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Abstract: A main challenge in nutritional studies is the valid and reliable assessment of food intake, 
as well as its effects on the body. Generally, food intake measurement is based on self-reported 
dietary intake questionnaires, which have inherent limitations. They can be overcome by the use of 
biomarkers, capable of objectively assessing food consumption without the bias of self-reported 
dietary assessment. Another major goal is to determine the biological effects of foods and their 
impact on health. Systems analysis of dynamic responses may help to identify biomarkers indicative 
of intake and effects on the body at the same time, possibly in relation to individuals’ health/disease 
states. Such biomarkers could be used to quantify intake and validate intake questionnaires, analyse 
physiological or pathological responses to certain food components or diets, identify persons with 
specific dietary deficiency, provide information on inter-individual variations or help to formulate 
personalized dietary recommendations to achieve optimal health for particular phenotypes, 
currently referred as “precision nutrition.” In this regard, holistic approaches using global analysis 
methods (omics approaches), capable of gathering high amounts of data, appear to be very useful 
to identify new biomarkers and to enhance our understanding of the role of food in health and 
disease. 
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1. Introduction 

The nutritional status of an individual reflects the extent to which their physiological needs of 
nutrients have been covered at a particular life stage. When the nutrients to support daily body needs 
and metabolic demands are consumed in a balanced manner, without insufficiency or excess, the 
person presents an optimal nutritional status that favours growth, development, appropriate 
cell/tissue turnovers and global health. 

Dietary assessment and nutritional status are traditionally measured by means of dietary intake 
data, such as 24-h dietary recalls, food records or food frequency questionnaires [1]. Even though 
recent technological advances, including image analysis software, to collect dietary information or to 
process dietary data, have improved dietary assessment, food-intake based methods have some 
inherent limitations, such as: 

Subjective nature of data collection tools. People do not always remember everything they have 
consumed or are not able to recall all foods eaten or their specific ingredients/components or they 
may have difficulty estimating portion sizes accurately [2]. This combination of factors determines 
measurement errors in dietary assessment. Moreover, individuals often underreport dietary intake, 
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particularly when reporting intakes which have higher social desirability and, for those who have a 
history of dieting and being overweight, reflect greater eating restraint [3,4]. 

Limitations of food composition tables. Some nutrients, such as the vast majority of trace 
elements, are not sufficiently characterised in food composition tables and, therefore, nutritional 
status cannot be assessed correctly based on intake [5]. This is also the case for certain fat-soluble 
vitamins. Fats and oils constitute the main nutritional source of vitamin E; however, the content of 
this vitamin varies depending on the type of oil, its processing, the addition of antioxidants and its 
shelf life, all of which cannot be characterised in a dietary assessment. On the other hand, the 
nutritional content of food is neither consistent nor uniform and food composition databases may not 
reflect the characteristics of the products currently commercialised. They generally lag behind current 
eating patterns, for example, the tendency for whole grain products is poorly reflected. 

Factors influencing nutrient absorption. Certain nutrients have feedback control mechanisms 
that increase or decrease the efficiency of absorption depending on nutritional status; for example, 
an individual with a low nutritional calcium status will absorb calcium more efficiently [6]. Certain 
food combinations can affect absorption; for example, the fibre content of a meal may decrease the 
availability of food carotenoids [7], whereas the vitamin C content promote iron absorption when 
ingested at the same time [8]. Vitamin D was shown to be better available from milk than from solid 
food [9]. The extent of cooking of foods may also influence composition, including nutrient content 
and absorption, such is the case of vitamin B6 and vitamin C [6]. Finally, the degree of processing 
may affect absorption, since micronutrients can be associated with proteins that facilitate their 
bioavailability, which has been shown, for example, for calcium [10] and zinc [11] or which are better 
available in their native form (e.g., heme-iron, Fe3+) [12]. These factors are generally not considered, 
because dietary questionnaires do not include enough detail on how food is prepared or processed 
and do not capture information about foods eaten together. 

2. Biomarkers of Nutritional Status 

The limitation of dietary assessment to estimate nutritional status determines the need for 
analytical determinants that can objectively and accurately quantify nutritional status. Biomarkers 
provide a more proximal measure of nutrient status than dietary intake. Generally speaking, a 
nutritional biomarker is a characteristic that can be objectively measured in different biological 
samples and can be used as an indicator of nutritional status with respect to the intake or metabolism 
of dietary constituents [6]. Examples of suggested nutritional biomarkers are shown in Table 1. 

The biochemical analysis of a reference metabolite that indicates the bioavailability of a nutrient 
is an objective result to assess nutritional status, which entails lower methodological error and detects 
deficiency states more precisely than dietary assessment. Such biomarkers are generally based on 
pronounced changes observed in one parameter. They are clinically useful, in particular to detect 
deficiencies in support of medical treatment. Analysis of folate, iron and vitamin B12 but also copper 
and zinc, is useful to identify potential nutritional causes of anaemia [13]. The development of 
biomarkers faithfully representing the nutritional status for those micronutrients is clearly justified 
by their usefulness in medicine. 

Clinical biomarkers are focused on diagnosis of a disease state. In most cases these are 
independent of nutrition but comprise the best parameter that reflects a certain disease. In case of 
metabolic diseases, overlap may occur, for example, this is the case for circulating lipid profiles, urea 
levels in blood or urine and so forth. In most instances, clinical diagnosis of disease differs from 
nutritional biology, that focuses on health, that is, whether the nutritional status is such that it 
supports health or not. The latter can also entail mild subclinical deficiencies as well as moderate 
excess. Especially in those cases, the combination of both methodologies, dietary assessment by food 
questionnaires with biochemical measures, can provide a useful tool for estimating the exposure to a 
particular nutrient of interest and assessing health risks. This combination may eliminate some of the 
errors associated with each type methods to assess nutritional status [6]. 
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Table 1. Examples of suggested nutritional biomarkers related with exposure and/or effects of 
macronutrients, food or dietary patterns, in samples obtained with non-invasive or minimally 
invasive techniques. Some representative references are provided for each candidate biomarker. 

Proposed Biomarker Sample Type Intended Use (As Nutritional 
Biomarker) 

References 

Alkylresorcinols Plasma Whole-grain food consumption 

Original research 
[14,15] 

Reviewed in 
Reference [16] 

Allyl methyl sulfoxide (AMSO) or 
allyl methyl sulfone (AMSO2) 

Urine Intake of garlic 
Original research 

[17] 
BFIRev ** [18] 

Allyl methyl sulphide (AMS) Urine/breath Intake of garlic 
Original research 

[17,19,20] 
BFIRev [18] 

Arbutin Plasma Pear intake 
Original research 

[21] 
BFIRev [22] 

Carotenoids Plasma Fruit and vegetable intake 
Systematic review 
and meta-analysis 

[23] 

Carotenoids with Vitamin C  Plasma/serum 

Fruit and vegetable intake 
Combined marker (suggested as better 
biomarker than carotenoids or vitamin 

C alone) 

Reviewed in 
Reference [24] 

Creatine Serum Intake of meat and fish 
Reviewed in 

Reference [25] 

Creatinine Urine Intake of meat and fish 
Reviewed in 

Reference [25] 

Daidzein Urine/plasma Intake of soy or soy-based products 
Systematic review 

[26] 

Dyhydrocaffeic acid derivatives Urine Acute and habitual exposure to coffee 

Original research 
[27–29] 

Reviewed in 
Reference [30] 

Erythronic acid, alone or with 
fructose and/or sucrose 

Urine 
Sugar intake 

Combined marker 
Original research 

[31] 

Genistein Urine/plasma Intake of soy or soy-based products 
Systematic review 

[26] 

Homocysteine Plasma 
One carbon metabolism and folate 

status 
Reviewed in 

References [32,33] 
Hydroxylated and sulfonated 
metabolites of esculeogenin B 

Urine Intake of tomato juice 
Original research 

[34] 

1-Methylhistidine Urine Meat and oily fish consumption 

Original research 
[27,35,36] 

Reviewed in 
References [30,37] 

n-3 fatty acids: docosahexaenoic 
acid (DHA) 

Blood: 
erythrocytes or 

platelets 
DHA status 

Systematic review 
[38] 

n-3 fatty acids: DHA (as 
phospholipid) Plasma DHA status 

Systematic review 
[38] 

n-3 fatty acids: eicosapentaenoic 
acid (EPA as phospholipid) 

Plasma EPA status 
Systematic review 

[38] 

N-acetyl-S-
(2carboxypropyl)cysteine (CPMA) 

Urine Intake of onion and garlic 
Original research 

[39] 
BFIRev [18] 

Nitrogen* Urine (24h) Protein intake 
Reviewed in 

Reference [40] 

O-acetylcarnitine Urine Red-meat consumption 

Original research 
[41] 

Reviewed in 
Reference [42] 
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Pentadecanoic acid (C15:0) Plasma/serum Total dairy fat intake 
Reviewed in 

Reference [43] 

Phenylacetylglutamine Urine Vegetable intake 

Original research 
[41] 

Reviewed in 
Reference [30] 

Phloretin Urine Apple intake 
Original research 

[44,45] 
BFIRev [22] 

Phloretin glucuronide Urine Apple intake 
Original research 

[46,47] 
BFIRev [22] 

Proline betaine Urine Acute and habitual citrus exposure 

Original research 
[27,48,49] 

Reviewed in 
Reference [30] 

S-allylcysteine (SAC) Plasma Intake of garlic 
Original research 

[19] 
BFIRev [18] 

S-allylmercapturic acid (ALMA) Urine Intake of garlic 
Original research 

[50] 
BFIRev [18] 

Urolithin B Urine 

Intake of ellagitannins (present in fruits 
as strawberries, raspberries and 

walnuts and oak-aged red wine, among 
others) 

Original research 
[51] 

* Nitrogen in 24h urine is an already substantially validated biomarker of protein intake. ** BFIRev: 
Biomarker of Food Intake Review. This type of review follows specific recent guidelines for the 
review, identification and/or validation of candidate biomarkers of food intake [52]. 

To understand the complex relationships between nutrition and health, different types of 
biomarkers are being used in nutritional studies: markers of exposure, of effect (or function) and of 
health/disease state [53]. 

Biomarkers of exposure. These include the different types of biomarkers used to evaluate dietary 
intake of nutrients, non-nutritive food components or dietary patterns. An example is the nitrogen in 
urine [40], which serves as a biomarker for protein intake. These types of biomarkers are of great 
interest, as their use can help to improve the categorization of subjects according to the exposure to 
a particular nutrient. They also serve as an objective indicator of compliance with a particular dietary 
regimen in intervention studies investigating the health effects of dietary modifications [54]. These 
biomarkers may not only reflect one nutrient but may also be associated with a dietary pattern or 
food group, for example, the plasma concentration of alkylresorcinol is considered a biomarker of 
the intake of whole grains [14] and the combination of sucrose or fructose with erythronic acid is a 
urinary biomarker for sugar intake [31]. Urine/plasma genistein and daidzein are also biomarkers for 
soy or soy-based product intake [26], while robust information for markers of other legumes is still 
lacking. In this sense a combination of markers may better reflect a food category, for example 
vitamin C and carotenoids together may be more accurate that either of these fruit and vegetable 
biomarkers alone [24]. 

Biomarkers of effects. These are biomarkers that are related to a target function or biological 
response. Thus, not only do they reflect intake but also nutrient metabolism and, possibly, effects on 
physiological or disease processes. It is important to note that a biomarker may not reflect the effect 
of a single nutrient but the interactions of various nutrients. For example, some of the biomarkers of 
the metabolism of one carbon compounds such as homocysteine, which reflect not only nutritional 
intake but also various metabolic processes related with pathological or physiological conditions 
[32,33]. 

Biomarkers of health/disease and physiological status. These are biomarkers which indicate an 
end-point, relate to a state of health and/or disease risk. These markers reflect the different 
intermediate disease phenotypes or the severity of the disease and are widely used in clinical practice. 
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For example, plasma levels of fasting glucose are associated with insulin sensitivity and diabetes or 
plasma cholesterol and triglycerides are linked to cardiovascular disease. Nutritional biomarker 
research is not focused on identification and characterization of diseases or treatment prognostics, 
which are areas of intense development. 

3. Current Challenges in the Development of Health Biomarkers 

The development of health/disease biomarkers was driven by medical needs and has largely 
been directed towards identifying and quantifying disease states or progression, rather than 
assessing and quantifying the health status of an individual. However, the main objective of diet and 
nutrition is to promote and maintain optimal health. Therefore, it is highly relevant to have 
biomarkers of very early stages of alterations that may ultimately progress to disease, even before 
what may be considered the onset of the disease. Such biomarkers can be considered health and/or 
prevention markers rather than disease markers. Pre-disease physiological alterations are likely to be 
associated with pre-disease alterations in homeostatic balance and may be identified when the 
homeostatic response to a particular environmental or nutritional aggression is examined [55]. These 
biomarkers represent a new approach to biomarkers that reflect maintenance of physiological 
integrity and function. In this context, health-promoting food components support or even optimise, 
a healthy physiology, preventing or delaying initiation of a disease state or a loss of physiological 
function, including cognitive function. Because of the multifaceted nature of homeostasis, 
nutrigenomic technologies, which analyse functional genomic responses on a genome-wide scale 
applied to the field of nutrition, have been particularly valuable and will continue to be so, for the 
identification, characterisation and validation of health biomarkers. 

Human health is based on a complex network of interactions between pathways, processes and 
molecules, implying interactive mechanisms and across different cells, tissues and organs. Various 
biochemical and physiological mechanisms are responsible for maintaining health in an environment 
that is constantly changing, as a result of, for example, diet, infections, temperature, exercise and 
various other stressors. In good health, the mechanisms that maintain homeostasis are able to 
effectively buffer the different challenges that individuals are subjected to. The adaptation response 
defines the so-called phenotypic flexibility [56]. The way to the disease starts when and where these 
adaptive processes and regulatory networks fail. Lifestyle and other conditions, both environmental 
and internal, can reduce the robustness and elasticity of these mechanisms. Then the homeostatic 
machinery becomes less effective and produces negative side effects, which can occur from the 
molecular to the whole-body level. An example is excessive accumulation of lipids in the liver, which 
can be a consequence of the diminished capacity of adipose tissue for lipid storage [57]. This results 
in an organism that has lost its ability to react adequately to external challenges, which further 
aggravates the situation, for example by the development of insulin resistance. This loss of an 
adequate physiological performance, resulting in the inability to maintain healthy responses, can be 
the basis for the development of new biomarkers, reflecting dynamic responses, to assess health 
status and the capacity for its metabolic flexibility. 

Biomarkers of health can guide policies related to food, nutrition and health. In fact, they would 
represent the basis for the substantiation of health claims on food. At present, the lack of robust 
nutritional biomarkers for many biological functions is a bottleneck that slows down innovation in 
the food industry. This is recognized and taken up by the scientific community. One example is 
BIOCLAIMS (FP7-244995), a collaborative research project carried out at the European level, which 
has established the principles to identify, establish and validate robust biomarkers to quantify the 
health status. Examining the influence of bioactive components of the diet on these biomarkers, 
provides the basis for evidence-based development of foods with reliable health properties that can 
contribute to a healthier diet and health in the long term. Other initiatives, such as PREVENTOMICS 
(DT-SFS-14-2018-818318), a project funded by the European Union’s program Horizon 2020 under 
the call ICT-04-2017—Personalized Nutrition, aims to use health biomarkers in dietary advice 
applications for consumers. 
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3.1. The New Concept of Integrative Nutritional Biomarkers 

In terms of nutrition, health biomarkers are the cornerstone of research that establishes the 
functional effects of nutrition on the health-disease relationship. Currently, given the complex 
relationship between food intake and health/disease status, a more integrative understanding of the 
concept of biomarker in relation to nutritional status and health is being developed, by focusing in 
nutritionally-regulated biomarkers of health. The concept is that intake is quantified, not only in 
terms of what is eaten but also in terms of the evoked biological response. As an example, circulating 
lipid profiles reflect intake but also depend on nutritional context, genotype and health status [58]. 
Similarly, a specific protein modification may be a physiological response that may also reflect intake. 
The development of such a new type of biomarker with an integrative trait, integrative nutritional 
biomarkers, recognizes the intimate connection between nutrition and metabolism. They could be 
indicative of both intake and of effects on the body and could even reflect health/disease state. 
Integrative nutritional biomarkers use the fact that nutrition and metabolism are intimately 
connected, which is considered an advantage rather than a hindrance and source of variation. They 
may be defined by a single parameter but more likely a set of directly connected parameters, for 
example a protein and its physiology and nutrient induced modifications or a spectrum of plasma 
lipids but can also consist of an integrating algorithm based on several parameters, each reflecting a 
particular aspect of metabolism and nutrient exposure and availability. Such biomarkers could be 
analytical indicators, which would be quantitative and acting as an intake (short- or long-term 
exposure) indicator and/or pointing to the status of a particular nutrient or food component and 
integrate the impact of intake on the body (effect). Integrative nutritional biomarkers could be used 
to quantify effective intakes and validate or complement intake questionnaires, shed light on 
physiological or pathological responses to certain food behaviours, monitor responses to therapeutic 
interventions that could be optimised and more personalised and provide information on inter-
individual variations in response to the diet. Furthermore, they may help to formulate personalized 
dietary recommendations to achieve optimal health and wellness for particular phenotypes and 
genotypes, currently referred to as “precision nutrition” [59]. Inter-individual differences may have 
a genetic basis, for example associated with the presence of concrete polymorphisms, and/or also 
epigenetic basis, related with a particular genotype interaction with environmental characteristics 
(including diet) and life stage. Thus, interpretation of the meaning of biomarkers may require a 
holistic view (Figure 1). Biomarkers may reflect the effects of nutrient intake or a lack thereof and in 
certain cases, they can also act as an intermediate biomarker that indicates the potential risk of 
developing a pathology associated with either excess or deficit of the nutrient to which it is linked. 

 

Figure 1. Integrative nutritional biomarkers and their interest in precision nutrition. Biomarkers of 
exposure include biological markers intended for the assessment of dietary food intake, whereas 
biomarkers of effect/function are related to target function or biological response. These biomarkers 
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reflect not only the intake but also the metabolism of nutrients and, possibly, effects on disease 
processes. Biomarkers of health/disease are biomarkers of ultimate goal and indicative of improved 
health status and/or reduced risk of disease. Several factors (genetic, epigenetic, environment, etc.) 
can affect the individual response to dietary intake and its relation to health status. There is a great 
interest in the development of new types of nutritional biomarkers with an integrative trait, indicative 
of the intake and effects on the organism, including its relationship with the state of health/disease 
and omics technologies may play a relevant role. 

To date, there is still not a clear consensus regarding the requirements for nutritional biomarkers 
and the foundations needed to define optimal biomarkers for particular nutrients and their 
application is a subject of extensive research [60]. In this context, it has been proposed that biomarkers 
should meet the following criteria [61]: (a) they should be determined by solid, sensitive, reproducible 
methods, which should be highly specific and economically feasible; (b) their concentration in the 
biological sample must be sensitive enough to reflect possible changes, both in relation to the 
considered health status and to the dietary intervention; (c) they must be specific to the purpose for 
which they are used. It is also important that biomarkers are present in biological samples that are 
easily accessible and obtained using minimally invasive techniques. Other factors, such as age, 
gender, ethnicity, may be of interest depending on the purpose of use of the biomarkers. 

The correct interpretation of a biomarker requires clearly defined standards of reference. 
Reference values are the values of an analyte in a reference population that is usually formed by a 
group of healthy individuals. If values show a normal distribution, the reference range is the 
population mean ±2 times the standard deviation, which is therefore the central interval of 95% of 
the distribution [62]. The interpretation of the results obtained in laboratory tests is based on the 
comparison made with said reference values. A value which deviates from said reference range does 
not necessarily imply that it is an abnormal value but it does mean that it has a greater probability to 
be associated with a deficit or excess and hence relatively closer to pathological values. Reference 
ranges may depend on the characteristics of the population, age and sex; they can also vary for arterial 
and venous blood, specific diets and so forth. Laboratory tests commonly used to assess nutritional 
status are well characterised, although to date, there are still some nutrients for which the normal 
range in healthy individuals has not been clearly defined. For example, serum 25-hydroxyvitamin D 
is widely recognised as a good marker for vitamin D status, reflecting its intake and endogenous 
synthesis [63]. The threshold of deficiency has been established between 25–50 nmol/L, associated 
with its effects on calcium and phosphate metabolism and bone health. However, the emergence of 
new physiological roles of vitamin D related to cardiovascular health seems to point to a certain 
benefit of higher concentrations in the general population [64]. Moreover, serum concentrations 
below the reference range are not necessarily associated with deficiency. The African-American 
population has, on average, lower circulating levels compared to the Caucasian population, even 
though the prevalence of osteoporosis and the occurrence of fractures are lower [65]. Thus, validated, 
sensitive and specific margins are required to assess the status of various nutrients and their effects 
and allow for correct classification of the nutritional status. 

4. Sources of Biomarkers in Nutritional Studies 

The most commonly used biological samples in nutritional epidemiology are blood-borne 
(plasma, serum, blood cells), excretion products (urine, faeces) or easily obtainable specimens (nails, 
saliva, hair), although in certain cases it may be relevant to have biopsies or solid tissue samples 
(muscle, adipose, skin). 

The type of sample must be considered when processing blood samples: blood (collected with 
an anticoagulant and without removing any constituent), serum (allowing blood clotting and 
collecting the supernatant after subsequent centrifugation, which removes the clot and blood cells) 
or plasma (the aqueous fraction containing blood proteins, electrolytes and metabolites). The 
assessment of biomarkers in blood cells may also be appropriate, by analysing the respective fractions 
(erythrocytes and leukocytes, mainly). For example, the determination of the omega-3 index 
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(eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content related to the total percentage 
of fatty acids) in erythrocyte membranes is considered a good biomarker of omega-3 fatty acid intake 
[38]. 

Peripheral blood cells (PBCs) are of particular interest because they are a source of 
transcriptome-based biomarkers and can be easily obtained using minimally invasive techniques. 
Some of the gene expression studies in blood cells are carried out in a specific subpopulation, 
peripheral blood mononuclear cells (PBMCs), including lymphocytes and monocytes, which are a 
reliable and homogeneous sample for transcriptome analysis [66]. Indeed, the PBMC transcriptome 
reflects the beneficial effects of a hyaluronic acid containing extract on articular health in humans 
[67]. Using preclinical models, we have also shown that PBMCs can faithfully reflect effects of dietary 
and environmental interventions in organs that are not accessible for analysis in healthy human 
subjects, including the liver [68–70] and hypothalamus [71]. It should be noted however, that the 
procedure for the isolation of PBMCs requires that a strict protocol is followed, which must be carried 
out immediately after blood collection to avoid ex vivo changes in gene expression profile. This can 
cause a number of logistical and technical problems, particularly when multicentre studies are 
involved. Existing alternative techniques include the PAXgene blood RNA system, which allows the 
extraction and stabilisation of the RNA of blood cells without additional handling [72]. This 
procedure offers a range of technical advantages, such as ease in collecting, storing and transporting 
samples, as well as reducing sample handling time, factors which facilitate standardisation and 
reproducibility. This makes it an attractive approach for use as a source of biomarkers in human 
nutritional studies [73]. The limitation in using total blood cells is that it does not allow the 
classification of specific cell populations. In addition, some studies have shown increased 
background noise and a reduction in responsiveness to stimuli (for example, in functional analysis) 
compared to the use of PBMCs [74]. However, it has been shown that there is a significant overlap in 
the gene expression profile between whole blood (using PAXgene tubes) and PBMCs [75] and 
therefore it could be expected that the identified biomarkers using PBMCs can be extended to total 
blood cells, which is more attractive for large scale human studies. 

For certain applications, the blood from a finger or heel prick deposited and absorbed on paper, 
the so-called ‘dried blood spot’ technique, can be used for screening, for example, genetic screening 
of infants for phenylketonuria or to analyse certain hormonal or metabolites, such as fatty acid 
analysis [76]. Due to rapid technological developments, dried blood spot approaches are currently 
being developed to assess nutrient exposure [77], to identify nutrient-exposure associated risk 
markers [78] and to quantify markers for nutrition-related metabolic status [79], as well as disease 
risk markers [80]. 

A recent source for blood derived biomarkers are ‘extracellular vesicles’ (EVs), which is a 
collective term for cell-released, membranous structures. Recently, the International Society for 
Extracellular Vesicles (ISEV) updated guidelines of Minimal Information for Studies of Extracellular 
Vesicles (MISEV) to document specific EV-associated parameters, which is essential for their use as a 
source for biomarkers [81]. Circulating EVs can reflect specific tissues and provide an opportunity 
for biomarkers associated with tissues that are hardly accessible, such as the central nervous system 
[82,83]. For this reason, EV sampling has been endowed with the term ‘liquid biopsy’ [84]. They offer 
the potential for diagnosis and monitoring and, because they provide almost continuous circulating 
information based on blood sampling, can potentially be used in epidemiological investigations, for 
example directed at cardiovascular disease risk [85]. In fact, EV can be purified from a number of 
human body fluids including plasma, saliva and breast milk, which is particularly enriched in 
microRNAs (see section 6.3.1). 

Breast milk may be a source of biomarkers of the maternal nutritional and metabolic state [86,87]. 
A possible complicating factor is that the breast milk composition is not uniform and may be 
influenced by maternal, infant and environmental factors. Hence, a sampling protocol has been 
proposed to obtain an average sample [88]. 

Human breast milk is of particular relevance for analysis of the complex relationship between 
the maternal nutritional status and infant health [89,90]. Breast milk composition may affect infant 



Nutrients 2019, 11, 1092 9 of 31 

growth and development and may have a strong impact on future metabolic health [91]. For example, 
animal studies have shown that lactation by obese, diabetic or malnourished mothers predisposes for 
metabolic disorders in the offspring [92]. Metabolome analysis has revealed changes in milk 
composition in rat dams exposed to moderate calorie restriction during lactation, which may be 
associated with the lower predisposition to obesity and the healthier phenotype described in the 
adult offspring [93]. However, the possible contribution and potential benefits of specific 
components, as well their potential uses as candidate biomarkers is yet to be determined. 

Urine contains a concentrate of excreted metabolites and has traditionally been used to detect 
metabolites or cellular material associated with renal and metabolic disorders. For example, 
glycosuria indicates an abnormal use of carbohydrates and possible diabetes. The development of a 
metabolomic methodology (see below) makes urine samples and blood fractions the two most 
relevant biological fluids for determining nutritional biomarkers; in fact, urine is probably the most 
used biological source in nutritional studies and long-term monitoring [42]. Generally, it could be 
stated that the metabolome of urine reflects the food metabolome, that is, the content of ingested food, 
whereas blood samples reflect changes of the endogenous metabolome, that is, the effect of such 
foods on the body that ingests them. Meat intake is accompanied by high concentrations of creatine 
and carnitine. Creatinine is formed by creatine biodegradation in tissue and is transported via blood 
to the kidneys and then excreted in urine [25]. These metabolites have been proposed as biomarkers 
of meat intake, although they still require further validation. Urine is also a fluid that may reflect the 
metabolism of the microbiota [25]. Thus, the intake of foods rich in polyphenols leads to the formation 
of hydroxyhippuric acid and other derivatives of intestinal bacteria, which are excreted in urine [94]; 
similarly, urolithin A conjugates are also identified in urine, resulting from bacterial metabolism after 
ingesting nuts [95]. A major hurdle in the use of urine for biomarker analysis is the duration of the 
sampling period. Twenty-four hour urine collection is considered the gold standard but is logistically 
challenging especially in larger studies. Repeated sampling in combination with modelling-based 
approaches may provide a solution that will allow for shorter sampling periods [96]. Furthermore, 
relatively little is known about the stability of the urine metabolome after sampling. Immediate 
freezing of urine samples and prevention of freeze-thaw cycles seems to be a prerequisite for 
reproducible biomarker analysis [97] but is difficult in practice, especially for 24h urine collection. 

Faeces are a relevant biological source for assessing the non-absorption of nutrients [98,99], the 
balance of a non-metabolizable ingredient (for example, nitrogen or trace metals that are excreted in 
bile) [100], as well as to analyse the gastrointestinal microbiota or its products [101–103]. Stool 
samples can also be used to assess biomarkers for enteropathy, which is attractive for infants for 
whom invasive samples are difficult to obtain [104]. A growing area of study is the detection of 
“volatile organic compounds” (VOCs) as a result from microbial fermentation. VOCs can be used as 
biomarkers and specific VOCs were shown to be associated with the intake and type of fibre [105]. 
Indirect calorimetry cages with hydrogen sensors are able to monitor microbial activity continuously 
and in real time [103]. Differences in hydrogen production by highly and lowly digestible dietary 
carbohydrates correspond to the abundancy of hydrogen producing bacteria [103] and to specific 
VOCs, including acetic-, propionic-, butyric- and valeric acids, associated with differences in 
microbial activity [103]. 

VOCs can also be sampled from breath, which is a promising tool for diagnosis of respiratory 
and other diseases [106–108]. Recently, it was also shown that analysis of VOCs in breath were 
different after the intake of two different infant formulae [109]. Although the observed within and 
between subject variation was high, breathomics data support that, with an appropriate study design 
and data pre-processing, specific VOC profiles have been identified and associated with fat intake 
from dairy drinks in comparison with a drink with the same constituents but a lower amount of fat 
(Hageman et al.[110]). These studies are an initial step to the use of breathomics analysis to evaluate 
the metabolic effects of nutritional interventions. The future use of compound-specific sensors and 
the non-invasive nature of VOC analysis may introduce interesting analysis in newborns and infants. 

Saliva is a biological fluid that is easily collected. It is used to assess adrenal functional stress 
and hormone levels [111]. Furthermore, due to its minimally invasive nature, it is also one of the 
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preferred sources for genetic analysis, as the purified DNA extracted from saliva cells allows the 
detection of specific polymorphic variants. Another accessible body fluid, less invasive and complex 
than serum or plasma are tears. Tear fluid proteomic and lipidomic analyses as well as dedicated 
cytokine assays are being developed to characterise ophthalmological related diseases such as dry 
eye disease or ocular allergies [112–114] and identification of putative biomarkers of systemic 
diseases in tear fluid is being explored [115–118]. 

Other easily obtainable tissues, such as nails and hair have been shown to be useful to determine 
long-term excess alcohol use [119], exposure to toxic metals [120] and disease related mineral status 
[121], although these specimens are usually bad indicators of body nutrient concentrations in healthy 
individuals. Hair analysis can be useful in assessing concentrations of zinc, copper, chromium and 
manganese for which there are no good measures of functional status [122], as well as the 
concentrations of cadmium and lead that can have negative biological effects [123]. 

Finally, obtaining solid tissue samples of potential interest in nutritional studies, such as the 
liver, to be used for, for example, gene expression analysis, proteomics or metabolomics, usually 
requires invasive biopsies, which are not easily justifiable in nutritional studies in humans. 
Nevertheless, adipose tissue, skeletal muscle, intestine and skin biopsies have been examined in small 
scale nutritional intervention studies [124,125]. As discussed above, the use of PBMCs and EVs is 
particularly interesting and may be a good alternative, especially in larger studies. 

5. Types of Analysis 

Two basic types of laboratory analysis are considered: static and functional. Static tests measure 
the current concentration of the nutrient, bioactive or biomarker in a biological sample. Examples of 
this type of analysis are the determination of serum iron, blood glucose, cholesterol and so forth. 
Circulating levels, do not necessarily reflect the amount of the substance present in body reserves or 
its bioavailability. Depending on the biomarker, recent intake can influence its amount in plasma, 
serum or any other fluid or tissue sample, although this limitation can be overcome, at least in part, 
by collecting the sample under fasting conditions. In contrast to static analysis, functional analysis 
measures a response. Although known and used for years, the pursuit of biomarkers of health has 
given a boost to functional measurement of a biological function that allows for a dynamic assessment 
to which a biomarker relates. Functional analysis allows for the quantification of the phenotypic 
flexibility and reflects the degree of homeostatic robustness that the individual presents [55]. 

Functional analyses include tests, such as the oral glucose tolerance test, for assessing the 
prediabetic state and insulin sensitivity and the determination of triglycerides following an oral lipid 
load to assess dynamic lipidaemia as a biomarker of cardiovascular risk and early detection of 
metabolic syndrome [126]. Recently, similar to fasting-refeeding challenges that are used in mice 
[127,128], a standardized liquid mixed-meal with carbohydrates, fat and protein has been proposed 
to assess the response of a wider set of metabolic variables in humans [129]. New type of challenges 
are, for example, the response to moderate level of environmental hypoxia, oxygen restriction, to 
assess age and body-weight induced metabolic alterations [130,131] and assessment of certain 
biomarkers in response to fasting, which is a potential functional analysis to characterise metabolic 
alterations in the obese state [132]. 

6. Nutrigenomic Approach in the Identification of Biomarkers 

Global analysis techniques, known as “omics” have opened new research avenues in nutrition. 
Advances in DNA sequencing techniques [133] and microarray technologies [134], mass 
spectrometry [135] and nuclear magnetic resonance [136], among others, have facilitated 
simultaneous analysis of multiple parameters and have provided unprecedented insights in 
responses of the transcriptome, proteome and metabolome. The technological developments 
continue, especially with regards to DNA and RNA sequencing [137], mass spectrometry [138], 
single-cell omics [139] and, of course, bioinformatics [140]. Systems approaches allow obtaining a 
comprehensive and in-depth view of the physiology/pathology of an individual and open the 
possibility to explore the complex relationships between nutrition and health, particularly to 
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investigate the role of dietary components in health maintenance or in disease development [141]. 
For this reason, omics platforms appear to be most suitable for the discovery and characterisation of 
new nutritional markers to define the nutritional status of individuals and to identify nutritional 
bioactive compounds responsible for beneficial health effects [142]. The identification of new 
biomarkers or patterns of biomarkers that link nutrition with health represents one of the major 
challenges of omics sciences in the nutrition field. 

6.1. Genetic Biomarkers 

Genetic biomarkers are primarily based on the determination of genetic polymorphisms, 
particularly of a single nucleotide (single nucleotide polymorphisms, SNPs). They can be determined in 
DNA from any biological sample containing nucleated cells, which represents an important 
advantage. Such biomarkers are static; thus, their determination does not change with time. Another 
feature of these biomarkers is that samples used can be stored and transported easily, particularly 
once the DNA is isolated and their determination is quick and relatively economic [53]. 

Polymorphic variants, which have a well-characterised biological function can be used to study 
the effect of a particular environmental exposure on disease risk. There are several studies using 
genetic variants as variables in environmental exposures. A well-known example is the lactase 
polymorphism 13910C>T (rs4988235), which is located on the MCM6 gene but influences the lactase 
gene (LCT). It is strongly associated with the persistency of lactase synthesis and hence with the 
tolerance or intolerance to lactose [143]. Individuals with the CC genotype usually show a 
physiological decline of lactase activity in intestinal cells and have difficulty in metabolising lactose. 
Such individuals often exhibit symptoms of abdominal pain and diarrhoea after consuming dairy 
products and therefore tend to consume fewer dairy products containing lactose. It has been 
proposed that this variant (CC genotype) in the lactase gene may act as a proxy for low milk 
consumption [53,144]. 

The study of genetic markers has advanced considerably in recent years, thanks to, among other 
things, the development of high-density arrays that allow simultaneous determination of thousands 
of genetic polymorphisms. These developments have facilitated genomic wide association studies 
(GWAS), which have allowed the discovery of new genes and polymorphic variants associated with 
intake of specific foods, such as coffee [145] or different macronutrients [146]. Likewise, genetic 
variants that affect the concentration of intake biomarkers have also been described, such as 
phylloquinone (also known as vitamin K1), which is the main circulating form of vitamin K and it 
reflects vitamin intake from plant [147]. Circulating phylloquinone is a biomarker of interest that has 
been associated with a “healthy” lifestyle and low concentrations are associated with an increased 
risk of various chronic diseases [148]. The description of gene variants that affect the concentration 
of phylloquinone may explain the large inter-individual variability in the response to the intake of 
phylloquinone from diet or supplements [147]. 

Furthermore, genetic biomarkers are crucial for determining the relationship between 
intermediate biomarkers (e.g., plasma lipids, fasting glucose, oxidative markers, markers of 
inflammation, etc.) and disease incidence (cardiovascular disease, type 2 diabetes, cancer, 
neurodegenerative diseases, etc.). Currently there are hundreds of SNPs consistently associated with 
different phenotypes of nutrition-related diseases [149,150]. Therefore, in nutritional epidemiology 
studies, determination of the most relevant genetic polymorphisms associated with phenotypes of 
interest is important in order to establish a reliable association between diet and disease. This is 
particularly relevant when inter-individual variation has been associated with the presence of certain 
gene variants, which may influence the correct assessment of nutritional status. 

In addition to these considerations, genome-associated individual variability can be relevant in 
the proper assessment of micronutrient status, which can have a narrow safety range between safety 
and toxic doses [54,151] or modulate its bioavailability [152]. 

A representative example is selenium status, which is associated with an increased risk for 
various chronic diseases when it is low [153]. Biological effects of selenium are largely mediated by a 
family of around 25 proteins, which contain at least one selenium containing amino acid, 
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selenocysteine [154]. Evidence suggests that individual requirements for selenium differ because of 
polymorphisms in selenoprotein encoding genes. Synthesis of selenoproteins is actively regulated by 
the selenium status and its expression is reduced in a hierarchical process to facilitate the expression 
of others when selenium availability is limited [155]. Glutathione peroxidases (GPX), which are 
involved in antioxidant function, and Selenoprotein P (SEPP), which is responsible for the selenium 
transport and supply to tissues, together constitute half of the selenium in blood. Optimal selenium 
intake is associated with optimal expression of all selenoproteins and when selenium is consumed 
above needs, the excess is excreted, since there is no regulated reserve pool of selenium [156]. As a 
consequence, genetic variation needs to be considered in assessment of selenium status. For example, 
individuals with GPX1 679T/T alleles show lower plasma selenium levels than those with C/C alleles, 
because this variant also accounts for differences in urinary excretion of selenium. Individuals with 
the SEPP1 24731 A/A genotype show higher plasma SEPP1 levels in comparison with those with the 
G allele. Gender and BMI also contribute to variation in biomarkers of selenium function [156]. Zinc 
constitutes another example of an essential micronutrient, with fundamental roles in human biology, 
of which the nutritional status is associated with genetic background. For example, a number of zinc 
transporters coordinate zinc homeostasis. Insulin metabolism in pancreatic β-cells requires zinc and 
a polymorphism in the zinc transporter SLC30A8 has been associated with increasing risk of 
developing type 2 diabetes [151]. In fact, total zinc intake shows an inverse relationship with fasting 
plasma glucose in individuals carrying the glucose-raising A allele. Various lines of evidence support 
the concept that zinc recommendations may benefit from being personalized [151]. 

6.2. Epigenetic Markers 

The term epigenetics is used to describe a variety of changes in the genome that do not involve 
changes in the DNA sequence but concern other chemical modifications that can result in differential 
gene expression. Unlike genetic variations, which are largely fixed, epigenetic modifications are 
temporal, ranging from stable within a generation to being the result of immediate adaptation to the 
environment or metabolism. The main epigenetic mechanisms include DNA methylation, histone 
modifications, mainly site-specific methylations and acylations [157]. 

DNA methylation is an epigenetic modification, which occurs in a cytosine-phosphate-guanine 
dinucleotide (CpG) and involves the addition of a methyl group at the 5 position of cytosine residues 
in CpG islands. This modification provides marks in the genome that establish whether the genes are 
activated transcriptionally or silenced. Hypomethylation or hypermethylation of specific islands has 
been associated with several disease phenotypes such as cancer, obesity or type 2 diabetes, among 
others [158] or with the protection against some diseases [159]. Studies show that diet can affect the 
methylation of certain DNA sites and that these changes in methylation are dynamic. For example, 
CpG methylation sites have been associated with the intake of EPA and DHA from marine sources 
[157]. Furthermore, a diet rich in conjugated linoleic acid and calcium, which promotes weight loss 
in rodents, has been associated with changes in the degree of methylation of lipid metabolism-related 
genes, such as fatty acid synthase and stearoyl-CoA desaturase [160]. 

Epigenetic modifications caused by changes in DNA methylation status represent one of the 
mechanisms that may explain the effects of metabolic programming of the offspring during the 
perinatal period. For example, intrauterine growth retardation in rats was shown to block expression 
of Pdx1, a pancreatic gene that mediates the glucose responsive transcription of the insulin gene, in 
the offspring [161]. While this modification seems permanent in the first generation offspring, 
modifications at other epigenetic marks were shown to be reversible. For example, skeletal muscle 
DNA methylation of the orphan nuclear receptor Nr4a1, which is linked to insulin sensitivity, was 
shown to be programmed by the mouse maternal diet and was subsequently modulated in offspring 
by voluntary exercise [162]. Animal studies have also shown that changes in maternal intake during 
pregnancy that affect the availability of methyl donors can alter the epigenetic pattern of certain 
regions of the genome (metastable epi-alleles) in the early embryo that are stable in different tissues, 
causing permanent phenotypic variation in offspring [163]. In humans, although studies are still 
scarce, there is increasing evidence showing that perinatal nutrition may trigger persistent changes 
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in DNA methylation [164]. For example, it has been shown that variations in methyl donor intake 
(associated with seasonal differences in diet: the rainy (‘hungry’) season and the dry (‘harvest’) 
season) in women of a rural population of Gambia during conception predict the methylation 
patterns of metastable epialleles in offspring [165,166]. Notably, 13 biomarkers, have been identified 
consisting in key micronutrients involved in one-carbon metabolism, whose levels in maternal 
plasma may predict DNA methylation changes at metastable epialleles in DNA from hair follicles 
and lymphocytes in infants postnatally [166]. Changes in DNA methylation have also been reported 
in individuals with prenatal exposure to famine, such is the case of the Dutch Hunger Winter at the 
end of World War II [167,168]. Concretely, six decades later, DNA methylation levels for several 
loci—including insulin like growth factor 2 (IGF2), interleukin 10 (IL10), leptin (LEP) and so forth—
were found to be altered in these individuals compared with their unexposed same-sex siblings and 
changes were generally found when exposure to famine occurred during the periconceptional period, 
suggesting that the methylome is more susceptible to alterations at early stages of development 
[167,168]. 

Epigenetic regulation likely involves complex interactions between various nutrients. For 
example, vitamin C is an essential co-factor for multiple demethylases that regulate DNA and 
histones methylation [169]. These demethylases are also sensitive to reactive oxygen species (ROS) 
and tricarboxylic acid cycle (TCA) metabolites. They depend on alpha ketoglutarate and are inhibited 
by succinate and fumarate. Both the electron transport chain activity, as a source of ROS and TCA 
cycle are dependent on the status of various B-vitamins [170]. Vitamin C, B-vitamins and substrate 
fluxes thus interact in epigenetic regulation. Despite rapid progress, nutritional epigenetics is still in 
its infancy and many more studies are needed in order to establish epigenetic markers as new 
biomarkers of intake or of nutrition related health/disease. 

While attention has initially been focused on DNA methylation, histone modifications are 
currently emerging as nutrition-relevant epigenetic modifications. For example, methylation of 
histone 3 at lysine 4 of the histone tail has been associated with undernourishment in young children 
[171]. In particular histone acylation, modifications by acetyl and other acyl groups, directly link 
epigenetically regulated gene expression to metabolic activity, flux and status [170]. Histone acylation 
levels are determined by the balance between available acylation substrates, acylase levels and 
activity and de-acylase levels and activities. Acylation substrates can be provided by TCA cycle, by 
diet and by microbial fermentation [172]. To illustrate further nutritional complexity, beta-oxidation 
as well depends on the status of various B-vitamins [170]. Furthermore, histone deacetylase class III 
members, the sirtuin family of NAD+-dependent deacylases, are dependent on vitamin B3 [173]. 
SIRT1 levels and histone de-acetylase activity were also shown to be affected by supplementation 
with resveratrol [174,175]. 

6.3. Transcriptome Markers 

Transcriptomics allows us to study the transcriptome, either individually for each specific gene 
of interest (generally using real-time RT-PCR techniques) or for the analysis of multiple genes or the 
complete set of genes expressed simultaneously in a tissue. The use of DNA-microarrays has been 
established as highly robust technology for transcriptome analysis [134] but RNA sequencing (RNA 
seq) is now rapidly emerging as an alternative [176]. The advantage of RNA seq over microarrays is 
that a larger spectrum of RNAs is covered, which potentially can provide more functional 
information [177], although in practice, most of the attention is focused on annotated transcripts, 
which are also well represented on state-of-the art DNA microarrays. The use of RNA seq requires 
more complex bioinformatics [178,179] and technical robustness can still be improved, especially for 
small samples [180]. However, with the estimated further improvement of sequencing technologies 
and associated decrease in costs, RNA seq is expected to become the future standard. By analysing 
the transcriptome, we can investigate how exposure to different diets, specific foods or components 
of diet, affects the expression of specific genes or more globally, the complete transcriptome. Global 
transcriptome analysis has been a major tool in unravelling the molecular mechanisms of disease and 
has facilitated the search and identification of biomarkers of health. The analysis of gene expression 



Nutrients 2019, 11, 1092 14 of 31 

using appropriate bioinformatics tools allows a more profound understanding of metabolic 
pathways and regulatory networks and is helping to identify biomarkers for diagnosis and prognosis, 
as well as potential targets for medical and nutritional intervention. Moreover, transcriptomic studies 
have improved the understanding of the complex interplay between genetic and environmental 
factors, such as lifestyle and nutrition factors [181,182]. 

The transcriptome is not the same for all cells in the body but varies depending on the tissue and 
time of life, which can complicate the collection and use of such biomarkers. Moreover, as discussed 
above, obtaining samples from tissues of interest, such as the liver, muscle or adipose tissue, may be 
a limiting point in human studies, because it involves performing invasive biopsies. In this regard, 
blood cells (PBCs), either total cells or the mononuclear cell fraction of peripheral blood (PBMCs), 
provide an attractive alternative because they can be obtained relatively easily and in sufficient 
quantities by minimally invasive techniques [132,183]. These cells travel throughout the body and are 
able to sense and respond to internal and external signals. They have been proposed as a source of 
transcriptomic biomarkers of health and disease, since their gene expression profile reflects in part 
the expression profile which occurs in other tissues, particularly liver, muscle and adipose tissue, 
which evolutionary derive from the same body compartment as PBMC [68–71]. Hence, changes 
occurring in gene expression in such cells may be indicative of the physiological and pathological 
state of the body and have a predictive component [184]. For this reason, the transcriptional profile 
of PBCs represents a very useful tool for evaluating the physiological and nutritional effects of food 
or its components [66]. 

Several studies show the association between diet and transcriptional profiling of PBCs. For 
example, different gene expression profiles in PBCs in healthy individuals have been described 
according to dietary patterns: a “Prudent” dietary pattern - with high intakes of fruits and vegetables 
and whole grain products and low intakes of refined grain product - compared with a Western 
dietary pattern [185]. Also, changes in the PBC transcriptome have been observed after consumption 
of diets rich in omega-3 polyunsaturated fatty acids (omega-3 PUFAs) or other dietary modifications 
[66,186]. Moreover, differences in the expression of specific genes in PBCs have been described in 
children related to the frequency of sugary food (TAS1R3) or high-fat (UCN2) consumption [187]. 
Hence, expression levels of these genes were suggested as potential biomarkers of the frequency of 
intake of specific foods, which could complement data from questionnaires [187]. Notably, in this 
study, it was shown that transcript levels of TAS1R3 in PBCs were related with changes in BMI and 
fat-mass after a two-year follow-up period in children, with low expression levels of this gene being 
related with increased fat accumulation overtime, being a more accurately measurement than the 
reported consumption of sugary foods [187]. Similarly, changes in expression levels of specific genes 
in PBCs have also been described in children depending on the metabolic status and therefore they 
have been proposed as potential biomarkers of risk for insulin resistance or dyslipidaemia associated 
with obesity [73]. Such biomarkers, although promising, still need to be validated in other studies. 

Considering the effects of certain gene variants and epigenetic modifications on the level of gene 
expression, it is relevant to integrate transcriptome studies with genomics and particularly 
epigenomics, since the epigenomic machinery is highly sensitive to metabolic cues [188]. 

6.3.1. Non-coding RNAs 

Non coding RNAs (ncRNAs), both microRNAs (miRNAs) and long-chain non-coding RNAs 
(lcRNAs) have emerged as regulators of mRNA transcription. For example, non-coding RNAs have 
been shown to regulate a wide array of diet-induced obesity associated processes, including 
adipogenesis, adipokine secretion, inflammation, glucose metabolism, lipolysis, lipogenesis, white 
adipose tissue (WAT) hypoxia and WAT browning [189]. While the regulatory role of lcRNAs (> 
200bp) is still emerging [190] and is poorly investigated in the field nutrition, miRNAs have emerged 
as crucial epigenetic regulators of many processes related to nutrition, including nutritional 
regulation of disease related pathways [191]. MiRNAs are small RNA of 18-25 nucleotides in length, 
which regulate expression of their respective target mRNAs post-transcriptionally. Dietary 
modulation of miRNA expression has been shown influence various diseases, such as type 2 diabetes, 
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obesity or hepatic steatosis [192]. Food components have been shown to modulate the expression of 
miRNAs [193]. For example, diets rich in conjugated linoleic acid or PUFAs have been shown to 
modulate specific miRNAs [194,195]. Some miRNAs were associated with the dietary exposure 
(PUFAs), while other were associated with markers of inflammation and metabolic health [195]. 

MiRNAs have also been shown to enter the body from dietary sources, including plant foods 
and cow milk [193] and a database has been established for the presence of miRNAs in various dietary 
sources [193]. A number of studies have documented potential cross-kingdom communication by 
diet/plant-derived miRNAs, although some contradictory data have also been collected and, up to 
now, current controversy exists concerning the exogenous transfer and bioavailability of exogenous 
miRNAs [118]. This is especially true for plant-derived miRNAs, while stronger scientific evidence is 
available for cow milk miRNAs [196,197], in particular for transfer over the relatively immature 
intestine of newborns. Furthermore, growing evidence indicates that miRNAs expressed in breast 
milk may reflect maternal diet and nutritional status and, therefore, may influence offspring 
phenotype [198]. Thus, specific miRNAs have potential as biomarkers of effect, exposure and intake. 

6.4. Proteomic Markers 

The proteome is the set of proteins that is or can be expressed by a genome, in a cell, tissue or 
organism at a certain time. As is the case with the transcriptome, the proteome is dynamic and varies 
with the cell type and its functional status. Bioactive food components usually have a limited 
influence on the genome, while the effects on the transcriptome and proteome are generally greater. 

Generally, readily accessible body fluids (blood, saliva or tears) contain proteins of physiological 
and diagnostic importance. They are widely used in clinical tests for diagnosis and prognosis of 
diseases and to follow their evolutions [199]. Tears, for example, are a complex biological fluid and 
the tear proteome has been suggested as a relevant source for clinical diagnostic markers [112]. Most 
human diseases involve changes in the expression of normal proteins or the creation of abnormal 
proteins, that perturb physiology. In many cases, these proteins may appear in blood or other 
biological fluids, thereby providing an easy access biomarker which can offer information on the 
disease process. Proteomics also allows the identification of changes that occur in response to diet. 
For example, in an animal model, the application of proteomic studies combined with physiological 
studies has provided new insights into the mechanisms by which dietary interventions with different 
sources of fatty acids (fish oil, conjugated linoleic acid and elaidic acid) regulate lipid metabolism 
and other related pathways and determine changes in lipemia and insulin concentration [200]. 

The use of proteomic techniques for the identification of new biomarkers has generally been 
limited by the characteristics of proteins and the availability of suitable techniques. The methodology 
of two-dimensional electrophoresis, initially used in proteomics, has inherent disadvantages: i) bias 
towards the most abundant changes, giving a poor resolution for low abundance proteins; ii) inability 
to detect proteins with extreme properties (very small, very large, very hydrophobic or acidic or 
basic); iii) difficulty in identifying proteins, since it is time consuming and costly [201]. Recent 
advances in mass spectrometry, with greater sensitivity, specificity and resolution capabilities, make 
it feasible to use this technology in order to detect, identify and quantify proteins in blood and other 
biological fluids. The sampling of larger number of individuals has shown that biomarker discovery 
with the use of mass-spectrometry and isobaric tagging provides robust and consistent biological 
results [202]. Furthermore, studies also show effects of gender and phenotype, in particular age and 
fat mass, which has to be taken into account for diagnostic applications [203]. A promising proteomic 
approach is the protein microarray technology, which can be used to detect changes in expression 
and post-translational modifications of hundreds or even thousands of proteins at the same time. Its 
advantages include high sensitivity, good reproducibility, quantitative accuracy and possibility of 
parallel individual determinations. These microarrays have opened new possibilities for the study of 
the molecular mechanisms underlying the interactions between nutrients and genes [201]. However, 
it should be noted that, compared to DNA microarrays, protein microarrays are still at an early stage 
of development but its multiple applications are gradually being developed, expanded and 
improved. In addition to post-translational enzymatic modification, proteins may also be modified 
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non-enzymatically as a consequence of metabolic fluxes. For example, advanced glycation end 
products (AGEs) are formed upon reactions of sugars or sugar metabolites with proteins. Using mass 
spectrometry, specific AGEs have been identified as potential biomarkers for changes in glucose 
metabolism related to diabetes and/or age [204]. 

The use of proteomics in nutritional research has not lived up to its expectations but gradual 
progress is being made. It has, for example, been examined as a tool to evaluate the effects of dietary 
regimens in cancer treatment [205]. An interesting example is the use of proteomics to support the 
beneficial effects of purple vegetables, carrots and potatoes on metabolic health [206]. The collection 
of information on proteins and peptides, their cellular locations and functions, along with their 
expression patterns in different tissues and cells, provides powerful material for defining hypotheses 
regarding potential biomarkers in serum/plasma, prior to validation with specific tests [207]. The 
creation of databases of proteins present in blood is expected to help identify new biomarkers [208]. 

6.5. Metabolomic and Lipidomic Markers 

Metabolomics or metabolite profiling, can be defined as an analysis or screening of small 
metabolites present in samples of biological origin [209]. Metabolomics has undergone major 
progress in the last two decades, mainly through significant innovations in instrument technology, 
especially mass spectrometry and gas and liquid chromatography techniques, together with 
bioinformatic tools and software [209,210]. In metabolomics, targeted and untargeted approaches can 
be carried out. Targeted metabolomics allows the analysis of a defined set of known metabolites with 
similar structures (e.g., amino acids, fatty acids, acylcarnitines, phytochemicals, etc.) and is generally 
a quantitative tool. This approach is commonly aimed at answering specific biochemical questions or 
hypothesis that motivate the investigation of one or more related pathways [210]. For example, a 
targeted approach has allowed the identification of a set of five amino acids (isoleucine, leucine, 
valine, tyrosine and phenylalanine) whose fasting levels strongly predicted future diabetes [211]; or 
a set of metabolites (Leucine/Isoleucine and glycerol) whose response after an oral glucose tolerance 
test might be predictive of insulin sensitivity [212]. 

Untargeted metabolomics (also referred to as “shotgun” metabolomics) consists in the unbiased 
screening of metabolites in biological specimens and is generally used for global metabolite profiling 
with the intention of comparing patterns of metabolites among different groups [30]. This approach 
is capable to detect thousands of independent spectral features in a biological sample [209]. However, 
unlike target metabolomics, only a part of the detected peaks (about one-third of them, as an 
estimation) are included in databases and metabolite repositories and can be unequivocally linked to 
a specific chemical structure. Untargeted metabolomic studies are generally not driven by hypothesis 
but are rather hypothesis generating [210]. 

Metabolomics strategies, both targeted and untargeted, have clearly contributed to biomarker 
discovery of the last years and many reports provide the proof-of-principle of metabolomics being a 
key tool for nutrition research [30,213,214]. The comprehensive metabolite profiles (metabolome) can 
provide an overview of the metabolism with a level of description that transcends genetic 
information and more closely reflects the ultimate phenotype, thus helping to connect genotype to 
phenotype at the molecular level [210]. If mechanistically substantiated, changes in the metabolome 
may be used to improve disease risk estimates in epidemiological studies. Indeed, metabolomics is 
already being successfully used in the identification of food components and their metabolites in 
biological fluids [213,215]. Thus, metabolomics has allowed to define dietary exposures, for example 
the intake of meat, fish, dietary pulses and so forth. [213,216–218], health status [219,220] and to 
examine the result of nutritional intervention strategies [221–223]. 

Metabolites present in blood or other biological samples, not only reflect dietary exposure but 
also metabolic processes, including the modifying effects of genetic variation and intestinal 
microbiota, [30]. Concerning intestinal microbiota, it is of key importance to understand how changes 
in the microbiota composition affect its functionality for interpretation of possible health outcomes 
[224]. Integrate of serum metabolome and microbiota composition data is instrumental in linking 
functionality to health [225,226]. The Mediterranean diet was, for instance, shown to modify gut 
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microbiota with functional consequences both in the microbiome and the host metabolome, 
associated with reduction in disease risk [227]. Diet and food components can shape the composition 
of the gut microbiota. For example, highly and lowly digestible fibres differentially affect gut 
microbiota as measured by hydrogen production and parallel changes in hydrogen producing 
bacteria [228]. Not only macronutrients, depending on their percent composition in the diet, are 
important for modulating the composition of gut microbiota and their functionality [227] but also 
specific bioactive compounds, such as flavonoids, whose bioconversion is highly variable dependent 
on the microbiome composition, thus influencing their biological activity and the possible 
physiological and health outcomes [229]. Therefore, the diet modulates the microbiota but the 
microbiota composition also modulates the effects of diet and food components and hence the 
response to diet. In this sense, the analysis of the microbiome of the individuals may help to better 
interpret the response to dietary patterns/components and has been proposed as promising for the 
search of biomarkers to predict individual responsiveness to diet [227]. Thus, the use of microbiota 
composition as well as the integrate analysis of the metabolome and the microbiome as biomarker of 
dietary assessment have biomarker discovery potential [225,226]. 

Lipidomics is defined as the metabolomic analysis of lipids. It can be considered as a subfield in 
metabolomics, since the different solubility properties of lipids compared to other metabolites often 
determines their separate analysis [230]. Lipidomics has become the primary tool for the 
identification and diagnosis of inborn errors of lipid metabolism [231]. It is now increasingly used in 
nutritional studies, especial since commercial companies can deliver lipidome profiles in a robust 
manner, with increasingly competitive prices. Lipidomics is being used for effect analysis [128,232] 
but also to monitor dietary exposure [233,234] and the relationship between food intake and health 
parameters [234,235]. Lipidomics has also been useful to provide some insights into metabolic 
pathways by which food exposure may exert its health effects [235]. 

In recent years, metabolomics is being introduced in large cohort nutritional studies, with 
promising results. The improvement of technologies, which are progressively more powerful and 
sensitive and the growing availability of comprehensive databases (including food components and 
their metabolic derivatives) are helping this process. For example, a metabolomic study has identified 
39 known metabolites in serum which correlate with a total of 13 dietary groups, including citrus 
fruits, green vegetables, red meat, shellfish, fish, peanuts, rice, butter, coffee, beer, spirits, total 
ethanol and multivitamins [236]. As an example, strong associations between consumption of citrus 
and stachydrine, coffee intake and trigonelline (N-methyl-nicotinate) and quinine or alcohol 
consumption and ethyl glucuronide, have been described [236]. 

In addition to the studies carried out in serum samples, metabolomic studies have also been 
done using urine samples, which have revealed the existence of markers associated with intake, for 
example, with the consumption of meat (1-methylhistidine, O-acetylcarnitine) [35,41], vegetables 
(phenylacetylglutamine) [41], citrus (proline betaine), oily fish (1-methylhistidine), coffee 
(dyhydrocaffeic acid derivatives) [27] and tomato juice (hydroxylated and sulfonated metabolites of 
esculeogenin B) [34]. 

In general, metabolome based biomarkers, along with others identified using the previously 
described omics techniques, are of great interest in nutrition, because they can be used to monitor 
intake in epidemiological or intervention studies, complementing the results of dietary 
questionnaires. Moreover, the development of fast and affordable tests for relevant biomarkers of 
food intake could also be of interest to routinely assess nutritional deficiencies and imbalances in the 
population. 

7. Empowering Citizens to Monitor and Follow a Healthy Diet 

The future of nutrition is moving towards the possibility of carrying out real personalised 
nutrition, the emerging concept of “precision nutrition,” which may be achieved as a result of a 
rigorous nutrigenomic analysis that considers the genetic makeup of the individual, its epigenetic 
modulation and its molecular phenotype [59]. 
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The health of an individual depends on the information contained in its genome and how it is 
interpreted throughout its life (epigenome, methylome, transcriptome, proteome and metabolome). 
The dynamic evaluation of physiology and the health status via an integrated analysis of all these 
factors is what is called an integrated personal omic profile (iPOP) [237]. Although we are still far 
from being able to define and use iPOPs, the first description that exists of the iPOP for a single 
individual has shown the enormous potential of omics integration in medical research, in monitoring 
health status and personalised medicine [237]. The iPOP is a preventive and diagnostic tool because 
it can follow and to a certain extend predict, the evolution of health status and evaluate metabolic 
robustness. Furthermore, it might also help to improve the assessment of disease risk and provide 
high diagnostic accuracy, monitoring of disease, targeted therapies and understanding of the 
associated biological processes. Clearly, the availability of such information requires powerful tools 
for integration and interpretation. Hence, it is necessary to develop algorithms that enable a holistic 
understanding of all the events that shape and participate in defining the health status of individuals 
throughout their life, information that could be collected by conducting longitudinal iPOPS 
associated with crucial stages of life. 

This concept, which would initially define the health status and the metabolic and endogenous 
responses of an individual, would allow to identify certain exogenous factors, including dietary 
factors that have the potential to modify the iPOP in an integrated manner, allowing to establish 
functional nutritional behaviours towards improved health for the individual. The enormous 
development of information technology, in terms of algorithms and appliances, can be instrumental 
in iPOP implementation. The acquisition of food intake information by the consumer via mobile 
appliances can be translated by image recognition software allowing for efficient identification of 
food ingredients. Combining this information with a personal integrative nutritional biomarker 
profile, would optimally help providing more adequate, precision nutrition recommendations. 
Additional physiological information, for example to monitor glucose levels, may be provided by 
wearables. The use of specifically designed platforms, for example, user-friendly mobile applications, 
capable of integrating all this available information and translating it into specific outcomes, is 
expected to help empowering citizens to have healthier optimal behaviours and life-style adaptations 
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