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ABSTRACT 
Human partners are very effective at coordinating in space and 
time. Such ability is particular remarkable considering that visual 
perception of space is a complex inferential process, which is 
affected by individual prior experience (e.g. the history of previous 
stimuli). As a result, two partners might perceive differently the 
same stimulus. Yet, they find a way to align their perception, as 
demonstrated by the high degree of coordination observed in 
sports or even in everyday gestures as shaking hands. Robots 
would need a similar ability to align with their partner's 
perception. However, to date there is no knowledge of how the 
inferential mechanism supporting visual perception operates 
during social interaction. In the current work, we use a humanoid 
robot to address this question. We replicate a standard protocol 
for the quantification of perceptual inference in a HRI setting. 
Participants estimated the length of a set of segments presented 
by the humanoid robot iCub. The robot behaved in one condition 
as a mechanical arm driven by a computer and in another 
condition as an interactive, social partner. Even if the stimuli 
presented were the same in the two conditions, length perception 
was different when the robot was judged as an interactive agent 
rather than a mechanical tool. When playing with the social robot, 
participants relied significantly less on stimulus history. This 
result suggests that the brain changes optimization strategies 
during interaction and lay the foundations to design human-
aware robot visual perception. 
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1 Introduction 
Humans are very good at coordinating with each other in 

space and time. We see it in everyday actions, as passing an object 
or shaking hands, and it is even more evident in sports, dance, 
music and complex collaborative activities. This is the kind of 
coordination ability that we would desire in future robots 
interacting with us.  

This human skill is all the more remarkable, given that the two 
partners might perceive the world differently. Indeed, our 
perception of the world does not only depend on the incoming 
sensory information, but is also influenced by our prior 
knowledge, associated with the statistical properties of our world. 
This phenomenon traces back to Helmholtz, who introduced the 
concept of unconscious inference, which helps to shape vision [1]. 
Incorporating previous experience, or priors (e.g. the history of 
the previous stimuli), into the current percept helps the brain to 
cope with the uncertainty resulting from sensory and neural noise 
and ambiguity [2].  

An example is the inferential process of perception called 
central tendency in which previous perceptual experience (prior) 
modifies the current perception. In general, judgments of time, 
weights, forces, extent of movements, length, etc. show the same 
tendency to gravitate toward a mean magnitude. For instance, 
when you are asked to judge the length of a set of short segments 
and, then, you are shown the next one, you will perceive it as 
shorter than it actually is because you will use the average (short) 
length of the previous segments as prior. Perception is therefore 
affected by the mean value of the stimuli previously experienced 
[1, 3-4]. Recent Bayesian models of the phenomenon [1, 4] have 
shown that the central-tendency strategy (i.e. taking into account 
the statistics of previous stimuli rather than just the current 
stimulation in a perceptual judgment) optimizes perception. In 
fact, this strategy leads to an increased reliability associated with 
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an overall reduction in the error magnitude [3], [4]. As a result, 
the estimate of one stimulus differs depending on the distribution 
from which it is drawn, i.e. its statistical context. The very same 
physical stimulus can be then perceived differently by two 
observers, if they have different previous experience [5].  

However, to collaborate efficiently with others we need to 
share similar representations of the world and, in particular, of its 
temporal and spatial properties. In a cooperative situation, a 
mechanism like central tendency that sacrifices the accurate 
perception of the current stimulus could not represent the best 
strategy. In fact, humans somehow find a way to align their 
perception notwithstanding this inferential process. Different 
interactive purposes require different levels of alignment. Indeed, 
although in certain contexts extreme precision in the coordination 
is required – as in sports or in surgical procedures – in everyday 
life a “sufficient” alignment can support effective interaction, even 
in presence of different sensorimotor experiences and different 
prior experiences. Thus, a successful shared perception would not 
always require to completely put aside prior experience. 
According to the context, alignment might require just a minor 
reliance on our own prior in order to give more importance to 
what the partner perceives.  

Enabling robots to be aware of the partner’s perception is 
important to establish sufficient alignment, as a function of what 
is needed for a successful interaction. Sharing a similar perception 
of the world has been deemed as determinant in supporting 
intuitive mutual understanding between agents of any nature [6]. 
Conversely, in robotics, perception mainly aims at reaching high 
levels of accuracy in the detection of the physical properties of the 
environment, rather than trying to accommodate or replicate 
potential distortions in the way the human partners sense it. 
There have been some attempts at modeling human peculiarities 
in the perception of space, for instance in the context of 
replicating visual perspective taking mechanisms [7], but the 
majority of the robotic platforms is designed to maximize the 
physical accuracy of environment perception, also through the 
use of a variety of non-biologically inspired sensors (as RGB-D 
cameras or lasers).  

We claim that it would be important to design robots who are 
aware of these “distortions” and consider them when interacting 
with human partners, to guarantee the necessary alignment for 
interaction. In other words, we are advocating the need for a 
human-aware perception to support collaborative planning, 
manipulation, navigation and action in general. To do that we 
have to endow robots with an accurate model of how humans 
modulate their perception and inferential process during 
interaction.  

Recently a high degree of interest has emerged in the effect of 
recent experience on visual perception, highlighting the 
substantial relevance of the use of priors has on individual 
percepts [3], [8], [9]. However, there is no knowledge of how 
perceptual inference shapes visual perception during social 
interaction. This is, indeed, a crucial question. During 
interaction, the brain faces two potentially conflicting goals: 
maximizing individual perceptual stability by using central 
tendency or maximizing perceptual alignment with the partner to 

facilitate coordination, by limiting the reliance on individual 
previous experience.  

In this work, we propose a first step toward understanding 
how human perceive space during interaction, to be able to model 
the same perception mechanism in robots and enable perceptual 
alignment. In the current research, robots become a fundamental 
tool of investigation. One of the crucial limits to the study of 
perception during interaction has so far been the impossibility of 
maintaining rigorous control on the stimulation, while allowing 
for a direct involvement in a dynamic exchange with another 
agent. The robotic platform allows porting the stimuli used in 
perceptual investigations to the domain of online collaboration, 
bringing controllability and repeatability to an embodied and 
interactive context.  

Mounting evidence has shown that being involved in an 
interaction is very different than just observing it for many 
behavioral and neurophysiological aspects [10]. For instance, 
Schillibach and colleagues have demonstrated that in a task 
requiring participants to fixate an object on a screen, the 
underlying brain activity differed significantly when the 
participant was doing this ‘together’ with a virtual other, by 
following his gaze, or alone [10]. During action planning, Kourtis 
et al. [11] compared the preparation of a joint action measured 
through EEG with the planning of individual actions. They found 
a significant increase of the neural activation in the first case, 
suggesting the inclusion of the representation of the other’s 
action. The presence of a social rather than individual context has 
also behavioral consequences. For instance, when reaching to 
grasp the very same object, the kinematics of the action varies 
significantly if it is driven by a communicative rather than an 
individual intention [12] and even if the social context is 
competitive rather than collaborative [13]. 

It is however unknown how social involvement might affect 
the very basis of the inference mechanism supporting visual 
perception. A hypothesis is that the brain might aim for the 
emergence of shared perception, even if this implies selecting a 
different solution if compared to individual strategy and 
sacrificing robustness to sensory noise. The current experiment 
verifies whether interacting with a social or a non-social agent 
affects visual perception of spatial stimuli. 

In particular, we are replicating a standard protocol for the 
quantification of central tendency in space perception [14], 
porting it into an interactive, HRI context. The task consisted in 
reproducing the length of a series of segments shown on a 
touchscreen. The assessment of the nature of the errors in the 
reproduction of the lengths allowed measuring the degree of 
central tendency for each participant in different experimental 
sessions. In the main experimental validation, the iCub humanoid 
robot [15] acted as stimulus demonstrator, by physically 
indicating the extremes of the segments to be reproduced with its 
hand. We manipulated the interactivity of the experimental 
context by realizing two conditions that we presented as 
mechanical and social. In the mechanical condition, the 
humanoid robot iCub behaved as a mechanical arm showing a 
neutral facial expression and gazing at a fixed point in the scene. 
In the social condition, the robot presented the same stimuli, but 
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it established a mutual gaze giving an implicit idea of turn taking 
with a friendly expression. Our hypotheses are as follows: (i) in 
the social condition, the central tendency phenomenon will be 
reduced, as the brain will favor giving more relevance to current 
sensory stimulation rather than stimulus history, in order to 
facilitate instantaneous alignment of perception with an 
interaction partner; (ii) the effect will be stronger the more social 
the robot will be perceived during the interaction. 

2 Methods 
In this study, we evaluated whether space perception changes 

when the perceptual task is not performed in isolation but with 
another agent. We focused on the central tendency strategy and 
we assessed whether, given the very same distances to be 
reproduced, they were reproduced differently when the robot – 
who acted as stimulus demonstrator – exhibited a different level 
of sociality (see Fig. 1.1 and Fig. 1.3).  

2.1 Participants 
For this study, 30 participants were recruited (15 males, 15 

females) from 19 to 46 years old (M=28, SD=6). For 3 participants 
the robot could not complete the task due to technical failures and 
they were therefore excluded from the analysis, leaving a sample 
of 13 males, 14 females, of age M=29, SD=6. Participants were 
students or workers in different areas with a background in 
Humanities, Engineering, Computer Science, Architecture, 
Medicine, Statistics, and Politics and were chosen from the ones 
who answered to a recruiting e-mail sent to a local mailing list. 
Most participants lived in the region where the experiment was 
run. 11 participants (4 males, 7 females) had already previously 
done experiments with iCub robot. All the participants gave their 
written informed consent before participating. The regional 
ethical committee approved the study (Comitato Etico Regione 
Liguria). All participants were compensated with a sum of 15 € for 
their time.  

2.2 Design 
The experiment comprised 4 different sessions. In two of them, 

the participants pursued an individual task using a touchscreen. 
The other two conditions involved the interaction with the robot 

employing the same touchscreen. The order of conditions was 
counterbalanced. Participants could start either with the 
individual sessions or with the robot. Moreover, also the order of 
the two sessions with the robot – the mechanical and the social 
condition – was counterbalanced. The experiment lasted 
approximately 90 minutes. Participants had been previously 
informed of the duration of the experiment.  

For the experimental set-up (see Fig. 1.2), participants were 
sitting in an office chair without wheels. The chair faced a 
structure of the height of 75 cm on which an ELO 2002L 20" 
touchscreen monitor was mounted. For the sessions performed 
with the robot, the robot was placed on the other part of the 
touchscreen at 20 cm from it on a fixed platform. For the 
individual sessions, instead, the robot was hidden behind a black 
curtain. The blinds were closed and the room was lit up with 
artificial light in order to ensure the same lighting conditions for 
all participants. Another curtain hid the experimenter’s station 
with a table and the computers connected to the touchscreen and 
to the robot. After having explained the task to the participants, 
the experimenter sat behind the curtain. In the experimental room 
there were two cameras to record the experiment and a Tobii pro 
glasses 2 device was used as eye-tracker. The touchscreen was 
programmed with MATLAB 2019a and Psychtoolbox on a 
Windows 10 pc that recorded the responses of participants. 

2.2.1 Individual Sessions. 
2.2.1.1 Individual Length Discrimination. The first 

individual session consisted in a length discrimination task aiming 
to test the perceptual acuity of the participants. Three red disks of 
1 cm diameter appeared for 0.4 s in sequence with an interval of 
1.5 s on a white straight line crossing the screen at its central 
height. After stimulus disappearance, subjects had to judge 
whether the longest segment was the first, delimited by the first 
and the second disk, or the second one, delimited by the second 
and the third disk, by typing respectively “1” or “2” on a keyboard 
located between them and the touchscreen. Participants 
performed this task for 66 trials. One of the two distances 
(standard) measured always 10 cm, while the other (the 
comparison) changed from trial to trial according to a QUEST 
adaptive procedure [14]. This design represents a very simple 
measure of length discrimination, where priors do not influence 
performance. The proportion of times in which the comparison 
interval was judged longer than the standard was plotted as a 

Panel 1. Pictures and schema of the set up. Fig. 1.1 The mechanical condition. The robot is performing the task gazing at a 
fixed point. Fig. 1.2 The set-up of the experimental room for sessions to be performed with the robot. The robot (A) in front 
of the participant (B) with the touchscreen between them (D), and the experimenter (C) behind the black curtain. For the 
individual tasks, the set-up was the same except for the robot that was hidden behind another black curtain. Fig. 1.3 The robot 
in the social condition gazing at the screen and at the participant. 

Fig. 1.3 Fig. 1.2 Fig. 1.1 
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function of comparison amplitude and fit by a cumulative 
Gaussian distribution. The standard deviation of the fitted 
Gaussian represents the perceptual threshold, which is the 
minimal difference between two lengths that the participant can 
reliably distinguish. 

2.2.1.2 Individual Length Reproduction. The second 
individual session consisted in a length reproduction task (see Fig. 
2 A). The set-up was the same as the previous session but in this 
case, for each trial only two consecutive red disks of 1 cm diameter 
appeared on the white line. The duration of the stimulus measured 
0.6 s. The first disk was positioned at a variable distance from the 
left border of the screen (0.5–3.5 cm, randomly selected). On its 
disappearance, a second disk appeared after 2 s at a variable 
distance to the right of it, disappearing again after 0.6 s. For each 
participant, 11 different lengths were presented 6 times, 
randomly, in a range of lengths from 6 cm up to 14 cm increasing 
each 0.8 cm. After the stimulus, participants had to touch the 
screen on the white line on the right of the second disk in order 
to reproduce that distance. A red disk came on to indicate where 
they had touched, but no feedback about the correctness of the 
response was provided. Participants had 3 practice trials after 
which they performed the task for 66 trials. This individual 
session served to compare our results with traditional studies on 
central tendency. 

2.2.2 Sessions with the robot. In the other two sessions, on the 
other part of the touchscreen with respect to participants there 
was a robot acting as stimulus demonstrator on the touchscreen. 
Except for the use of iCub robot, the set-up of the experimental 
room was the same as the individual sessions. 

In both sessions, the robot pressed two different points in 
sequence on the touchscreen along a visible straight white line (as 
above). Then participants had to press a third point at equal 
distance from the last shown by the robot. Unlike the individual 
session, the touchscreen did not show any red disk in the points 
where iCub or the participant touched. iCub was programmed to 
show 11 different lengths 6 times randomly. The programmed 
lengths were equal to those of the individual session (from 6 cm 
to 14 cm, increasing each 0,8 cm). The interval between the first 
and the second press of the robot was on average of 5.45 s (SD 0.4 
s) depending on the length of the stimulus, while each trial lasted 
on average of 15.76 s (SD 2.2 s). The task of the participant was the 
same for both the sessions. We scheduled 66 trials for each session 
with 3 additional practice trials at the beginning.  

For the two sessions, we employed the same robot, but its 
behavior differed. In one condition, iCub appeared as a social 
partner of the task, while in the other one it did not show any kind 
of social behavior. Participants were explicitly informed of the 
difference of the behavior of iCub.  

2.2.2.1 Length Reproduction with mechanical robot. In the 
mechanical condition (see Fig. 1.1), the robot behaved only as a 
mechanical stimulus. To this aim, the iCub face showed a fixed 
neutral facial expression: the LEDs of its face were switched on 
but iCub did not smile or show any emotion. Its gaze was 
programmed to be directed to a fixed point in the environment in 
a manner that the robot did not seem to gaze at participants or to 
show any awareness of the environment. We instructed 

participants about the task with these words: “Now I turned off 
iCub’s social intelligence. The computer is just driving its hand 
motions in a predefined pattern. It will be touching two positions on 
the touch screen. Please reproduce the distance between these two 
points, by pressing a third one at equal distance from the last one”. 

2.2.2.2 Length Reproduction with social robot. In the social 
condition (see Fig. 1.3), the eye-cameras of the robot were 
switched on and iCub changed its facial expression according to 
its action. When iCub looked at participants, before the session 
and between trials, it smiled showing a friendly expression. When 
iCub was busy in touching the screen, it showed a focused 
expression. To enhance the impression of animacy, for the entire 
duration of the interactive condition, the eyelids were blinking. 
Using a face-tracker module, iCub was able to establish mutual 
gaze with the participants, looking at their face at the beginning 
of the session, before and after each stimulus demonstration, 
giving an implicit idea of turn taking. Moreover, while performing 
its task, it exhibited a natural oculo-manual coordination, 
anticipatorily directing its gaze toward the point it was going to 
press. Finally, to enhance its social behavior, the robot told fixed 
sentences to participants. During speech, the mouth-LEDs 
simulated the lips movement in coordination with the words iCub 
was saying. At the beginning of the session, iCub welcomed 
participants and explained them the task with these words: “Hello, 
I’m iCub! Now we will play together. I will touch the screen twice 
and you will touch the screen a third time to replicate the distance. 
Are you ready?”. At the end of the session, it said goodbye to them: 
“Thank you for having played with me! It has taken a bit of a long 
time, but you are helping us a lot! See you next time!” It also incited 
twice participants to play well the game from time to time, saying: 
“Well done! Keep it up!” and “Come on, there are only a few more 
trials left, keep focused”. The condition was also framed as social 
by the experimenter, who introduced the session saying, “Now 
iCub is fully working, with its social intelligence on and its cameras 
are switched on to look at you and at the screen. It will be showing 
you two positions on the touch screen. Please reproduce the distance 
between these two points, by pressing a third one at equal distance 
from the last shown by the robot”. 

2.2.3 Questionnaires. Additionally, we collected data from a set 
of questionnaires through Google Form. The first questionnaire 
was compiled before coming in the laboratory and included some 
questions about participants’ previous experience with robots, the 
Italian version of TIPI test on participants’ personality [16], the 
Autism-spectrum Quotient test (AQ test) [17], [18] to measure the 
degree to which adults with normal intelligence have the traits 
associated with the autistic spectrum, and the NARS 
questionnaire, to evaluate the attitudes of participants towards 
robots [19].  

Then, immediately after each session with the robot, a set of 
additional questionnaires was proposed. First, participants had to 
fill the Inclusion of other in the self-scale (IOS) questionnaire [20], 
by which it is possible to check how close the person interviewed 
feel to another subject (in our case the robot) in a range from 1 to 
7. Furthermore, it was asked to participants to answer to the sub-
scales Anthropomorphism, Animacy, Likeability, and Perceived 
Intelligence of the Godspeed questionnaire [21] and to the sub-
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scales Mind experience and Mind agency of a Mind perception test 
[22][23]. These aimed to obtain from the participants their 
impressions of the robot after each condition so that it was 
possible to compare them. When we proposed these 
questionnaires, we employed a 7 points likert scale, from 1 to 7. In 
order to make results more readable, we put results of all these 
sub-scales in proportion with 1, where 1 is the highest possible 
result (e.g. Anthropomorphism has 5 items in a 7 points likert 
scale: its highest possible result would be 35). At the end of the 
experiment, a final questionnaire was given in order to collect 
participants’ opinions about the experiment, to get their feedback 
about the behavior of iCub and to know which was the difference 
between the sessions with the robot according to them. 

2.3 The Robot 
To generate controlled stimulation in an interactive context we 

used the humanoid robot iCub [15]. Such a complex agent 
endowed with sensors and actuators allows generating controlled 
and precise actions that enable the experimenter to replicate the 
rigorous perceptual stimuli traditionally adopted in the standard 
perceptual investigations. However, it also generates complex 
behaviors, which could entail the coordinated use of multiple 
effectors (e.g., eye and hand or two arms) and the timely and 
adaptive response to a participant’s behavior. The robot is 
endowed with multiple sensors (two cameras, a skin over its body, 
composed of multiple tactile sensors, microphones in its head) 
whose input can be processed almost online and used to modify 
robot behavior according to participants’ actions. For the purpose 
of this experiment, it was sufficient employing only the left eye-
camera using a Face Tracker module to make iCub look at 
participants’ face at the end of each trial and the iKinGazeCtrl [24] 
module to make it direct its gaze toward the point on the 
touchscreen. The head of iCub is provided with LED lights to 
enable it to show different facial expressions. The lights were 
fixed on a neutral face for the mechanical condition, while for the 
social condition iCub was programmed to change facial 
expression according to its actions.   

Moreover, to design robot behaviors we made use of the 
CartesianController module [25] already designed by the iCub 
community, which produces human-like minimum jerk 
movements with an average hand speed of about 0.1 m/s. Through 
this module, the robot presented the stimuli on the touchscreen 
moving the torso and the right arm for all its degrees of freedom, 
except for the fingers that were fixed. During all the experiment, 
iCub showed a biological motion. Due to the combination of the 
motor imprecision intrinsic to the robot actuators, the presented 
positions could slightly differ from the programmed ones. For this 
reason, we submitted the sets of stimuli presented by the robot in 
the two conditions to a Kolmogorov-Smirnov test. Results showed 
that the distributions were not significantly different (for all 
participants p’s>0.93) providing evidence that the statistical 
context was comparable in the mechanical and the social 
conditions. The robot was programmed to perform the task with 
pre-defined movements and speech. The experimenter just started 
the execution of the routines. Except for the face-tracking 
behaviour in the social condition, the robot was not responsive to 

stimuli from participants. In the experimental room, there was 
only one experimenter, who was a researcher of the laboratory 
and was aware of the experimental hypothesis. During the 
experiment, he checked the correct realization of the experiment 
without any control on the robot.  

2.4 Data Analysis 
To assess the degree of central tendency in spatial perception, 

we followed a well-established approach [14], [26]. As a direct 
measure of central tendency, we computed the regression index 
for each of the reproduction tasks (individual, with mechanical 
robot, with social robot) as the difference in slope between the best 
linear fit of the reproduced values and the identity line. The 
regression indexes were compared among different conditions 
through either t-tests or ANOVAs, according to the design. When 
a data distribution was not normal (checked with Lilliefors test), 
the corresponding non-parametric tests were performed. The data 
resulting from questionnaires were also used as independent 
variables in linear regressions. The details of each analysis are 
reported in the results. From the length discrimination task, we 
derived the spatial acuity of each participant, i.e., the minimal 
difference between two lengths that the participant could reliably 
discriminate. This corresponds to standard deviation of the 
cumulative Gaussian fitting the proportion of responses “the 
comparison stimulus is longer” (more details in [14]).  

We considered outlier any participant who exhibited results 
exceeding the interval [Mean – 2.5 SD; Mean + 2.5 SD]. 

3 Results 
In this experiment we wanted to assess whether being 

involved in an interaction with another social agent could modify 
the perception of the length of a segment it showed, if compared 
when the same stimulus was shown by a mechanical stimulus 
generator. 

3.1 Baseline analysis 
First, we checked that all participants had a visual acuity that 
enabled them to perceive reliably the difference in length of the 

Figure 2. A) Sketch of the individual length reproduction 
task. B) Example of results of a length reproduction task. 
Reproduced values are plotted against the corresponding 
stimuli. The regression index is computed as the difference 
between the slope of identity line (1, gray) and the slope of 
the best linear fit of the data (red). 
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proposed stimuli. Indeed, the phenomenon of central tendency is 
highly influenced by perceptual acuity [4] and an abnormal 
perceptual threshold would have determined abnormal 
performances in the regression tasks. The average perceptual 
acuity was of about 2.39 cm (SD=0.62 cm) well compatible with 
the task, with no participant exhibiting outliers values. 

To evaluate the central tendency we plotted the reproduced 
lengths against the presented length (see Fig. 2 B) and measured 
the regression index, defined as the difference in slope between 
the best linear fit of the data and the identity line. An index close 
to 0 corresponds to a reduced central tendency, whereas values 
close to 1 are associated to a strong use of the previous stimulus 
history. 

We repeated the same procedure for all the sessions 
(individual, with mechanical robot and with social robot). Before 
advancing with the analyses, we checked these results for the 
presence of outlier values. This led to the exclusion of 2 
participants (1 male and 1 female), whose regression index was 
larger than the average plus 2.5 SDs, one in the individual 
condition and the other in the social condition. Such result 
suggests that they were not paying attention to the task and were 
not reproducing lengths reliably. In fact, they did not even 
differentiate in their reproduction the two extremes of the range 
presented (ca. 6 cm - 14 cm). The sample on which we performed 
the full analysis was then composed of 12 males, 13 female, age 
M=29, SD=6, of which 10 had already interacted with iCub for 
other experiments. 

In the individual condition, participants exhibited a clear 
central tendency, with an average regression index of 0.446 
(SD=0.13). Through an one-sample t-test, this value resulted 
significantly different from 0 (t(24)=16.81, p<0.01, Cohen’s 
d=3.469) and in line with the results obtained in previous 
experiments on central tendency [14]. This confirmed that 
participants leveraged on the inferential mechanism to perform 
the reproduction task. 

3.2 Manipulation check  
To verify that participants perceived the social and the 

mechanical conditions differently, we compared their responses to 
the Godspeed questionnaires reported after the two conditions. 
We expected in particular to find a significant increase in the 
Animacy subscale of the questionnaire, as we were aiming to 
manipulate the perception of the robot being a live agent versus a 
non-alive machine and as this scale encompasses questions as the 
level of perceived interactiveness and of responsiveness to stimuli. 
A paired-sample t-test showed that in the social condition the 
robot was perceived with a significantly higher level of Animacy 
(M=0.62, SD=0.15) than in the mechanical condition (M=0.37, 
SD=0.15): t(24)=-7.56, p<0.01, Cohen’s dz=1.60. This is evident also 
from Fig. 3, where all evaluations of animacy performed after the 
social condition result higher than the evaluations the same 
individual provided after the mechanical condition (all points 
lying above the identity line).  

The manipulation had a significant effect on the general 
perception of the robot. A Wilcoxon Signed-Ranks Test indicated 
that for Anthropomorphism values referred to the social condition 

(M=0.55, SD=0.17) are significantly higher than the ones of the 
mechanical condition (M=0.37, SD=0.14): Z=-3.85, p<0.01, Cohen’s 
dz=1.03. A paired sample t-test revealed the same result in 
Likeability (Soc. C. M=0.82, SD=0.18; Mech. C. M=0.63, SD=0.21; 
t(24)=-5.03, p<0.01, Cohen’s dz=0.97) and in Perceived Intelligence 
(Soc. C. M=0.70, SD=0.11; Mech. C. M=0.62, SD=0.14; t(24)=-3.91, 
p<0.01 , Cohen’s dz=0.76). Also considering different dimensions 
of the mind perception, we observed a significant increase in both 
the Mind experience subscale (Soc. C. M=0.44, SD=0.27; Mech. C. 
M=0.25, SD=0.17; Wilcoxon Signed-Ranks Test: Z=-2.75, p<0.01, 
Cohen’s dz=0.76) and the Mind agency subscale (Soc. C. M=0.60, 
SD=0.25; Mech. C. M=0.42, SD=0.20; paired sample t-test: t(24)=-4, 
p<0.01, Cohen’s dz=0.83) and the same regarding the “Inclusion of 
other in the self-scale” questionnaire (Soc. C. M=0.63, SD=0.20; 
Mech. C. M=0.41, SD=0.22; Wilcoxon Signed-Ranks Test: Z=-3.59, 
p<0.01, Cohen’s dz=1.21). 

3.3 Perception during interaction 
In the reproduction tasks involving the robot as demonstrator, 

the average regression index was 0.26 (SD=0.17) a value 
significantly lower than the one measured in the individual 
condition (M=0.45, SD=0.13) (paired sample t-test: t(24)= 4.66, 
p<0.01, Cohen’s dz=0.96). This general decrease can be partially 
due to the difference in the type of stimulation: just two brief red 
disks represented the length to be reproduced in the individual 
condition; while in both robotic sessions the whole arm motion 
was visible, providing a richer information. According to the 
Bayesian models described in [27], the presence of less sensory 
noise would yield to less central tendency. 

However, comparing the two different robot-based conditions 
a significant decrease in regression index emerged, even though 
the length stimuli were the same. The regression index was on 
average 0.29 (SD=0.19) in the mechanical condition and 0.23 
(SD=0.17) in the social condition. A mixed model ANOVA with 
“order of conditions” as between factor and “condition” as within 
factor confirmed that the regression index was significantly larger 
in the mechanical condition (F(1,23)=7.22, p=0.013,η p 2=0.24) (see  
Fig. 4 B). On the contrary, there was no significant effect of order 
(F(1,23)=0.32, p=0.58) nor of the interaction between the two. 
Given the more complex oculo-motor behaviour of iCub in the 
social condition, we evaluated whether the time interval between 

Figure 3. Plot of the values of Godspeed subscale–Animacy 
for each participant in both mechanical and social 
condition. 
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two consecutive trials was longer than in the mechanical 
condition. The average inter trial interval in the mechanical 
condition (M=15.46 s, SD=0.6 s) resulted indeed significantly 
shorter than in the social condition (M=15.88 s, SD=0.62 s), of 
about 0.4 s (paired sample t-test: t(24)=-2.36, p=0.027, Cohen’s 
dz=0.47). To ensure that this difference was not causing the 
change in regression index observed, we ran a linear regression 
between the variation (ΔRI) in regression index and the difference 
in inter trial interval between the conditions (ΔT). No correlation 
was found as ΔRI resulted to be approximately constant among 
different values of ΔT (F=0.01, R2=0.03, p=0.93). 

To verify whether previous experience interacting with iCub 
impacted on the results, we divided all participants in two groups 
(if they had already performed experiments with a iCub or not). A 
Mixed Model ANOVA with “condition” as within factor and 
“previous experience” as between factor did not reveal any 
significant effect of previous experience (F(1,23)=0.34, p=0.57) on 
the significant variation of regression index between conditions.  

Therefore, results indicate that on average participants 
exhibited less central tendency when they were involved in an 
interactive context than when they were playing alone with a 
computer or with a mechanical device showing them the stimuli. 

To further explore the factors modulating the observed results 
we performed a multiple linear regression to test the effect of the 
changes in the evaluations of the Godspeed subscales on the 
amount of individual changes in regression index between the two 
conditions (ΔRI). The results of the regression indicated that the 
model explained 32% of the variance (F(4,20)=2.36, p=0.088, 
R2=0.32). The only significant predictor was “Anthropomorphism” 
(F(1,20)=7.74, p=0.01, β=-0.74, Cohen's f2=0.39), whereas no other 
regression reached significance (see Fig. 5). We did not find any 
significant effect in a multiple linear regression between ΔRI and 
the two scales Mind experience and Mind agency (F(2,22)=0.91, 
p=0.42, R2=0.08) nor in a simple regression with respect to the 
change in IOS values (F(1,23)=0.06, p=0.81, R2=0.002).  

For none of the results of the questionnaires investigating the 
personality of participants (TIPI, AQ, NARS), it was found a 
significant linear regression with the variation of the regression 
index: TIPI: multiple linear regression (F(1,19)=0.81, p=0.56 
R2=0.18), AQ test: simple linear regression (F(1,23)=1.24, R2=0.05, 
p=0.28), NARS questionnaire simple linear regression 
(F(1,23)=0.19, R2=0.01, p=0.67). 

4 Discussion 
When interacting with others, it is often necessary that the two 

partners coordinate in space and time their behaviors, both with 
respect to each other and with respect to external stimuli. For 
instance, while dancing, the two partners have to adjust to the 
other’s moves while at the same time perceiving the correct 
timing from the musical input. Hence, a perception based on an 
inferential process that responds to a need for optimality in the 
formation of individual perceptual decisions poses a crucial 
question when considering joint actions. Precisely, how does the 
brain deal with the conflicting goals of maximizing perceptual 
stability on the one hand and aligning with the perception of the 
partner on the other? 

The hypothesis driving this work is that the brain puts in place 
mechanisms that might favor the emergence of shared perception, 
even at the expenses of selecting a sub-optimal solution, if 
compared with individual strategy. Our results show that we 
favor accurate estimation of a physical stimulus – if embedded in 
an interaction – rather than a stable, though less veridical 
perception, as the one normally derived by optimization in 
individual situations produced by the central tendency 
mechanism. In other words, in interactive scenarios, accuracy 
becomes more important than robustness to perceptual noise to 
allow for the successful completion of a cooperative effort. 
Therefore, the current perceived stimulation (e.g. the length of a 
movement) becomes less biased by the stimulus history (i.e., by 
the average of the lengths previously observed) and there is a 
minor effect of the central tendency strategy during interaction.  

If we assume that the Bayesian model of the central tendency 
is preserved also in interactive conditions, this change could be 
explained in terms of a reweighting between the relevance of the 
statistical context (or prior) and the current stimulation 
(likelihood), with a decrease of the relative importance of the 
former with respect to the latter. This would imply that the 
participant –when involved in an interaction– relies more on the 
(variable) instantaneous stimulation than during individual tasks, 
where the story of previous stimuli plays a stronger role. There is 
wide evidence of the inferential process being dynamic, with the 
relative weight given to the prior varying as a function of sensory 
precision and becoming higher when the uncertainty of the 
sensory input increase, as predicted by the Bayesian framework 

Figure 4. A) Individual regression index and B) Mean 
regression index in the two robot conditions. 

Figure 5. Individual variations of the regression index in 
the two robot conditions as a function of the variations of 
the results from the Godspeed scale Anthropomorphism. 
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[4]. Our current new results suggest that the interactivity of the 
context could represent an additional factor modulating the 
integration of prior knowledge and incoming sensory stimulation. 

The use of a humanoid as a controllable interactive agent, 
whose perceptual and motor decisions can be fully under 
experimental control, provided us the unique possibility to have 
an active, embodied interaction with a partner that could be 
assimilated to a machine or to a living agent, while presenting the 
exact same stimuli across conditions. We operated the 
manipulation both explicitly and implicitly. On the one hand, the 
experimenter framed the robot’s role in the two conditions 
differently: as a “tool” for the computer to show stimuli, or as a 
social agent. On the other hand, the robot exhibited either a 
passive, fixed state or a series of social and intelligent behaviors 
(in terms of looking patterns, facial expressions and speech). The 
combination of these two types of manipulation was on average 
quite effective, with judgments for anthropomorphism, animacy, 
likability, perceived intelligence and even mind attribution 
significantly higher in the social vs. the mechanical condition. The 
current study cannot tear apart the relative contributions of the 
explicit framing and the implicit social signals embedded in robot 
behavior. Since mounting evidence has highlighted the power of 
communication of robot gaze, e.g. as a mean to unconsciously 
govern turn taking in interaction [28][29] or to reveal goals [30], 
we believe that implicit gazing behavior could have alone a 
significant impact on the selection of the perceptual strategy. 
Future research is needed to verify this hypothesis. 

Getting back to the question about what triggered the change 
in perceptual strategy, the results suggest that the change in 
perceived “anthropomorphism” of the iCub between the two 
conditions played an important role. Indeed, the more the robot 
was judged as having increased its anthropomorphism in the 
social condition, the less the perception in that condition was 
influenced by the statistical context, with respect to the 
mechanical one. So it seems that the more human-like the partner 
was perceived to be by participants, the less their perceptual 
strategy considered the previous stimuli, in favor of the current 
one. Since the robot was in both conditions a humanoid platform, 
moving its arm and torso according to biological motion rules, it 
was the combination of gazing, facial expressions and speech, 
together with the experimental framing, that drove this change in 
judgment, with no change in robot shape or its motion kinematics.  

Future research will aim to clarify whether interaction with an 
anthropomorphic and social agent leads to different perceptual 
strategies as a function of it exhibiting a pro-social versus an anti-
social behavior toward the human partner. As a potential 
confound it might be suggested that in the social condition the 
gaze of the robot was providing and additional information about 
the location of the two extremes of the length to be reproduced, 
providing a richer stimulation, which in turn would have 
produced less need to rely on the statistical context to improve 
perception. However, the strong linear dependency of the change 
in regression index on the attributed anthropomorphism of the 
robot seems to exclude this possibility. If the stimuli in the social 
condition were simply richer, the increased information would 
have been reasonably the same for all participants.  

What do these results tell to the HRI community? In everyday 
activities we often have to coordinate with spatial-temporal 
dynamic inputs deriving from the environment – e.g., to catch an 
object before it falls – and with the partner, whose perceptual and 
motor abilities might differ from ours. Aligning with the partner’s 
perception implies understanding what will he or she perceive 
(e.g. with respect to the timing and location of the falling objects) 
and adapt our action accordingly. This ability is necessary also in 
robots aiming at interacting with us. Understanding how humans 
perceive the world while interacting will lay the foundations to 
make autonomous technology adaptive to each user’s needs. 

A robot aware of the sensory distortion of a partner could have 
important applications in the context of assistive and 
rehabilitation robotics. This could be particularly relevant for the 
elderly people since it has been proposed that their perception 
might be more strongly distorted due to an over-reliance on 
internal priors [31] that could play a role in fostering detachment 
and isolation. Novel robots, with adaptive perception, will be able 
to predict potential distortions in their partners and adapt to them 
– i.e., by tailoring their actions to complement those of the human 
in time, force and space, e.g. in an object passage. Alternatively, 
robots might also correct this kind of distortions, e.g., by 
systematically warning patients of the inaccuracy and correcting 
the misperception. In particular, often rehabilitation requires 
patients to repeat multiple time the same set of actions, which 
might induce them to regress to their average behavior. A robot 
used in such type of rehabilitation could use a measure of central 
tendency to actively counteract it and push for improvement. In 
the process of achieving this long-term goal, human-robot 
interaction has once more proven to be a fundamental tool to 
investigate the bases of human social abilities [32],[33] and the 
very mechanisms of visual perception. Therefore, controllability, 
repeatability and reliability of robots allow to lead the research in 
real-world scenarios, and further investigate how interaction with 
social agents affects human perceptual and cognitive processes.  

Additionally, these results provide an innovative way of 
measuring how the human partner unconsciously perceives 
“being” with another agent. Indeed, by measuring how the 
interaction with different agents affects individual perception of a 
physical property of a series of stimuli (as its length here, but the 
very same phenomenon of central tendency applies to almost all 
magnitudes, including time [27]) we can gain an indirect and 
unconscious measure of how interactive the context is perceived 
to be. This would represent a novel measure complementing the 
existing measures of involvement in joint actions (as the Joint 
Simon Effect [34] or the automatic Visual Perspective Taking 
[35]), enabling to assess through a purely perceptual task whether 
a human-robot interaction is implicitly processed as social or not. 
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