
+ ))

9Which have the side-effect of creating new capturing groups, see below for discussion.
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[[1]]
[1] "spam" "egg" "ham" "spam"

What is more, e.g., “(?i)” enables the case_insensitive mode.

R> stri_count_regex("Spam spam SPAMITY spAm", "(?i)spam")

[1] 4

For more regex flags, we refer to Table 4.

5.3. Quantifiers
Oftentimes, we need to enable the matching of a variable number of instances of the same
subexpression or make its presence totally optional. This can be achieved with the following
quantifiers:

• “?” matches 0 or 1 times,

• “*” matches 0 or more times,

• “+” matches 1 or more times,

• “{n,m}” matches between n and m times,

• “{n,}” matches at least n times,

• “{n}” matches exactly n times.

These operators are applied to the preceding atoms. For example, “ba+” is matched by "ba",
"baa", "baaa", … but not "b" alone.
By default, the quantifiers are greedy – they match the repeated subexpression as many
times as possible. The “?” suffix (hence, “??”, “*?”, “+?”, and so forth) tries with as few
occurrences as possible (to still get a match).

R> x <- "sp(AM)(maps)(SP)am"
R> stri_extract_all_regex(x,
+ c("\\(.+\\)", # [[1]] greedy
+ "\\(.+?\\)", # [[2]] lazy
+ "\\([^)]+\\)" # [[3]] greedy (but clever)
+ ))

[[1]]
[1] "(AM)(maps)(SP)"

[[2]]
[1] "(AM)" "(maps)" "(SP)"

[[3]]
[1] "(AM)" "(maps)" "(SP)"
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R> stri_extract_first_regex("spamamamnomnomnomammmmmmmmm",
+ c("sp(am|nom)+", "sp(am|nom)+?",
+ "sp(am|nom)+?m*", "sp(am|nom)+?m+"))

[1] "spamamamnomnomnomam" "spam"
[3] "spam" "spamamamnomnomnomammmmmmmmm"

Let us stress that the quantifier is applied to the subexpression that stands directly before it.
Grouping parentheses can be used in case they are needed.

R> stri_extract_all_regex("12, 34.5, 678.901234, 37...629, ...",
+ c("\\d+\\.\\d+",
+ "\\d+\\.\\d+?",
+ "\\d+(\\.\\d+)?"))

[[1]]
[1] "34.5" "678.901234"

[[2]]
[1] "34.5" "678.9"

[[3]]
[1] "12" "34.5" "678.901234" "37" "629"

Performance notes. ICU, just like PCRE, uses a nondeterministic finite automaton-type
algorithm. Hence, due to backtracking, some ill-defined regexes can lead to exponential
matching times (e.g., “(a+)+b” applied on "aaaa...aaaaac"). If such patterns are expected,
setting the time_limit or stack_limit option is recommended.

R> system.time(tryCatch({
+ stri_detect_regex("a" %s*% 1000 %s+% "c", "(a+)+b", time_limit=1e5)
+ }, error=function(e) cat("stopped.")))

stopped.

user system elapsed
20.664 0.000 20.664

Nevertheless, oftentimes such regexes can be naturally reformulated to fix the underlying issue.
The ICU User Guide on Regular Expressions also recommends using possessive quantifiers
(“?+”, “*+”, “++”, and so on), which match as many times as possible but, contrary to the
plain-greedy ones, never backtrack when they happen to consume too much data.
See also the re2r package (a wrapper around the RE2 library; Wenfeng 2020) documentation
and the references therein for discussion.
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5.4. Capture groups and references thereto
It turns out that round-bracketed subexpressions carries one additional characteristic: they
form the so-called capture groups that can be extracted separately or be referred to in other
parts of the same regex.

Extracting capture group matches. This is most evident when we use the capture
group-sensitive versions of stri_extract(): stri_match_first_regex(), stri_match_-
last_regex(), and stri_match_all_regex().

R> x <- "name='Sir Launcelot', quest='Seek the Grail', colour='blue'"
R> stri_extract_all_regex(x, "(\\w+)='(.+?)'")

[[1]]
[1] "name='Sir Launcelot'" "quest='Seek the Grail'"
[3] "colour='blue'"

R> stri_match_all_regex(x, "(\\w+)='(.+?)'")

[[1]]
[,1] [,2] [,3]

[1,] "name='Sir Launcelot'" "name" "Sir Launcelot"
[2,] "quest='Seek the Grail'" "quest" "Seek the Grail"
[3,] "colour='blue'" "colour" "blue"

In the latter example, we follow the convention introduced in stringr, where the findings are
presented in a matrix form. The first column gives the complete matches, the second column
stores the matches to the first capture group, and so forth.
If we just need the grouping part of “(...)”, i.e., without the capturing feature, “(?:…)” can
be applied:

R> stri_match_all_regex(x, "(?:\\w+)='(.+?)'")

[[1]]
[,1] [,2]

[1,] "name='Sir Launcelot'" "Sir Launcelot"
[2,] "quest='Seek the Grail'" "Seek the Grail"
[3,] "colour='blue'" "blue"

Replacing with capture group matches. Matches to particular capture groups can be
recalled in replacement strings when using stri_replace(). Here, the match in its entirety
is denoted with “$0”, “$1” stores whatever was caught by the first capture group, “$2” is the
match to the second capture group, etc. Moreover, “\$” gives the dollar-sign.

R> stri_replace_all_regex(x, "(\\w+)='(.+?)'", "$2 is a $1")

[1] "Sir Launcelot is a name, Seek the Grail is a quest, blue is a colour"
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Back-referencing. Matches to capture groups can also be part of the regexes themselves.
For example, “\1” denotes whatever has been consumed by the first capture group.
Although, in general, parsing of HTML code with regexes is not recommended, let us consider
the following examples:

R> x <- "<strong><em>spam</em></strong><code>eggs</code>"
R> stri_extract_all_regex(x, "<[a-z]+>.*?</[a-z]+>")

[[1]]
[1] "<strong><em>spam</em>" "<code>eggs</code>"

R> stri_extract_all_regex(x, "<([a-z]+)>.*?</\\1>") # \1 - back-reference

[[1]]
[1] "<strong><em>spam</em></strong>" "<code>eggs</code>"

The second regex guarantees that the match will include all characters between the opening
<tag> and the corresponding (not: any) closing </tag>.

On a side note, currently ICU does not support the extraction of names of named capture
groups, see however (Hocking 2019) for discussion.

5.5. Anchoring
Lastly, let us discuss ways to match a pattern at a given abstract position within a string.

Matching at the beginning or end of a string. “^” and “$” allow us to match, respec-
tively, start and end of the string (or each line within a string, if the multi_line option is
set to TRUE).

R> x <- c("spam egg", "bacon spam", "spam", "egg spam bacon")
R> stri_detect_regex(x, "spam") # 'spam' wherever

[1] TRUE TRUE TRUE TRUE

R> stri_detect_regex(x, "^spam") # begins with 'spam'

[1] TRUE FALSE TRUE FALSE

R> stri_detect_regex(x, "spam$") # ends with 'spam'

[1] FALSE TRUE TRUE FALSE

R> stri_detect_regex(x, "^spam$") # 'spam' only

[1] FALSE FALSE TRUE FALSE

R> stri_detect_regex(x, "spam$|^spam") # begins or ends with 'spam'

[1] TRUE TRUE TRUE FALSE
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Matching at word boundaries. Furthermore, “\b” matches at a “word boundary“, e.g.,
near spaces, punctuation marks, or at the start/end of a string (i.e., wherever there is a
transition between a word, “\w”, and a non-word character, “\W” or vice versa).
In the two following examples we match all complete “words” that end with "am" (not just
any string that includes "am") and all stand-alone numbers10:

R> stri_extract_all_regex("spam, spams, jam, tramway", "\\b\\w*am\\b")

[[1]]
[1] "spam" "jam"

R> stri_extract_all_regex("12, 34.5, J23, 37.629cm", "\\b\\d+(\\.\\d+)?+\\b")

[[1]]
[1] "12" "34.5"

Looking behind and ahead. There are also ways to guarantee that a pattern occur-
rence begins or ends with a match to some subexpression: “(?<=...)...” is the so-called
look-behind, whereas “...(?=...)” denotes the look-ahead. Moreover, “(?<!...)...” and
“...(?!...)” are their negated (“negative look behind/ahead”) versions.

R> x <- "I like spam, spam, eggs, and spam."
R> stri_extract_all_regex(x, "\\w+(?=[,.])") # word that ends with ',' or '.'

[[1]]
[1] "spam" "spam" "eggs" "spam"

R> stri_extract_all_regex(x, "\\w++(?![,.])") # neither ends with ',' nor '.'

[[1]]
[1] "I" "like" "and"

6. String collation
Historically, code-pointwise comparison had been used in most string comparison activities,
especially if strings in ASCII (i.e., English) were involved. However, nowadays this does not
necessarily constitute the most suitable approach to the processing of natural-language texts.
In particular, a code point vs. code point matching does not take into account accented and
conjoined letters as well as ignorable punctuation and case.
The ICU Collation Service11 provides the basis for such string comparison activities as string
sorting and searching, or determining if two strings are equivalent. This time, though, due
to its conformance to the Unicode Collation Algorithm (Davis, Whistler, and Scherer 2020),

10This regex is for didactic purposes only.
11See the ICU User Guide on Collation, http://userguide.icu-project.org/collation.

http://userguide.icu-project.org/collation
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we may expect that the generated results will meet the requirements of the culturally correct
natural language processing in any locale.

6.1. Locales
String collation is amongst many locale-sensitive operations available in stringi. Before pro-
ceeding any further, we should first discuss how we can parameterise the ICU services so as
to deliver the results that reflect the expectations of a specific user community, such as the
speakers of different languages and their various regional variants.

Specifying locales. A locale specifier12 is of the form "Language", "Language_Country",
or "Language_Country_Variant", where:

• Language is, most frequently, a two- or three-letter code that conforms to the ISO-
639-1 or ISO-630-2 standard, respectively; e.g., "en" or "eng" for English, "es" or
"spa" for Spanish, "zh" or "zho" for Chinese, and "mas" for Masai (which lacks the
corresponding two-letter code); however, more specific language identifiers may also
be available, e.g., "zh_Hans" for Simplified- and "zh_Hant" for Traditional-Chinese or
"sr_Cyrl" for Cyrillic- and "sr_Latn" Latin-Serbian;

• Country is a two-letter code following the ISO-3166 standard that enables different
language conventions within the same language; e.g., the US-English ("en_US") and
Australian-English ("en_AU") not only observe some differences in spelling and vocab-
ulary, but also in the units of measurement;

• Variant is an identifier indicating a preference towards some convention within the same
country; e.g., "de_DE_PREEURO" formats currency values using the pre-2002 Deutsche
Mark (DEM).

Moreover, following the “@” symbol, semicolon-separated “key=value” pairs can be appended
to the locale specifier, in order to customise some locale-sensitive services even further (see be-
low for an example using “@collation=phonebook” and Section 7.5 for “@calendar=hebrew”,
amongst others).

Listing locales. To list the available locale identifiers, we call stri_locale_list().

R> length(stri_locale_list()) # number of available locales

[1] 722

R> sample(stri_locale_list(), 5) # 5 random ones

[1] "pt_PT" "seh_MZ" "fr_GP" "en_RW" "en_IO"
12Locale specifiers in ICU are platform-independent. This is not the case for their base-R counterparts, see

?locales, e.g., we have "Polish_Poland" on Windows vs. "pl_PL" on Linux.
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Querying for locale-specific services. The availability of locale-specific services can only
be determined during the very request for a particular resource13. It may depend on the ICU
library version actually in use as well as the way the ICU Data Library (icudt) has been
packaged. Therefore, for maximum portability, it is best to rely on the ICU library bundle
that is shipped with stringi. This is the case on Windows and OS X, whose users typically
download the pre-compiled versions of the package from CRAN. However, on various flavours
of GNU/Linux and other Unix-based systems, the system ICU is used more eagerly14. To
force building ICU from sources, we may call:

R> install.packages("stringi", configure.args="--disable-pkg-config")

Overall, should a requested service be unavailable in a given locale, the best possible match
is returned.

Default locale. Each locale-sensitive operation in stringi selects the current default locale if
no locale has been explicitly requested, i.e., when a function’s locale argument (see Table 5)
is left alone in its “NULL” state. The default locale is initially set to match the system locale
on the current platform, and may be changed with stri_locale_set(), e.g., in the very rare
case of improper automatic locale detection.

R> stri_locale_get()

[1] "en_AU"

6.2. Testing string equivalence
In Unicode, some characters may have multiple representations. For instance, “LATIN
SMALL LETTER A WITH OGONEK” (“ą”) can be stored as a single code point U+0105 or
as a sequence that is comprised of the letter “LATIN SMALL LETTER A”, U+0061, and the
“COMBINING OGONEK”, U+0328 (when rendered properly, they appear as if they were
identical glyphs). This is an example of canonical equivalence of strings.
Testing for the Unicode equivalence between strings can be performed by calling %s==% and,
more generally, stri_cmp_equiv(), or their negated versions, %s!=% and stri_cmp_nequiv().

R> "a\u0328" %s==% "ą" # a, ogonek == a with ogonek

[1] TRUE

R> stri_cmp_equiv("a\u0328", "ą") # the same

[1] TRUE
13For more details, see the ICU User Guide on Locales, http://userguide.icu-project.org/locale.
14See, e.g., software packages libicu-dev on Debian/Ubuntu or libicu-devel on RHL/Fedora/OpenSUSE.

For more details regarding the configure/build process of stringi, refer to the INSTALL file.

http://userguide.icu-project.org/locale


Marek Gagolewski 45

There are also functions for indicating and removing duplicated elements in a character vector:

R> x <- c("Gągolewski", "Gagolewski", "Ga\u0328golewski")
R> stri_unique(x)

[1] "Gągolewski" "Gagolewski"

R> stri_duplicated(x)

[1] FALSE FALSE TRUE

R> stri_duplicated(x, from_last=TRUE)

[1] TRUE FALSE FALSE

R> stri_duplicated_any(x) # index of the first non-unique element

[1] 3

6.3. Linear ordering of strings
Operators such that %s<%, %<=%, etc., and the corresponding functions stri_cmp_lt() (“less
than”), stri_cmp_le() (“less than or equal”), etc., implement locale-sensitive linear orderings
of strings. Moreover, stri_sort() returns the lexicographically-sorted version of a given
input vector and stri_order() yields the corresponding (stable) ordering permutation.

R> "chaotic" %s<% "hard" # current default locale (here: en_AU)

[1] TRUE

R> stri_cmp_lt("chłodny", "hardy", locale="pl_PL") # Polish

[1] TRUE

R> stri_cmp_lt("chladný", "hladný", locale="sk_SK") # Slovak

[1] FALSE

R> stri_cmp("chladný", "hladný", locale="sk_SK") # -1,0,1 encode <,=,>

[1] 1

Note that the locale-aware comparison might be context-sensitive and goes beyond the simple
code-pointwise comparison. In the example above, a contraction occurred: in the Slovak
language, two code points “ch” are treated as a single entity and are sorted after “h”:
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R> stri_sort(c("chłodny", "hardy", "cichy", "cenny"), locale="pl_PL")

[1] "cenny" "chłodny" "cichy" "hardy"

R> stri_sort(c("cudný", "chladný", "hladný", "čudný"), locale="sk_SK")

[1] "cudný" "čudný" "hladný" "chladný"

An opposite situation is called an expansion:

R> german_k_words <- c("können", "kondensieren", "kochen", "korrelieren")
R> stri_sort(german_k_words, locale="de_DE")

[1] "kochen" "kondensieren" "können" "korrelieren"

R> stri_sort(german_k_words, locale="de_DE@collation=phonebook")

[1] "kochen" "können" "kondensieren" "korrelieren"

In the latter example, where we use the German phone-book order, "ö" is treated as "oe".

6.4. Collator options
Table 5 lists the options that can be passed to stri_opts_coll() via “...” in all the
functions that rely on the ICU Collator. Below we would like to attract the reader’s attention
to some of them.

Collation strength. The Unicode Collation Algorithm (Davis et al. 2020) can go beyond
simple canonical equivalence and allow us to treat some other (depending on the context)
differences as negligible.
The strength option controls the Collator’s “attention to detail”. For instance, it can be
used to make the ligature “ff” (U+FB00) compare equal to the two-letter sequence “ff”:

R> stri_cmp_equiv("\ufb00", "ff")

[1] FALSE

R> stri_cmp_equiv("\ufb00", "ff", strength=2)

[1] TRUE

Generally, four (nested) levels of inter-string differences can be distinguished:

1. A primary difference – the strongest one – occurs where there is a mismatch between
base characters (e.g., "a" vs. "b").
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Option Purpose
locale a string specifying the locale to use; NULL (default) or "" for the

current default locale as indicated by stri_locale_get()

strength an integer in {1, 2, 3, 4} defining collation strength; 1 for the most
permissive collation rules, 4 for the strictest ones; defaults to 3

uppercase_first logical; NA (default) orders upper and lower case letters in accor-
dance to their tertiary weights, TRUE forces upper case letters to
sort before lower case letters, FALSE does the opposite

numeric logical; if TRUE, a collation key for the numeric value of substrings of
digits is generated; this is a way to make "100" ordered after "2";
defaults to FALSE

case_level logical; if TRUE, an extra case level (positioned before the third level)
is generated; defaults to FALSE

normalisation logical; if TRUE, then an incremental check is performed to see
whether the input data is in the FCD (“fast C or D”) form; if the
data is not in the FCD form, the incremental NFD normalisation is
performed, see Section 8.4; defaults to FALSE

alternate_shifted logical; if FALSE (default), all code points with non-ignorable pri-
mary weights are handled in the same way; TRUE causes the code
points with primary weights that are equal or below the variable
top value to be ignored on the primary level and moved to the
quaternary level; this can be used to, e.g., ignore punctuation, see
examples provided

french logical; TRUE results in secondary weights being considered back-
wards, i.e., ordering according to the last accent difference – nowa-
days only used in Canadian French; defaults to FALSE

Table 5: Options for the ICU Collator that can be passed to stri_opts_collator().

2. Some character accents can be considered a secondary difference in many languages.
However, in other ones, an accented letter is considered a different letter.

3. Distinguishing between upper- and lower case typically happens on the tertiary level,
see, however, the case_level option.

4. If alternate_shifted is TRUE, differences in punctuation can be determined at the
quaternary level. This is also meaningful in the processing of Hiragana text.

Ignoring case. Note what follows:

R> x <- c("gro\u00df", "gross", "GROSS", "Gro\u00df", "Gross")
R> stri_unique(x, strength=1) # ß == ss, case insensitive

[1] "groß"
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R> stri_unique(x, strength=1, case_level=TRUE) # ß == ss, case sensitive

[1] "groß" "GROSS" "Groß"

R> stri_unique(x, strength=2) # ß != ss, case insensitive

[1] "groß" "gross"

Ignoring some punctuation. Here are some effects of changing the alternate_shifted
option:

R> x <- c("code point", "code-point", "codepoint", "CODE POINT", "CodePoint")
R> stri_unique(x, alternate_shifted=TRUE) # strength=3

[1] "code point" "CODE POINT" "CodePoint"

R> stri_unique(x, alternate_shifted=TRUE, strength=2)

[1] "code point"

R> stri_unique(x, strength=2)

[1] "code point" "code-point" "codepoint"

Backward secondary sorting. The French Canadian Sorting Standard CAN/CSA Z243.4.1
(historically this had been the default for all French locales) requires the word ordering with
respect to the last accent difference. Such a behaviour can be applied either by setting the
French-Canadian locale or by passing the french=TRUE option to the Collator.

R> stri_sort(c("cote", "côte", "coté", "côté"), locale="fr_FR")

[1] "cote" "coté" "côte" "côté"

R> stri_sort(c("cote", "côte", "coté", "côté"), locale="fr_CA") # french=TRUE

[1] "cote" "côte" "coté" "côté"

Sorting numerals. Moreover, let’s note the effect of setting the numeric option on the
sorting of strings that involves numbers:

R> stri_sort(c("a1", "a2", "a11", "a10", "a100")) # lexicographic order

[1] "a1" "a10" "a100" "a11" "a2"

R> stri_sort(c("a1", "a2", "a11", "a10", "a100"), numeric=TRUE)

[1] "a1" "a2" "a10" "a11" "a100"
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A note on compatibility equivalence. In Section 8.4 we describe different ways to nor-
malise canonically equivalent code point sequences so that they are represented by the same
code points, which can account for some negligible differences (as in the “a with ogonek”
example above).
Apart from ignoring punctuation and case, the Unicode Standard Annex #15 (Davis and
Whistler 2020) also discusses the so-called compatibility equivalence of strings. This is a
looser form of similarity; it is observed when there is the same abstract content, yet displayed
by means of different glyphs, for instance “¼” (U+00BC) vs. “1/4” or “R” vs. “R”. In the
latter case, whether these should be treated as equal, depends on the context (e.g., this
can be the set of real numbers vs. one’s favourite programming language). Compatibility
decompositions (NFKC, NFKD) mentioned in Section 8.4 or other types of transliteration
can be used to normalise strings so that such differences are not accounted for.
Also, for “fuzzy” matching of strings, the stringdist package (van der Loo 2014) might be
helpful.

6.5. String searching
The ICU Collator can also be utilised when there is a need to locate the occurrences of simple
textual patterns. All the string search functions described in Section 4 have their *_coll()-
suffixed equivalents. Despite being slower than their *_fixed() counterparts, they are more
appropriate in NLP activities.

R> stri_detect_coll("Er ist so groß.", "GROSS", strength=1, locale="de_AT")

[1] TRUE

R> stri_detect_coll("On je chladný", "chladny", strength=1, locale="sk_SK")

[1] TRUE

7. Other operations
In the sequel, we cover the functions that deal with text boundaries’ detection, random string
generation, date/time formatting and parsing, amongst others.

7.1. Analysing text boundaries
Text boundary analysis aims at locating linguistic delimiters for the purpose of word-wrapping
of text, counting characters or words, locating particular text units (e.g., the 3rd sentence),
etc.
Generally, text boundary analysis is a locale-sensitive operation, see (Davis and Chapman
2020). For example, in Japanese and Chinese, spaces are not used for the separating of words
– a line break can occur even in the middle of a word. Nevertheless, these languages have
punctuation and diacritical marks that cannot start or end a line, so this must also be taken
into account.
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The ICU Break Iterator15 comes in four flavours (see the type option in stri_opts_brkiter()):
character, work, line_break, and sentence.
We have access to functions such as stri_count_boundaries(), stri_split_boundaries(),
stri_extract_*_boundaries(), and stri_locate_*_boundaries(), as well as their spe-
cialised versions: stri_count_words(), stri_extract_*_words(), and stri_split_lines(),
amongst others. For example:

R> x <- "The\u00a0above-mentioned features are useful. " %s+%
+ "My hovercraft is full of eels, eggs, and spam."
R> stri_count_boundaries(x, type="sentence") # number of sentences

[1] 2

R> stri_count_boundaries(x, type="word") # number of word boundaries

[1] 36

R> stri_count_words(x) # number of words themselves

[1] 15

R> stri_extract_all_words(x)

[[1]]
[1] "The" "above" "mentioned" "features" "are"
[6] "useful" "My" "hovercraft" "is" "full"
[11] "of" "eels" "eggs" "and" "spam"

7.2. Trimming, padding, and other formatting
The following functions can be useful when pretty-printing character strings or text on the
console, dynamically generating reports (e.g., with Sweave() or knitr; see Xie 2015), or
creating text files (e.g., with stri_write_lines(); see Section 8.3).

Padding. Strings can be padded with some character so that they are of the desired lengths
by means of the stri_pad() function. This can be used to centre, left-, or right-align a
message when printed with, e.g., cat().

R> cat(stri_pad("spam", width=77, side="left"))

spam

R> cat(stri_pad("SPAMITY SPAM", width=77, side="both", pad="."))

................................SPAMITY SPAM.................................
15See the ICU User Guide on Boundary Analysis, http://userguide.icu-project.org/boundaryanalysis.

http://userguide.icu-project.org/boundaryanalysis
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Trimming. A dual operation is that of trimming from the left or right side of strings:

R> x <- " spam, eggs, and lovely spam.\n"
R> stri_trim(x) # side="both"

[1] "spam, eggs, and lovely spam."

R> stri_trim(x, pattern="[^\\n\\p{Z}\\p{P}\\p{S}]")

[1] "spam, eggs, and lovely spam"

Word wrapping. The stri_wrap() function splits each (possibly long) string in a char-
acter vector into chunks of at most a given width or length. By default, the dynamic word
wrap algorithm (Knuth and Plass 1981) that minimises the raggedness of the formatted text
is used. However, there is also an option (cost_exponent=0) to use the greedy alignment,
for compatibility with the built-in strwrap().

R> x <- stri_rand_lipsum(1) # random text paragraph
R> cat(stri_wrap(x, width=60, indent=24, exdent=20, prefix="> "), sep="\n")

> Lorem ipsum dolor sit amet, quis
> donec pretium auctor, quis id. Mauris
> rhoncus donec amet egestas sagittis
> ipsum per. Sed, sociis amet. Aliquam
> fusce dictumst sed vehicula ultrices
> arcu. Eros, netus et. Amet amet mi
> vestibulum vitae dapibus ut felis.
> Magnis in vestibulum egestas massa
> curabitur a ut, eget in in facilisis.
> Etiam odio fermentum sit ante
> ridiculus sit elit. Sapien torquent
> fermentum tortor gravida ornare sapien
> consequat et sem turpis. Hac vel lacus
> habitasse et id non. Metus habitasse
> sed lacinia nibh ex metus. Amet nam
> vestibulum ornare tincidunt massa sed
> ullamcorper.

Note that by default splitting is performed at line breaks (compare Section 7.1).

Applying string templates. The binary operator %s$% provides access to the built-in
sprintf() in a way similar to Python’s % overloaded for objects of type str.

R> "value='%d'" %s$% 3 # equivalently: "value='%d'" %s$% list(3)

[1] "value='3'"



52 stringi: Fast and Portable Character String Processing in R

R> "%s='%d'" %s$% list("value", 1:3)

[1] "value='1'" "value='2'" "value='3'"

7.3. Generating random strings
Apart from stri_rand_lipsum(), which produces random-ish text paragraphs (“placehold-
ers” for real text), we have access to a function that generates sequences of characters uni-
formly sampled (with replacement) from a given set.

R> stri_rand_strings(5, 8, "[actg]")

[1] "ctcttagt" "gctcggat" "aacttggt" "ggggcatt" "gtactaca"

R> stri_rand_strings(5, 2:6, "[A-Za-z]")

[1] "HV" "VTH" "HMYN" "sCWpG" "dKGnuT"

R> stri_rand_strings(1, 8, "[\\p{script=Katakana}&\\p{L}]")

[1] " ｦグムノﾀルｿﾀ"

See Section 5.1 for different ways to specify character sets.

7.4. Transliterating
Transliteration, in its broad sense, deals with the substitution of characters or their groups
for different ones, according to some well-defined rules. It may be useful, amongst others,
when ”normalising” pieces of strings or identifiers so that they can be more easily compared
with each other.

Case mapping. Mapping to upper, lower, or title case is a language- and context-sensitive
operation that can change the total number of code points in a string.

R> stri_trans_toupper("groß")

[1] "GROSS"

R> stri_trans_tolower("Iİ", locale = "tr_TR") # Turkish

[1] "ıi"

R> stri_trans_totitle("ijsvrij yoghurt", locale = "nl_NL") # Dutch

[1] "IJsvrij Yoghurt"
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Mapping between specific characters. If a fast 1-to-1 exchange of characters is required,
we can call:

R> stri_trans_char("GATAAATCTGGTCTTATTTCC", "ACGT", "tgca")

[1] "ctatttagaccagaataaagg"

Here, “A”, “C”, “G”, and “T” is replaced with “t”, “g”, “c”, and “a”, respectively.

General transforms. The stri_stats_general() function provides access to a wide
range of text transforms defined by ICU16, whose catalogue can be accessed by calling
stri_trans_list().

R> sample(stri_trans_list(), 9) # a few random entries

[1] "Kannada-Telugu" "Devanagari-Arabic" "Malayalam-Tamil"
[4] "Any-uz/BGN" "Any-Greek" "dv-dv_Latn/BGN"
[7] "Malayalam-Gurmukhi" "Gujr-Latn" "Gujarati-Kannada"

Some examples:

R> stri_trans_general("groß© żółć La Niña köszönöm", "upper; latin-ascii")

[1] "GROSS(C) ZOLC LA NINA KOSZONOM"

R> stri_trans_general("Let's go... -- she said.", "any-publishing")

[1] "Let’s go⋯— she said."

7.5. Parsing and formatting date and time
In base R, dealing with dates and times in languages different than the current locale is
somewhat difficult. For instance, most of the readers of this paper may find the task of
parsing the following Polish date problematic:

R> x <- "27 sierpnia 2020 r., godz. 17:17:32"

stringi connects to the ICU date and time services so that parsing/formatting temporal data
from/to any locale is possible:

R> stri_datetime_parse(x, "dd MMMM yyyy 'r., godz.' HH:mm:ss",
+ locale="pl_PL", tz="Europe/Warsaw")

16See the ICU User Guide on General Transforms, http://userguide.icu-project.org/transforms/
general.

http://userguide.icu-project.org/transforms/general
http://userguide.icu-project.org/transforms/general
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[1] "2020-08-27 17:17:32 CEST"

This function returns an object of class POSIXct, for compatibility with base R. Note, however,
that ICU uses its own format patterns17. For convenience, strftime()- and strptime()-
compatible templates can be converted with stri_datetime_fstr():

R> stri_datetime_parse(x,
+ stri_datetime_fstr("%d %B %Y r., godz. %H:%M:%S"),
+ locale="pl_PL", tz="Europe/Warsaw")

[1] "2020-08-27 17:17:32 CEST"

Some more examples:

R> stri_datetime_format(stri_datetime_now(), # current date and time
+ "datetime_full", # full format
+ locale="de_AT", tz="Europe/Vienna")

[1] "Donnerstag, 17. September 2020 um 13:13:36 Mitteleuropäische Sommerzeit"

R> stri_datetime_format(
+ stri_datetime_add(stri_datetime_now(), 1, "day"), # add 1 day to 'now'
+ "datetime_relative_long", # full format, relative to 'now'
+ locale="en_NZ", tz="NZ")

[1] "tomorrow at 11:13:36 PM NZST"

R> stri_datetime_format(
+ stri_datetime_create(2020, 1:12, 1), # vectorised w.r.t. all arguments
+ "date_long", # date only
+ locale="@calendar=hebrew") # English locale, Hebrew calendar

[1] "4 Tevet 5780" "6 Shevat 5780" "5 Adar 5780" "7 Nisan 5780"
[5] "7 Iyar 5780" "9 Sivan 5780" "9 Tamuz 5780" "11 Av 5780"
[9] "12 Elul 5780" "13 Tishri 5781" "14 Heshvan 5781" "15 Kislev 5781"

R> stri_datetime_format(
+ stri_datetime_create(2020, c(2, 8), c(4, 7)),
+ "date_full",
+ locale="ja_JP@calendar=japanese") # Japanese locale and calendar

[1] " 平成 32 年 2 月 4 日火曜日" " 平成 32 年 8 月 7 日金曜日"
17See the ICU User Guide on Formatting Dates and Times, http://userguide.icu-project.org/

formatparse/datetime.

http://userguide.icu-project.org/formatparse/datetime
http://userguide.icu-project.org/formatparse/datetime
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8. Input and output
This section deals with some more advanced topics related to the interoperability between
different platforms. In particular, we discuss how to assure that data read from input con-
nections are interpreted in the correct manner.

8.1. Dealing with Unicode code points
The Unicode Standard (as well as the Universal Coded Character Set, i.e., ISO/IEC 10646)
currently defines over 140,000 abstract characters together with their corresponding code
points – integers between 0 and 1,114,111 (or 000016 and 10FFFF16 in hexadecimal notation,
see https://www.unicode.org/charts/). In particular, here are the counts of the code
points in a few popular categories (compare Section 5.1), such as letters, numbers, and the
like.

R> z <- c("\\p{L}", "\\p{Ll}", "\\p{Lu}", "\\p{N}", "\\p{P}", "\\p{S}",
+ "\\w", "\\d", "\\s")
R> structure(stri_count_regex(stri_enc_fromutf32(
+ setdiff(1:0x10ffff, c(0xd800:0xf8ff))), z), names=z)

\\p{L} \\p{Ll} \\p{Lu} \\p{N} \\p{P} \\p{S} \\w \\d \\s
125093 2063 1702 1502 770 6978 128238 590 25

Yet, most of the code points are still unallocated – the Unicode standard is updated from
time to time, e.g., the recent versions were supplemented with over 1,000 emojis.
The first 255 code points are identical to the ones defined by ISO/IEC 8859-1 (ISO Latin-1;
“Western European”), which itself extends US-ASCII (codes ≤ 127 = 7F16). For instance,
the code point that we are used to denoting as U+007A (the “U+” prefix is followed by
a sequence of hexadecimal digits; 7A16 corresponds to decimal 122) encodes the lower case
letter “z”. To input such a code point in R, we write:

R> "\u007A" # or "\U0000007A"

[1] "z"

For communicating with ICU and other libraries, we may need to escape a given string, for
example, as follows (recall that to input a backslash in R, we must precede in with another
backslash).

R> x <- "zß 你好"
R> stri_escape_unicode(x)

[1] "z\\u00df\\u4f60\\u597d"

R> stri_trans_general(x, "any-hex")

[1] "\\u007A\\u00DF\\u4F60\\u597D"

https://www.unicode.org/charts/
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R> stri_trans_general(x, "[^\\u0000-\\u007f] any-hex") # except ASCII

[1] "z\\u00DF\\u4F60\\u597D"

R> stri_trans_general(x, "[^\\u0000-\\u007f] any-hex/xml")

[1] "z&#xDF;&#x4F60;&#x597D;"

It is worth noting that despite the fact that some output devices might be unable to display
certain code points correctly (due to, e.g., missing fonts), the correctness of their processing
with stringi is still guaranteed by ICU. Here is an example of an incorrect presentation of an
emoji, generated by a malconfigured XƎLATEX engine:

R> "\U001F600" # the grinning face emoji, (: - font unavailable

[1] "�"

Nevertheless, the programmatic handling of such a code point is unaffected:

R> stri_trans_general("\U001F600", "any-name") # query the character database

[1] "\\N{GRINNING FACE}"

8.2. Character encodings
When storing strings in RAM or on the disk, we need to decide upon the actual way of
representing the code points as sequences of bytes. The two most popular encodings in the
Unicode family are UTF-8 and UTF-16:

R> x <- "abz0ąß 你好!"
R> stri_encode(x, to="UTF-8", to_raw=TRUE)[[1]]

[1] 61 62 7a 30 c4 85 c3 9f e4 bd a0 e5 a5 bd 21

R> stri_encode(x, to="UTF-16LE", to_raw=TRUE)[[1]]

[1] 61 00 62 00 7a 00 30 00 05 01 df 00 60 4f 7d 59 21 00

R’s current platform-default encoding, which we shall refer to as the native encoding, is defined
via the LC_CTYPE locale category in Sys.getlocale(). This is the representation assumed,
e.g., when reading data from the standard input or files (e.g., when scan() is called). For
instance, Central European versions of Windows will assume the “windows-1250” code page.
OS X as well as most Linux boxes work with UTF-8 by default.
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All strings in R have an associated encoding mark which can be read by calling Encoding()
or, more conveniently, stri_enc_mark(). Most importantly, strings in ASCII, ISO-8859-1
(“latin1”), UTF-8, and the native encoding can coexist. Whenever a non-Unicode string
is passed to a stringi function, it is silently converted to UTF-8 or UTF-16, depending on
the requested operation (some ICU services are only available for UTF-16 data). Over the
years, this has proven a robust, efficient, and maximally portable design choice – Unicode
can be thought of as a superset of every other encoding. Moreover, in order to guarantee the
correctness and high performance of the string processing pipelines, stringi always18 outputs
UTF-8 data.

8.3. Reading and writing text files and converting between encodings
According to a report by W3Techs19, as of 2020–09–17, 95.4% of websites use UTF-8. Nev-
ertheless, encountering other encodings is still quite likely.

Reading and writing text files. If we know the encoding of a text file in advance,
stri_read_lines() can be used to read the data in a manner similar to the built-in readLines()
function (but with a much easier access to encoding conversion):

R> # see https://github.com/gagolews/stringi/tree/master/datasets
R> x <- stri_read_lines("ES_latin1.txt", encoding="ISO-8859-1")
R> head(x) # now x is in UTF-8

[1] "LOS CONSEJOS DE UN PADRE"
[2] ""
[3] ""
[4] "El León, el rey de las selvas, agonizaba en el hueco de su caverna...."
[5] ""
[6] "Á su lado estaba su hijo, el nuevo león, el rey futuro de todos los"

We can call stri_write_lines() to write the contents of a character vector to a file (each
string will constitute a separate text line), with any output encoding.

Detecting encoding. However, if a file’s encoding is not known in advance, there are a
certain functions that can aid in encoding detection. First, we can read the resource in form
of a raw-type vector:

R> # see https://github.com/gagolews/stringi/tree/master/datasets
R> x <- stri_read_raw("ES_latin1.txt")
R> head(x) # vector of type raw

[1] 4c 4f 53 20 43 4f

Then, to guess the encoding, we can call, e.g.:
18With a few obvious exceptions, such as stri_encode().
19See https://w3techs.com/technologies/cross/character_encoding/ranking.

https://w3techs.com/technologies/cross/character_encoding/ranking
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R> stri_enc_isascii(x)

[1] FALSE

R> stri_enc_isutf8(x) # false positives are possible

[1] FALSE

Alternatively, we can use:

R> stri_enc_detect(x) # based on heuristics

[[1]]
Encoding Language Confidence

1 ISO-8859-1 es 0.74
2 ISO-8859-2 ro 0.32
3 ISO-8859-9 tr 0.13
4 UTF-16BE 0.10
5 UTF-16LE 0.10

Nevertheless, encoding detection is an operation that relies on heuristics, therefore there is a
chance that the output might be imprecise or even misleading.

Converting encodings. Knowing the desired source and destination encoding precisely,
stri_encode() can be called to perform the conversion. Contrary to the build-in iconv(),
which relies on different underlying libraries, the current function is portable across operating
systems.

R> y <- stri_encode(x, from="ISO-8859-1", to="UTF-8")
R> # split into text lines
R> tail(stri_split_lines1(y)) # spoiler alert!

[1] "El mono saltó sobre el perro, y en él se montó imitando al hombre;"
[2] "caballo perruno y caballero cuadrumano, salieron corriendo por el"
[3] "bosque."
[4] ""
[5] "El águila se remontó, diciendo:--El hombre mató al león; hay que subir"
[6] "mucho para que no me alcance; ¿quién sabe si algún día me alcanzará?"

stri_enc_list() provides a list of supported encodings and their aliases in many differ-
ent forms. Encoding specifiers are normalised automatically, e.g., "utf8" is a synonym for
"UTF-8".

8.4. Normalising strings
In Section 6.2 we have provided some examples of canonically equivalent strings whose code
point representation was different. Unicode normalisation forms C (Canonical composition,
NFC) and D (Canonical decomposition, NFD) can be applied so that they will compare equal
using bytewise matching (Davis and Whistler 2020).
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R> x <- "a\u0328 ą" # a, combining ogonek, space, a with ogonek
R> stri_enc_toutf32(x)[[1]] # code points as decimals

[1] 97 808 32 261

R> stri_enc_toutf32(stri_trans_nfc(x))[[1]]

[1] 261 32 261

R> stri_enc_toutf32(stri_trans_nfd(x))[[1]]

[1] 97 808 32 97 808

It might be a good idea to always normalise all the strings read from external sources (files,
URLs) with NFC.
Compatibility composition and decomposition normalisation forms (NFKC and NFKD, re-
spectively) are also available if the removal of the formatting distinctions (font variants,
subscripts, superscripts, etc.) is expected:

R> stri_trans_nfkd("r²︷")

[1] "r2{"

9. Conclusion
Over the years, many useful R packages related to text processing have been developed, see
(Feinerer, Hornik, and Meyer 2008; Welbers, Van Atteveldt, and Benoit 2017). Many of them
are listed in the CRAN Task View on Natural Language Processing, see https://cran.
r-project.org/web/views/NaturalLanguageProcessing.html. At the time of writing of
this paper, stringi itself has over 200 strong (direct) reverse dependencies.
The complete documentation of the package’s API is available at https://stringi.gagolewski.
com/. stringi functions can also be accessed from within C++ code. See the ExampleRcpp-
Stringi package available at https://github.com/gagolews/ExampleRcppStringi for an
example using Rcpp (Eddelbuettel 2013).
Finally, it is worth stressing that functions in stringi are not wrappers around base R facilities.
A vast majority of them has been written in pure C and C++. The operations that do not
rely on ICU services have been written from scratch with speed and portability in mind. For
example, here are some timings of string concatenation:

R> x <- stri_rand_strings(length(LETTERS)*1000, 1000)
R> microbenchmark::microbenchmark(
+ join2=stri_join(LETTERS, x, sep="", collapse=", "),
+ join3=stri_join(x, LETTERS, x, sep="", collapse=", "),
+ r_paste2=paste(LETTERS, x, sep="", collapse=", "),
+ r_paste3=paste(x, LETTERS, x, sep="", collapse=", ")
+ )

https://cran.r-project.org/web/views/NaturalLanguageProcessing.html
https://cran.r-project.org/web/views/NaturalLanguageProcessing.html
https://stringi.gagolewski.com/
https://stringi.gagolewski.com/
https://github.com/gagolews/ExampleRcppStringi
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Unit: milliseconds
expr min lq mean median uq max neval
join2 37.713 39.040 52.593 40.208 78.734 98.048 100
join3 74.633 87.306 91.358 88.913 97.256 135.891 100

r_paste2 98.916 104.435 120.786 108.456 151.921 169.785 100
r_paste3 211.733 219.606 256.273 273.239 281.927 302.317 100

Another example – timings of fixed pattern searching:

R> x <- stri_rand_strings(100, 100000, "[actg]")
R> y <- "acca"
R> microbenchmark::microbenchmark(
+ fixed=stri_locate_all_fixed(x, y),
+ regex=stri_locate_all_regex(x, y),
+ coll=stri_locate_all_coll(x, y),
+ r_tre=gregexpr(y, x),
+ r_pcre=gregexpr(y, x, perl=TRUE),
+ r_fixed=gregexpr(y, x, fixed=TRUE)
+ )

Unit: milliseconds
expr min lq mean median uq max neval
fixed 4.7318 4.9162 5.0106 5.0096 5.1076 5.515 100
regex 117.0966 119.6360 121.8881 121.3912 123.5901 143.964 100
coll 378.5757 385.3210 392.0872 392.3554 396.7838 425.230 100
r_tre 122.3811 125.4567 127.8202 127.6302 129.4380 138.540 100
r_pcre 75.6733 78.0173 79.1578 79.1838 80.0254 86.130 100

r_fixed 51.4335 52.7493 53.5762 53.6306 54.3305 57.827 100

Future work will involve the porting of stringi to different scientific/statistical computing
environments, including Python with the NumPy (van der Walt, Colbert, and Varoquaux
2011) ecosystem, so as to provide more Unicode-aware alternatives to the vectorised text
processing facilities from numpy.char and pandas (McKinney 2017, Chap. 7). Moreover,
further extension of stringi’s API so as to provide an even broader coverage of ICU services
shall be conveyed.
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