

Phase separation: an emergent function of disordered proteins

Peter Tompa

EXPERT SEMINAR SERIES
26 APRIL 2021 - 3PM CEST

Membraneless organelles

- biomolecular condensates, RNP bodies, LLPS -

LLPS may lead to disease

- ALS/FTD, Lou Gehrig's disease

- Progressive loss (atrophy) of muscles
- Survival after first symptoms: 2 - 5y
- No cure

ALS is motor neuron disease

VIB-VUB CENTER
FOR STRUCTURAL
FOR STRUC
BIOLOGY
Taylor P. (2016) Nature 539: 197
MB $\begin{aligned} & \text { VRIJE } \\ & \text { URUERITEIT } \\ & \text { BRUSSEL }\end{aligned}$
\because
PhasAGE (1) $\Theta \Theta$

LLPS may lead to disease

- stress granules in ALS (?) -

Their mechanism of formation

- spontanous demixing -

1) phase diagram
2) binodal/coexistence line
3) saturation concentration ($\mathrm{C}_{\text {sat }}$)

Alberti (2019) Cell 176: 419

PhasAGE (c) (5)

Polymer physics (thermodynamics) of LLPS

- e.g. Flory-Huggins formalism -

Free energy of mixing (Φ - volume fraction)

$$
\frac{F}{k_{\mathrm{B}} T}=\frac{\phi}{N} \ln \phi+(1-\phi) \ln (1-\phi)+\chi \phi(1-\phi)
$$

Chain-chain vs. chain-solvent interaction (χ - Flory prmt.)

$$
\chi=\frac{z}{k_{\mathrm{B}} T}\left[u_{\mathrm{ps}}-\frac{1}{2}\left(u_{\mathrm{pp}}+u_{\mathrm{ss}}\right)\right]
$$

Brangwynne (2015) Nature Phys. 11: 899
MB $\begin{gathered}\text { VRIJE } \\ \text { UNUVSTEIT } \\ \text { BRUSSEL }\end{gathered}$
BRUSSEL

Sometimes opposite behavior

Structural disorder in LLPS proteins

- LCD: low-complexity IDR -

VIB-VUB CENTER
FIB-VUB CENTRUCTUR
FOR STRY
BIOLOGY
NB
VRIJE
UNIVERSITEIT
BRUSSEL
Purice and Taylor (2018) Front Neurosci. 12: 326

Multivalency is basic to LLPS

a Nephrin-Nck-N-WASP
$\left\{\begin{array}{l}\text { pTyr residues } \\ \text { in Nephrin }\end{array}\right.$
Nck
Engineered
multidomain
polypeptides
aron-a $(X)_{4}$

$\mathrm{X}=$ SH3, SUMO
$\mathrm{Y}=$ PRM, SIM

b EDC3-DCP2

b) Enhancer of mRNA-decapping protein 3 (EDC3) decapping enzyme subunit 2 (DCP2)
d) polypyrimidine tract (RNA) binding protein (PTB)
f) nephrin intracellular domain (NICD) and supercharged GFP
g) P-granule LAF-1

Banani et al. (2017) Nat. Rev. MCB 18: 285
PhasAGE

What does "LLPS protein" mean?

PhaSePro: 120 proteins

PhaSepDB: 3000

Farahi et al. (2021) Int J Mol Sci. 22: 3017
VIB-VUB CENTER
FOR STRUCTURAL
BIOLOGY

This project received funding from
European Union's Horizon 2020
research and innovation programme
esearch and innovation programme.
nder grant agreement No $\operatorname{s52334}$.

LLPSDB: 1200

DrLLPS: 9300

"Problems" with LLPS (1)

1) the capacity to phase separate is not a binary classifier (not intrinsic but contextual property of the protein and its environment)
2) proteins have distinct roles in phase separation
3) phase separation depends on the concentration of the protein (physiological?)
4) LLPS is not equivalent to biomolecular condensation (which includes gelation, crystallization, clustering, pleiomorphic assembly, polymerization and amorphous or amyloid aggregation).

YIB-VUB CENTER
FOR STRUCTURAL
IOLOGY
VRIJE UNIVERSITEI
BRUSSEL
"Problems" with LLPS (1)

"Problems" with LLPS (1)

"Problems" with LLPS (2)

1) Driver (scaffold): can phase separate on their own. If RNA is mandatory, we consider it as a "co-driver". Small molecules (and crowder) are "condition".
2) Co-driver: a macromolecule (protein, RNA or DNA) that strictly requires another macromolecule for phase separation (then both are "co-drivers")
3) Regulator: its presence/activity is required for LLPS, but no part of condensate (modifying enzyme, transport protein, transcription factor, etc...)
4) Client: not required for and has no effect on LLPS, but localizes to the condensate formed (through interactions with driver/co-driver.
VIB-VUB CENTER
FOR STRUCTURAL
BIOLOGY
Farahi et al. (2021) Int J Mol Sci. 22: 3017
PhasAGE
UB $\begin{aligned} & \text { VRIJE } \\ & \text { UNVERITEIT } \\ & \text { BRUSSEL }\end{aligned}$
BRUSSEL

Scaffolds and clients

YIB-VUB CENTER
FOR STRUCTURAL
BIOLOGY
UB $\begin{aligned} & \text { VRIJE } \\ & \text { URIERSITEIT }\end{aligned}$
BRUSSEL
Banani et al. (2016) Cell 166, 651

Different databases contain different type of data

Filtering for high-confidence "drivers"

89 human highconfidence drivers

VIB-VUB CENTER
FOR STRUCTURAL
BIOLOGY
Me $\begin{aligned} & \text { VRIJE } \\ & \text { UNIVERSITEIT } \\ & \text { BRUSSEL }\end{aligned}$
BRUSSEL

Farahi et al. (2021) Int J Mol Sci. 22: 3017

PhasAGE (c) (5)

Issue with concentrations

- In vource
- In vitro
tissue integr.
- PaxDb cell line integr.
- Estimated (local) conc.

VIB-VUB CENTER
FOR STRUCTURAL
FOR STRUC
BIOLOGY
Farahi et al. (2021) Int J Mol Sci. 22: 3017

Mel $\begin{aligned} & \text { VRIJE } \\ & \text { UNIVERSITEIT } \\ & \text { BRUSSEL }\end{aligned}$

Three (four) basic types of proteinprotein interactions in LLPS

1) IDP-IDP (transient, dynamic, non-specific, nonstoichiometric, distributed)
(Motif-motif (dynamic, semi-stoichiometric))
2) Domain-motif (strong, specific, stoichimetric)
3) Domain-domain (strong, specific, stoichiometric)
e \quad Aromatic amino acid \oplus such as Phe

IDP-IDP (e.g. cation-pi, charge)

- Dead-box helicase, germ-granule (nuage) -
regulation of translation in germ cells

Domain-domain

- Nucleophosmin 1 (NPM1), nucleolus -
ribosome biogenesis

fibrillar center (FC)
dense fibrillar component (DFC)
granular component (GC)

Oligomerization domain (OD)
Acidic tracts (A1, A2, A3)
Nucleic-acid binding domain (NBD)

Feric et al. (2016) Cell 165: 1686

UBE $\begin{aligned} & \text { VRIJE } \\ & \text { UNIERSITEIT } \\ & \text { BRUSSEL }\end{aligned}$
BRUSSEL
a Nephrin-Nck-N-WASP
$\left\{\begin{array}{l}\text { pTyr residues } \\ \text { in Nephrin } \\ \text { N-WASP }\end{array}\right.$

Domain-motif

- SH2 - pTyr, SH3 - PRM -
signaling complex in cytoskeleton remodeling

. Rosen (2012) Nature 483: 336

This project received funding from
Zuropean Union's Horizon 2020
lesearch and innovation programm
research and iniovavioon programme
under grant agreement No 952334 .

Functional consequences of LLPS

- is an emergent property -

VIB-VUB CENTER
FOR STRUCTURAL
FOR STRU
BIOLOGY
NB UNIVERSITEIT BRUSSEL

Alberti (2019) Cell 176: 419

Thank you
-
PhasAGE (c) (1)ఆఆ

