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Near field versus far field in radiative heat transfer between two-dimensional metals
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Using the standard fluctuational electrodynamics framework, we analytically calculate the radiative heat
current between two thin metallic layers, separated by a vacuum gap. We analyze different contributions to
the heat current (traveling or evanescent waves, transverse electric or magnetic polarization) and reveal the
crucial qualitative role played by the dc conductivity of the metals as compared to the speed of light. For
poorly conducting metals, the heat current may be dominated by evanescent waves even when the separation
between the layers greatly exceeds the thermal photon wavelength, and the coupling is of an electrostatic
nature. For well-conducting metals, the evanescent contribution dominates at separations smaller than the thermal
wavelength and is mainly due to magnetostatic coupling, in agreement with earlier works on bulk metals.
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I. INTRODUCTION

Spatially separated objects may exchange heat via electro-
magnetic fluctuations [1–5]. This radiative heat transfer arises
due to electric charge density and current fluctuations inside
the constituting materials, and is usually described within the
phenomenological framework of fluctuational electrodynam-
ics (FED) [1,2,6], for which the critical inputs are the material
response functions and the system geometry. It is now well
known that in the near-field limit, energy may tunnel via
evanescent electromagnetic waves causing a strong enhance-
ment of the heat transfer, as has been observed experimentally
(see the reviews [7–10] and references therein).

Many theoretical works have been dedicated to different
material systems in the near-field regime ([7–10] and refer-
ences therein), in which various models for material response
have been employed and different dominant channels for heat
transfer identified. The common wisdom is that the evanescent
modes dominate the heat transfer when the spatial separation
d � λ̄T ≡ h̄c/T , the wavelength of photons at temperature T
(here, h̄ and c are the Planck constant and the speed of light,
respectively, and we set the Boltzmann constant to unity).
Indeed, for d > λ̄T , the evanescent waves with the typical
frequency ω ∼ T/h̄ decay exponentially outside the material,
while at d � λ̄T , the region of the wave vectors k occupied
by evanescent waves, k ∼ 1/d , is larger than that of traveling
states, k ∼ 1/λ̄T [8]. The importance of magnetic coupling in
the near-field heat transfer between well-conducting metals
has been emphasized [11,12]. In the extreme near-field limit,
heat transfer due to the electrostatic Coulomb interaction has
also been studied [13–19].

Here we revisit this old problem, focusing on the two-
dimensional (2D) geometry, and study the radiative heat
current between two thin metallic sheets in vacuum within
the standard FED framework. We find two qualitatively dif-
ferent types of behavior, depending on the value of the
two-dimensional dc conductivity σ2D of the sheets. For poor
conductors characterized by the condition G ≡ 2πσ2D/c � 1
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[we use CGS units throughout the paper, in SI units G =
(σ2D/2)

√
μ0/ε0], the heat transfer turns out to be dominated

by the evanescent modes at distances d extending well beyond
λ̄T , and the main coupling mechanism in the near field is elec-
trostatic (Coulomb interaction between electrons in the two
layers). For G � 1, the conventional situation is recovered:
the crossover from near to far field occurs at d ∼ λ̄T at not
too high temperatures and, in a wide range of parameters, the
near-field transfer is dominated by magnetostatic (inductive)
coupling between currents in the layers.

The parameter G characterizes the impedance mismatch
between a 2D metal and vacuum; its importance is not re-
stricted to the heat transfer problem and is rather general.
Notably, two distinct regimes in the behavior of 2D plasmon
polaritons for G < 1 and G > 1 have been identified [20–25].
In our heat transfer problem, we find no sharp distinction
between G < 1 and G > 1, but rather a smooth crossover
between the two limiting situations.

For the two-dimensional geometry considered here, it is
important to realize that the heat transferred from one sheet
to the other is different from the heat transferred between
the two half spaces behind the sheets (which typically in-
clude dielectric substrates). The reason is that (i) some part
of the radiation emitted by each sheet may be transmitted
by the other sheet and escape to infinity or be absorbed by
the substrate (even if its absorption is infinitesimal, but the
substrate is thick enough), and (ii) the substrate may emit
its own radiation. Which quantity is relevant depends on the
specific experimental setup, how the temperature difference
is maintained, and how the heat current is measured. In this
paper, we focus on the transfer between the metallic sheets,
not the half spaces. The difference between the two quantities
becomes important for the far-field contribution at G � 1.
In particular, our result about evanescent mode dominance
beyond λ̄T applies only to the heat current from one sheet to
the other.

We also emphasize that our study applies to metals only.
The optical response of Drude metals and dielectrics is
governed by qualitatively different physical mechanisms: con-
duction electrons and optical phonons, respectively, whose
response is concentrated at low and high frequencies (e.g., the
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optical phonon frequency in SiO2 is more than three times
higher than the room temperature). We do not include the
contribution of such high-frequency resonances in our model.
This is a valid approximation even for bad metals at suf-
ficiently low frequencies/temperatures, since the electronic
Drude contribution to the layer polarizability diverges at low
frequencies, while the optical phonon contribution stays finite.
Comparing the two contributions, one can estimate the tem-
perature below which the Drude model is sufficient.

The rest of the paper is organized as follows. In Sec. II,
we specify the model and sketch the calculation; both are
rather standard. In Sec. III, we present various regimes of the
heat transfer and the associated analytical expressions for the
heat current, according to the material properties and experi-
mental conditions. In Sec. IV, we discuss the relation of our
results to the well-studied case of heat transfer between bulk
semi-infinite metals, the role of the substrates in the heat trans-
fer, and the heat transfer enhancement in the near field, and
compare our theory to the available experimental results. All
details of the calculations are given in the three appendices.

II. THE MODEL

We consider two identical 2D metal sheets held at different
temperatures T1 and T2, embedded in vacuum and separated
by a gap of width d . A more realistic configuration would be
to place a medium with a dielectric constant ε in the half space
behind each sheet, since in experiments the layers are placed
on a substrate. For the sake of simplicity, we focus on ε = 1
in most of the paper, and check for the effect of the substrate
when specifically needed (see Sec. IV B).

We model the metal sheets as infinitely thin layers, charac-
terized by a local 2D Drude conductivity,

σ (ω) = σ2D

1 − iωτ
, (1)

with τ being the electron momentum relaxation time, as-
sumed to be temperature independent. This is the case if
τ is determined by elastic scattering on static impurities.
Equation (1) neglects (i) the spatial dispersion of the con-
ductivity, and (ii) field variation over the layer thickness.
For atomically thin materials, such as doped graphene or
transition metal dichalcogenides, condition (ii) is irrelevant
and condition (i) holds at distances d � √

a2D� (a2D and �

being the 2D screening radius and the electron mean free
path, respectively) [18]. For thin but macroscopic layers of
conventional metals, condition (ii) imposes that the thickness
must be small compared both to the typical wavelength of the
waves dominating the heat transfer (which may be rather short
for evanescent waves) and to the skin depth at the typical
frequency of these waves, while condition (i) requires the
wavelength and the skin depth to be longer than the electron
mean free path in the metal.

Our calculation of the heat current between the metals
follows the standard FED procedure. The fluctuating in-plane
surface currents j(α)(r, t ) in each sheet obey the fluctuation-
dissipation theorem,

〈 jl (r, t ) jm(r′, t ′)〉 = δlm

∫
d2k dω

(2π )3
h̄ω coth

h̄ω

2T
Re σ (ω)

× eik(r−r′ )−iω(t−t ′ ), (2)

where k is the in-plane two-dimensional wave vector and
l, m = x, y label the orthogonal in-plane directions and T =
T1 or T2. These currents appear as sources in Maxwell’s
equations, whose solution in the presence of the conduct-
ing sheets determines the fluctuating electric fields E(r, t ).
Then, the heat current J (per unit area) from layer 1 to
layer 2 is given by the average Joule loss power (per unit area)
〈j̃(2) · E(2)〉 − 〈j̃(1) · E(1)〉, where j̃(α) is the surface current in
layer α, induced by the electric field E(α) in this layer, which,
in turn, is produced by the fluctuating current in the other layer
(see Appendix A for explicit, rather standard expressions).

We emphasize that for thin layers, the Joule losses
〈j̃(2) · E(2)〉 − 〈j̃(1) · E(1)〉 are not equal to the average normal
component of the Poynting vector in the gap between the
layers. The reason is that some part of the radiation emitted
by layer 1 may pass through layer 2 and escape to infinity, and
vice versa. Whether or not this escaped radiation should be in-
cluded in the heat current depends on the precise measurement
setup, which may or may not collect this escaped radiation.
Our calculation thus assumes that the escaped radiation is lost.
As discussed in Secs. I and IV B, here we focus on the heat
transfer from one metal to the other, so we calculate the Joule
losses, not the Poynting vector. Note that for two semi-infinite
metals (the most studied setup), everything is collected inside
the metals, so the Poynting vector and the Joule losses match
exactly.

In the planar geometry considered here, the solutions of
Maxwell’s equations are classified by in-plane wave vector k,
frequency ω, and two polarizations p = TE, TM—transverse
electric and transverse magnetic, respectively, for which the
electric or the magnetic field vector is parallel to the layers
and perpendicular to k. The contributions to the heat current
from modes with different k, ω, p add up independently, so
the heat current J (T1, T2) is given by by an integral over k
and ω, and a sum over the polarizations. The integral splits in
two contributions: the interior of the light cone, ω > ck, hosts
traveling modes, while in the region ω < ck, the solutions are
evanescent. The resulting heat current is comprised of four
additive contributions (TM and TE, traveling and evanescent).
Which contribution dominates depends on the material con-
ductivity as well as the system temperature and length scales.

In the extreme near-field limit k � ω/c, the TM mode
field is mostly electric and longitudinal, while the magnetic
field is smaller by a factor ∼ω/(ck); these modes represent
the electrostatic coupling by the Coulomb interaction between
charge density fluctuations in the two layers. At the same time,
for TE modes, the field is mostly magnetic, while the electric
field is smaller by a factor ∼ω/(ck); these modes represent
magnetostatic coupling, where the magnetic field established
by transverse current fluctuations in one layer drives eddy
currents in the second layer.

In Appendix B, we perform analytically the k, ω integrals
and derive simple asymptotic expressions for the heat current
according to the separation and the temperature. For each
expression, we can identify the dominant contribution (TM
or TE, traveling or evanescent). Our results are approximate;
one can describe the heat transfer much more precisely by
solving Maxwell’s equations for finite-thickness slabs with
a material-specific frequency dependence of the conductivity
and numerically evaluating the integrals, as routinely done in
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many works. However, simple approximate expressions (i) are
rather useful when a quick estimate of the heat current is
needed, and (ii) offer a general insight into the dominant
physical mechanisms responsible for the heat transfer and
enable one to characterize different possibilities.

III. RESULTS

For temperature-independent relaxation time, the heat cur-
rent naturally splits into the difference J (T1, T2) = J (T1) −
J (T2). The detailed analysis of different asymptotic regimes
of the k, ω integrals results in several asymptotic expressions
for J (T ) in different parametric ranges of d . The magnitudes
of the TM and TE traveling contributions are sensitive to the
dimensionless conductivity parameter G = 2πσ2D/c, so we
proceed to present the results sequentially for small and large
values of G.

For G � 1, the asymptotic expressions for J (T ) are

Jlp(T ) = ζ (3)

4π

T 3

h̄2cGd
, (3a)

Jhp(T ) = T

16πτd2
L(Gcτ/d ), (3b)

Jld (T ) = ζ (3)

8π

T 3

h̄2cGd
, (3c)

Jhd(T ) = 1

16π

Gc

d3
T, (3d)

Jlte(T ) = π2

15

G2

h̄3c2
T 4 ln

1

G , (3e)

Jhte(T ) = 1

4π

G2

c2τ 3
T ln

1

G , (3f)

valid in the corresponding regions of the (1/d, T ) plane,
schematically shown in Fig. 1 (left). The contributions
given by Eqs. (3a)–(3d), with labels corresponding to low-
temperature plasmonic, high-temperature plasmonic, low-
temperature diffusive, and high-temperature diffusive, are the
TM evanescent contributions that remain in the Coulomb limit
and were calculated in Ref. [18]. Equations (3e) and (3f) (with
labels corresponding to low-temperature traveling electric and
high-temperature traveling electric) are the traveling TE con-
tributions which dominate over the traveling TM contributions
by the logarithmic factor ln(1/G). In Eqs. (3), ζ (x) is the Rie-
mann zeta function, and L(x) is a slow logarithmic function
approximately given by [18]

L(x) ≈ 4 ln3 x

1 + (ln x)/ ln(1 + ln x)
. (4)

For G � 1, in addition to the expressions given in
Eqs. (3a)–(3c), we also have

Jle(T ) = π2

15

G2

h̄3c2
T 4 ln

λ̄T

Gd
, (5a)

Jhe1(T ) = 1

4π

G2

c2τ 3
T ln

cτ

Gd
, (5b)

Jhe2(T ) = ζ (3)

16π

c

Gd3
T, (5c)

Jlt (T ) = π2

45

T 4

h̄3c2G
, (5d)

Jit (T ) = 1

12

T 2

h̄c2τ 2
, (5e)

Jht (T ) =
( √

2

12π
+ 1

4π

) G
c2τ 3

T, (5f)

FIG. 1. The domains of validity for asymptotic expressions, Eqs. (3) and (5) in the parameter plane (1/d, T ), shown in the dimensionless
variables x ≡ cτ/d , y ≡ T τ/h̄. The crossovers between the regimes are governed by the dimensionless conductivity parameter G ≡ 2πσ2D/c,
with the left and right panels corresponding to G � 1 and G � 1, respectively. The encircled label of each region corresponds to the subscript at
J (T ) in Eqs. (3) and (5). Solid lines indicate crossovers between different expressions; straight lines y/x = const are not labeled for readability
(the coefficient can be deduced from the endpoints). The blue line (solid or dashed) corresponds to d ∼ λ̄T . The shading color indicates the
heat being predominantly carried by TM modes (red), TE modes (green), or both (white); dominance of traveling waves is indicated by wavy
hatching.
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valid in the corresponding regions of the (1/d, T ) plane,
schematically shown in Fig. 1 (right). The contributions given
by Eqs. (5a)–(5c) are the TE evanescent contributions, while
Eqs. (5d)–(5f) are the sums of the traveling contributions from
both polarizations which are of the same order.

For G � 1, the traveling channels support resonant Fabry-
Perot (FP) modes. In the (lt) and (it) regions, many sharp FP
modes contribute significantly to the heat current. In the high-
temperature case (ht), the FP modes are overdamped since
the conductivity σ (ω) becomes small at high frequencies. For
temperatures lower than the first mode cutoff energy, T �
π h̄c/d , the contributions from the FP modes are exponen-
tially suppressed. However, the prefactor in front of the small
thermal exponential turns out to be larger than the evanescent
contribution (5c) in the (he2) region. Thus, the FP additive
contribution is potentially significant for cτ/d <

√
G, where

it is dominated by the first FP mode,

JFP1(T ) = πcT

[2G + (πcτ/d )2]d3
e−π h̄c/(T d ). (6)

In Fig. 1, the areas with wavy hatching indicate the re-
gions where the heat transfer is dominated by traveling wave
contributions. For G � 1, the evanescent waves dominate at
separations up to d ∼ G−1/3λ̄T , parametrically larger than
the commonly used condition for the near field, d � λ̄T

[y � x in Fig. 1 (left)]; the reason for such behavior is that
the low-temperature TM evanescent contribution is deter-
mined by k � 1/d for which the exponential suppression
is not efficient. Moreover, for G � 1, the near-field transfer
is dominated by the TM evanescent contribution, basically
by electrostatic (capacitive) coupling between the two layers.
This happens because in a poor conductor, the charge density
response is not fast enough to dynamically screen the fluctu-
ating Coulomb field.

For G � 1, the commonly used inequality d � λ̄T does
become the accurate condition for evanescent contribution
dominance, except for high temperatures where the Drude
conductivity is suppressed by high frequency. In a large part of
the near-field region of the parameter plane, the heat current
is governed by TE evanescent modes, which correspond to
magnetostatic (inductive) coupling between the layers. As
discussed in Refs. [11,12] for bulk metals, large conductivity
leads to efficient screening of the electric fields, so the mag-
netostatic coupling becomes more important. The electrostatic
coupling takes over only at very short distances or low tem-
peratures, d � λ̄T /(πG)3, determined by Jle(T ) ∼ Jld (T ).

However, for very small d , the finite layer thickness
may become important and/or the assumption of the lo-
cal response, given by Eq. (1), may break down. Taking,
for example, a 10-nm-thick gold film with the bulk plasma
frequency ωp = 0.6 × 1016 s−1 and relaxation time τ = 6 fs
[26] gives G ≈ 3.6. Since λ̄T = 7.6 μm at T = 300 K, in
such structure the crossover to electrostatics occurs at a
few nanometers. We note that in the (ld) regime, the heat
transfer is mainly determined by rather small wave vectors

k ∼ (Gλ̄T d )−1/2 [18], so that even at d = 1 nm, we obtain
1/k � 100 nm, and the local response assumption should still
be formally valid. However, at nanometric distances, other
physical effects may come into play (electron or phonon
tunneling, surface roughness, etc.), so for ultrathin films of
conventional metal, we expect the Coulomb mechanism to be
relevant mostly at low temperatures.

IV. DISCUSSION

A. Comparison to the bulk case

The results presented in the previous section show two
qualitatively different pictures of the near-field heat trans-
fer between two metallic layers, depending on the value of
their dimensionless 2D dc conductivity: for G � 1, the heat
transfer is mostly due to electrostatic coupling between the
layers, up to distances significantly exceeding λ̄T , while for
G � 1, the near-field magnetostatic coupling dominates up to
distances d ∼ λ̄T , in close analogy with earlier results on bulk
metals. This picture is consistent with the results of Ref. [27],
where the very same problem of radiative heat transfer be-
tween parallel 2D layers was studied numerically. There, a
distinction was made between thin and thick metallic films.
In this formulation, G is proportional to the layer thickness
h (in the local approximation, the 2D conductivity is simply
σ2D = σ3Dh, where σ3D is the bulk conductivity). In Ref. [27],
the heat transfer between two theoretically imagined atomic
monolayers of silver, described by a 2D Drude model with
G ≈ 2, is found to be driven by TM evanescent waves, while
for thicker films, it is TE evanescent waves.

The peculiarity of the 2D geometry is that the 2D conduc-
tivity can be compared to two universal scales. One is the
speed of light, and hence the dimensionless parameter G =
2πσ2D/c we introduced earlier. The other universal scale is the
conductance quantum, e2/(2π h̄). For σ2D � e2/(2π h̄) or G �
e2/(h̄c) ≈ 1/137, the disorder is too strong, so the metallic
conduction is destroyed by localization effects [28,29]. Thus,
the poor conductor regime discussed above can be realized in
the interval 1/137 � G � 1.

The situation is quite different for the bulk metal case.
The 3D conductivity σ3D has the dimensionality of the inverse
time, so that 1/(4πσ3D) (in CGS units, while in SI it is ε0/σ3D)
has a meaning of the RC time needed to dissolve a charge
density perturbation. In conventional metals, this timescale
is extremely short (in the attosecond range). Still, one can
compare 4πσ3D to other scales. One is the electron relaxation
time τ ; typically, 4πσ3Dτ = ω2

pτ
2 � 1 (with ωp being the

bulk plasma frequency). Moreover, at T � h̄/τ , the relax-
ation time drops out of the problem, so one cannot construct
a dimensionless parameter out of σ3D, which could produce
different “asymptotic maps” of the kind shown in Fig. 1. The
bulk case turns out to be somewhat similar to the 2D case with
G � 1.

To see the reason for this similarity, let us recall the asymp-
totic expressions for the heat current between semi-infinite
bulk metals, assuming T τ � h̄ (the derivation can be found
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in Ref. [2]; we also give it in Appendix C):

Ja(T ) = π2

60

h̄(T/h̄)4

(2πσ3D)2d2
ln

2πσ3D

T/h̄
, d � δ3

T

λ̄2
T

, (7a)

Jb(T ) = ζ (3)

4π2

2πσ3Dh̄(T/h̄)3

c2
,

δ3
T

λ̄2
T

� d � δT , (7b)

Jc(T ) = 3 ζ (3)

4π2

c2T

2πσ3Dd4
ln

d

δT
, δT � d � (λ̄2

T δT )1/3, (7c)

Jd (T ) = 75 ζ (7/2)

256
√

π

h̄(T/h̄)7/2

√
2πσ3Dcd

, (λ̄2
T δT )1/3 � d � λ̄T , (7d)

Je(T ) = 35 ζ (9/2)

16π3/2

h̄(T/h̄)9/2

√
2πσ3Dc2

, λ̄T � d, (7e)

where the parametric intervals of d are conveniently defined
in terms of two length scales: the thermal wavelength λ̄T =
h̄c/T and the normal skin depth at the thermal frequency,
δT = c/

√
2πσ3DT/h̄ � λ̄T . The shortest-distance expression

(7a) is determined by the TM evanescent contribution and
corresponds to the Coulomb limit (indeed, it does not con-
tain the speed of light); however, the length scale δ3

T /λ̄2
T

is extremely short: for 4πσ3D = 1017 s−1 at T = 300 K, we
have δT = 0.22 μm and λ̄T = 7.6 μm, so δ3

T /λ̄2
T ∼ 2 Å and

becomes even smaller at lower temperatures, invalidating the
local approximation and making Eq. (7a) irrelevant for con-
ventional metals. Equations (7b) and (7c) originate from the
TE evanescent contribution and correspond to magnetostatic
coupling [11]. Equation (7d) contains both TM evanescent
and TM traveling contributions which are of the same order
at such distances (only the evanescent one was evaluated in
Ref. [2]); in fact, for both contributions, the integral is domi-
nated by wave vectors k very close to ω/c, and the fields vary
weakly across the gap so there is no sharp physical distinction
between traveling and evanescent waves. Finally, Eq. (7e)
comes from the TE and TM traveling waves and is contributed
by many Fabry-Perot modes inside the gap.

It is easy to see that by the order of magnitude, Eqs. (7b),
(7c), (7d), and (7e) can be obtained from Eqs. (5a), (5c),
(3c), and (5d), respectively, by replacing G = 2πσ2D/c →
2πσ3Dδω/c, where the skin depth δω = c/

√
2πσ3Dω cor-

responds to the typical frequency scale determining the
integral: it is δT for Eqs. (7b), (7d), and (7e), deter-
mined by frequencies ω ∼ T/h̄, and δω ∼ d for Eq. (7c),
where the frequency integral is logarithmic, with the lower
cutoff corresponding to δω ∼ d (see Appendix C for de-
tails). This replacement roughly corresponds to modeling
the semi-infinite metal as an effective metallic layer whose
thickness corresponds to the field penetration depth. Such
effective layer is characterized by the dimensionless Geff ∼√

2πσ3D/ω, so that Geff � 1 for conventional metals and
reasonable temperatures. We note that this effective layer
analogy should be used with caution since the frequency de-
pendence of δω sometimes makes the convergence scale of
the frequency integral different from the case of fixed layer
thickness.

B. Role of the substrates

The expressions given in Sec. III correspond to the heat
transferred from one metallic sheet to the other, not including
the radiation transmitted behind each sheet. In an experiment,
this transmitted radiation can be absorbed by dielectric sub-
strates (even if the absorption by the dielectric material is very
weak, the transmitted radiation can still be absorbed if the
substrate is thick enough) or captured by some background
parts of the structure. Whether or not the transmitted radiation
should be included in the measured heat current depends on
the specific measurement scheme. The measurement can be
done directly on the metallic layers as, e.g., in Ref. [30];
the radiation absorbed in the substrate leads to a very weak
heating of the latter since this absorption occurs in a large
volume, and has little effect on the metallic layers. The oppo-
site example is Ref. [31], where the measurement was actually
performed behind the substrate, so that all radiation was col-
lected and good thermal contact between graphene sheets and
the substrate was ensured.

If radiation absorbed by the thick dielectric substrate is
included, one should also include radiation emitted by the sub-
strate, which is equivalent to adding an incident black-body
heat flux,

Jbb(T ) = π2

60

T 4

c2h̄3 . (8)

Its effect is especially important for G � 1 since the trans-
mission of each sheet is close to unity in this case. For thick
dielectric substrates with dielectric constant ε = 1 and an
infinitesimal imaginary part, almost all incident black-body
heat flux is transmitted through the sheets and absorbed on
the other side, so the far-field expressions Jlte(T ) and Jhte(T ),
given by Eqs. (3e) and (3f), should be replaced by Eq. (8). This
starts to dominate over the near-field contribution Jhd(T ) at
shorter distances, d ∼ λ̄TG1/3 � λ̄T . This is natural since the
near-field contribution is still determined by the sheets, while
the far-field transfer is essentially between the substrates.

For G � 1, the low-temperature far-field expression (5d)
remains valid since the layer transmission is too small.
At intermediate temperatures,

√
G � T τ/h̄ � G, the sheet
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transmission is still small, but it is already larger than the
absorption, so the far-field contribution is determined by
the fraction of the black-body radiation entering the Fabry-
Perot resonator, J (T ) ∼ Jbb(T ) (T τ/h̄G)2, which is larger
than Jit (T ), given by Eq. (5e). At T τ/h̄ � 1, the conductivity
at relevant frequencies is so small that the transmission of the
layers is close to 1, and instead of Eq. (5f), the far-field heat
current is the black-body one, given by Eq. (8).

C. Near-field enhancement of the heat transfer

When studying radiative heat transfer between objects, one
is often interested in comparing it to the radiative transfer
between black bodies of the same geometry. In the planar
geometry considered here, the black-body heat current is
given by Eq. (8) and does not depend on d . Metals are
not perfect emitters/absorbers, so in the far field they ex-
change less heat than black bodies. This is seen by comparing
the far-field expressions (3e), (3f), and (5d)–(5f), which are
all d independent, to Eq. (8). At the lowest temperatures,
we have Jlte(T )/Jbb(T ) = 4G2 ln(1/G) and Jlt (T )/Jbb(T ) =
4/(3G), for G � 1 and G � 1, respectively. At higher tem-
peratures, even smaller values are obtained. Only at G ∼ 1 do
the metallic sheets approach the black-body limit in the far
field, due to impedance matching with vacuum.

However, it is well known that the coupling of evanescent
modes can lead to significant, d-dependent contributions to
the heat transfer between closely spaced conducting bodies,
resulting in an overall enhancement of the radiative power
compared to the black-body result (see [7–10] and references
therein). So there are two competing effects: the far-field
contribution is weaker than that of black bodies due to metals
being imperfect emitters, meanwhile between metals there is
an extra contribution from the evanescent waves that domi-
nates in the near field (evanescent waves do not contribute
to black-body radiation into the vacuum). To assess when
the near-field contribution leads to an enhancement over the
black-body result, one needs to compare various near-field
expressions in Sec. III to Eq. (8). For example, at the lowest
temperatures, Jhd(T ) and Jhe2(T ) [Eqs. (3d) and (5c)] over-
come the black-body current at d � λ̄TG1/3 and d � λ̄TG−1/3,
respectively, for G � 1 and G � 1.

The strongest enhancement is obtained at small separations
(since the near-field contribution always grows with decreas-
ing d) and low temperatures (since the black-body expression
has the highest power of temperature). Thus, we need the ratio
of Eqs. (3c) and (8),

Jld (T )

Jbb(T )
= 15 ζ (3)

2π3

1

G
λ̄T

d
. (9)

Note that the enhancement is stronger for smaller G; in-
deed, in this regime, the near-field transfer is dominated by
the Coulomb interaction which is screened less efficiently
in poorly conducting metals. Taking T = 300 K, d = 10 nm,
and G = 0.01 (we remind the reader that for smaller values of
G, the Drude description is not valid), we obtain the ratio of
2 × 104. For bulk metals, the relevant ratio is Jb(T )/Jbb(T ) ≈
0.19 (4π h̄σ3D/T ) [Eq. (7b), since Eq. (7a) becomes valid
at unrealistically short distances], which amounts to

about 3 × 104 for 4πσ3D = 7 × 1018 s−1 (silver at room
temperature).

D. Comparison to experiments

Values G � 1 are characteristic of atomically thin 2D mate-
rials. This is illustrated by a recent experiment [31], where two
doped monolayer graphene sheets were placed on insulating
silicon (ε = 11.7) and separated by a 400-nm-wide vacuum
gap. The Fermi energy of 0.27 eV and the relaxation time
τ = 100 fs give G = 0.6. The linear thermal conductance per
unit area, dJ/dT = 30 W m−2 K−1, was measured around
room temperature. These conditions correspond to the high-
temperature plasmon regime, given by Eq. (3b), where the
substrate dielectric constant ε enters only inside the logarith-
mic function L [18]. Setting L = 1 in Eq. (3b) gives dJ/dT =
11 W m−2 K−1, which agrees by an order of magnitude with
the experimental value.

Thin layers of conventional metals are typically character-
ized by G � 1. Several experiments have been reported in the
literature. In each case, it is important to compare the layer
thickness h to the the skin depth δω at the relevant frequency
to ensure the layers should correspond to the 2D limit, rather
than the bulk one (the latter being the case of Refs. [32,33]).

Heat transfer in a wide range of interlayer separations and
temperatures was studied in Ref. [30] for two 150-nm-thick
tungsten layers on alumina substrates. The measured dc con-
ductivity of the material, 4πσ3D = 0.6 × 1018 s−1 (constant in
the temperature range of the experiment), corresponds to a
value of the dimensionless conductivity parameter G ≈ 150.
The skin depth at T = 40 K is δT = 240 nm, and even longer
at lower temperatures, so the layers are close to the 2D limit.
The separation between the layers was varied over d = 1–300
μm, while the temperatures were T1 = 5 K and T2 = 10–
40 K, corresponding to the regions (he2) and (lt) in Fig. 1
(right). It can be easily checked that in these regions, the
dielectric substrate plays no role as long as

√
ε � G, which

clearly holds here. Although the numerical calculation ac-
counting for the finite layer thickness does better in closely
matching the experimental points (see Fig. 2 of Ref. [30]), our
simple expressions (5c) and (5d) (i) agree with the observed
values within a factor of 3 without any fitting parameters, (ii)
give the correct distance dependence throughout the experi-
ment, (iii) capture the observed approximate collapse of the
rescaled data for J (T )/T 4 on a function of a single variable
T d , and (iv) correctly predict the separation d ≈ 0.5 λ̄T , at
which the crossover between the near-field and the far-field
regimes occurs, Jhe2(T ) = Jle(T ).

A recent publication [34] presents measurements of heat
transfer between two aluminium films of varying thicknesses,
h = 13–79 nm, separated by a fixed vacuum gap d = 215 nm
and attached to silicon substrates. The experiment was per-
formed around room temperature, with one film being heated
such that �T = 25–65 K. Taking the values ωp = 1.93 ×
1016 s−1 and τ ≈ 5 fs [35] used in Ref. [34] to interpret the
data, we obtain δT ≈ 50 nm and G ≈ 40 for the thinnest
layer with h = 13 nm. Then, Eq. (5c) predicts dJ/dT =
250 W m−2/K, which agrees in order of magnitude with the
reported value, dJ/dT = 60 W m−2/K.
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An intriguing feature of the results reported in Ref. [34] is
the independence of dJ/dT of the layer thickness. This agrees
neither with our 2D expressions nor with the more precise
simulations done in Ref. [34]. All theoretical results point to
a nonmonotonic dependence of the heat current on the layer
thickness or dc conductivity [the latter is also true for the bulk
limit expressions (7)]. Further experimental investigations of
this dependence would be interesting.

V. CONCLUSIONS

In this paper, we have performed an analytical calcula-
tion of the radiative heat current between two thin metallic
layers, using the standard framework of fluctuational electro-
dynamics and a local 2D Drude model for the electromagnetic
response of each layer. We have identified two different
classes of such structures, distinguished by the dimensionless
2D dc conductivity G = 2πσ2D/c. For poor conductors with
G � 1, typically represented by atomically thin 2D materials,
the heat transfer is dominated by evanescent modes at dis-
tances d extending well beyond λ̄T , and the main coupling
mechanism in this near-field regime is the Coulomb interac-
tion between electrons in the two layers. Good conductors
with G � 1, such as thin films of conventional metals, behave
more similarly to the bulk limit, studied in earlier works: the
crossover from near to far field occurs at d ∼ λ̄T at not too
high temperatures, and the near-field transfer is dominated
by magnetostatic (inductive) coupling between the layers in
a wide range of parameters.

We have derived several simple approximate asymptotic
expressions for the heat current valid in different paramet-
ric ranges of interlayer separation distance and temperature.
Comparing these expressions with the available experimental
data, we saw that they give valid order-of-magnitude estimates
of the heat current and correctly capture its dependence on the
distance and temperature. Better agreement with the experi-
mental results can be reached by a more detailed modeling
of each system geometry and the dielectric response, which
is strongly system specific and lies beyond the scope of our
work. Still, our approximate results offer a useful insight
into the main physical mechanisms responsible for the heat
transfer.
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APPENDIX A: EXPLICIT GENERAL EXPRESSION FOR
THE HEAT CURRENT BETWEEN TWO THIN METALLIC

SHEETS

We solve Maxwell’s equations for the monochromatic
components of the electric and magnetic field, Ekω(z) eikr−iωt

and Bkω(z) eikr−iωt , in the planar geometry with the two metal-
lic sheets placed at z = z1, z2 with z2 − z1 = d , while the
position-dependent dielectric constant ε(z) accounts for what-

ever (nonmagnetic, isotropic) dielectric medium surrounds the
layers:(

ik + ez
∂

∂z

)
× Ekω = iω

c
Bkω, (A1)

(
ik + ez

∂

∂z

)
× Bkω = 4π

c

∑
α=1,2

δ(z − zα )
(
j(α)
kω

+ j̃(α)
kω

)

− iω

c
ε(z) Ekω, (A2)

where ez is the unit vector in the z direction, perpendicular
to the layers. The surface current in each layer α = 1, 2 con-
sists of two contributions: j̃(α)

kω
= σα (ω) Ekω(zα ) is the induced

current due to the electric field, while the fluctuating cur-
rents j(α)

kω
= (j(α)

−k,−ω
)∗ are complex Gaussian random variables

with the correlator determined by the fluctuation-dissipation
theorem (2),

〈 j (α)
kω,l j (α′ )

k′ω′,m〉 = (2π )3 δ(k + k′) δ(ω + ω′) δαα′δlm

× h̄ω coth
h̄ω

2Tα

Re σα (ω). (A3)

Because of δlm on the right-hand side of this equation, current
fluctuations are independent for any two orthogonal direc-
tions, so it is convenient to pass to the longitudinal and
transverse basis (p and s polarizations, respectively),

j(α)
kω

= j (α)
kω

k
k

+ j (α)
kω

ez × k
k

. (A4)

In this basis, the solutions of Maxwell’s equations decouple
into transverse magnetic (TM) and transverse electric (TE)
modes, whose contribution to the heat current is simply ad-
ditive.

To model different metal sheets mounted on identical
dielectric substrates separated by vacuum, we take ε(z1 <

z < z2) = 1, ε(z < z1) = ε(z > z2) = ε > 1. This leads to the
spatial dependence of the electric and magnetic fields ∝
eikr±iqzz for z1 < z < z2, and ∝ eikr+iq′

zz, eikr−iq′
zz for z > z2

and z < z1, respectively. Here we defined

qz =
{√

ω2/c2 − k2 sign ω, |ω| > ck

i
√

k2 − ω2/c2, |ω| < ck,
(A5a)

q′
z =

{√
εω2/c2 − k2 sign ω,

√
ε|ω| > ck

i
√

k2 − εω2/c2,
√

ε|ω| < ck.
(A5b)

At |ω| > ck, the metallic layers are coupled by traveling
waves, while for |ω| < ck, the solutions in the gap are evanes-
cent waves, where the fields’ strength decays away from the
layers. The solutions are matched at z = z1 and z = z2 using
the standard boundary conditions: continuity of the in-plane
component of the electric field E‖, and a jump in the magnetic
field in-plane component, determined by the total surface
current (the fluctuating sources as well as the induced current
σE‖).

The heat current from, say, sheet 1 to sheet 2 is given by
the average Joule loss power per unit area, J (T1, T2) = 〈j̃(2) ·
E‖(z2)〉 − 〈j̃(1) · E‖(z1)〉, determined unambiguously due to
the continuity of E‖(z). For a temperature-independent relax-
ation time, this heat current splits into J (T1, T2) = J (T1) −
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J (T2), where

J (T ) =
∫ ∞

0

dω

2π

h̄ω

eh̄ω/T − 1

∫
d2k

(2π )2

∑
j=p,s

a1 ja2 j |eiqzd |2
|1 − r1 j r2 je2iqzd |2

(A6)

is expressed in terms of reflectivities rα j and emissivities aα j

for the p and s polarizations:

rαp = qz − q′
z/ε + 4πσαqzq′

z/(εω)

qz + q′
z/ε + 4πσαqzq′

z/(εω)
, (A7a)

aαp = 4|qz||q′
z/ε|2(4π Re σα/ω)

|qz + q′
z/ε + 4πσαqzq′

z/(εω)|2 , (A7b)

rαs = qz − q′
z − 4πωσα/c2

qz + q′
z + 4πωσα/c2

, (A7c)

aαs = 4|qz|(4πω Re σα/c2)

|qz + q′
z + 4πωσα/c2|2 . (A7d)

The emissivities can also be written as

aαp = (1 − |rαp|2) θ (|ω| − ck) + 2 Im rαp θ (ck − |ω|)

−
∣∣∣∣ q′

z

εqz

∣∣∣∣ |tαp|2 θ (
√

ε|ω| − ck), (A8a)

aαs = (1 − |rαs|2) θ (|ω| − ck) + 2 Im rαs θ (ck − |ω|)

−
∣∣∣∣q′

z

qz

∣∣∣∣ |tαs|2 θ (
√

ε|ω| − ck), (A8b)

where θ (x) is the Heaviside step function, and tα j are the
transmittivities:

tαp = 2qz

qz + q′
z/ε + 4πσαqzq′

z/(εω)
, (A9a)

tαs = 2qz

qz + q′
z + 4πωσα/c2

. (A9b)

Note the difference between Eqs. (A8) and Eq. (2) of
Ref. [27], where the third term is absent in both polarizations.
Without the third term, Eq. (A6) gives the average value of the
Poynting vector in the gap between the two layers, and also
counts the heat flux which is not absorbed by the metal, but
irradiated to infinity behind it due to the finite transmission.
Equations (A8) without the third term originally appeared in
Ref. [36] for the problem of heat transfer between two semi-
infinite materials. In that geometry, all heat flux transmitted
through the surface is eventually absorbed by the material. In
the thin layer geometry, whether or not the transmitted flux is
detected depends on the specific experimental measurement
scheme. In our calculation, we assume that the transmitted
radiation is lost and thus use the full Eqs. (A8).

APPENDIX B: DERIVATION OF ASYMPTOTIC
EXPRESSIONS FOR THE HEAT CURRENT BETWEEN

TWO THIN METALLIC SHEETS

Here we derive asymptotic expressions for J (T ) in the spe-
cific case of identical sheets embedded in vacuum [σ1(ω) =
σ2(ω) and ε = 1] and separately compute the traveling and

evanescent wave contributions for each of the two polariza-
tions. We quantify the contribution made by each wave type
and polarization in each region of the (1/d, T ) parameter
plane before comparing the size of the additive contributions
and identifying which are dominant. It is convenient to intro-
duce the dimensionless parameters x ≡ cτ/d and y ≡ T τ/h̄,
as well as dimensionless integration variables: ξ = |qz|cτ in-
stead of k [noting that k dk = ξ dξ/(cτ )2], and η = ωτ . For
the traveling waves, the integration is over the region 0 < ξ <

η < ∞, while for the evanescent waves, it is 0 < ξ, η < ∞.

1. TM traveling contribution

In the dimensionless variables, the TM traveling contribu-
tion to Eq. (A6) can be rewritten exactly as

J t
TM = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1

∫ η

0

ξ 3 dξ

Dp
+Dp

−
, (B1a)

Dp
± ≡ |η(1 − iη) + Gξ (1 ± eiξ/x )|2. (B1b)

The case G � 1 is very simple to handle since, for ε = 1, one
can neglect the reflection coefficients in the denominator of
Eq. (A6), and simply set G → 0 in Eq. (B1b), since ξ < η.
This gives

J t
TM = h̄σ 2

2D

c4τ 4

∫ ∞

0

η3 dη

(1 + η2)2(eη/y − 1)

=
{
π2G2T 4/(60h̄3c2), y � 1

G2T/(16πc2τ 3), y � 1.
(B2)

For G � 1, each layer behaves at low frequency as a well-
reflecting mirror, so the structure may host Fabry-Perot
modes. The Fabry-Perot modes manifest themselves as deep
minima in Dp

± at specific values of ξ/x = π, 2π, 3π, . . ..
These minima are important when Gξ � η

√
1 + η2, which is

precisely the condition of good reflection. Thus, a much more
elaborate analysis is needed to evaluate the integral.

Let us focus on the contributions from the region ξ � x,
when many modes contribute, and even if they are over-
damped, eiξ/x oscillates fast. In the general case (A6), we
average over the fast oscillations in the denominator, which
leads to the simple replacement [37]

a1 ja2 j

|1 − r1 j r2 je2iqzd |2 → a1 ja2 j

1 − |r1 j |2|r2 j |2
, (B3)

valid as long as aα j and rα j are smooth functions of qz on the
scale qz ∼ 1/d .

Applying this averaging to the contribution in Eq. (B1a)
leads to

J t
TM = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1

×
∫ η

0

ξ 3 dξ

[η2 + η4 + 2Gξη + 2(Gξ )2][η2 + η4 + 2Gξη]
.

(B4)

Note that x dropped out and enters only through the condition
ξ � x. Note also that the ξ integral is always determined by
the upper limit, ξ ∼ η. As for the η integral, it may converge
at η ∼ y when cut off by the Bose function or, for too large y,
it may be cut off by other factors in the denominator at some
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η � y. In this latter case, one can expand the exponential in
the Bose function, which becomes just y/η. We can identify
three regions in y:

(i) For y � √
G, the integrals separate and converge at ξ ∼

η ∼ y, so the fast oscillation condition is x � y,

J t
TM = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1

∫ η

0

ξ 3 dξ

4(Gξ )3η
= π2T 4

60 h̄3c2G
.

(B5)

(ii) For
√
G � y � G, we keep 2(Gξ )2 in the first bracket

and η4 in the second one (again, oscillations are fast when
x � y),

J t
TM = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1

∫ η

0

ξ 3 dξ

2(Gξ )2η4
= T 2

24 h̄c2τ 2
.

(B6)

(iii) For y � G, we expand the Bose function, and the
integral converges at η ∼ G (it is convenient to write ξ = uη);
the oscillations are fast when x � G,

J t
TM = h̄G2

π2c2τ 4

∫ ∞

0
yη2 dη

∫ 1

0

η4u3 du

[η4 + 2(Gη)2u2]η4

=
√

2GT

12πc2τ 3
. (B7)

Let us now pick the contributions from ξ � x. Then, eiξ/x

can be expanded (we again write ξ = uη),

J t
TM = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1

×
∫ 1

0

u3 du

[(1 + 2Gu)2 + η2][1 + η2(1 + Gu2/x)2]
.

(B8)

There are three possible cutoff scales for η: y, 1 + 2Gu, and
(1 + Gu2/x)−1. Which one of the three is effective depends on
the positioning of y with respect to other scales. Again, three
cases arise:

(iv) For y � 1, we can neglect η2 in the first bracket
in the denominator, so the η integral converges at η ∼ y.
In the second bracket, η2 plays a role only if Gu2/x �
1, so the second bracket can be approximated as 1 +
(Gu2η/x)2 for any Gu2/x. We also assume that Gu � 1, which
will be verified afterwards. Then the denominator becomes
4G2u2[1 + (Gu2η/x)2], so the u integral converges at u ∼
min{1,

√
x/(Gy)}, giving

J t
TM = h̄

8π2Gcτ 3d

∫ ∞

0

η2 dη

eη/y − 1
arctan

Gη

x

=
{
π2T 4/(120 h̄3c2), y � x/G
ζ (3) T 3/(8π h̄2cGd ), y � x/G.

(B9)

The u integral converges at u ∼ 1 and u ∼ √
x/(Gy) in the

two cases. In the first case, y � x/G, the assumption Gu � 1
as well as the condition to expand the exponential, uy/x � 1,
are satisfied automatically. In the second case, y � x/G, both
conditions translate into y � Gx.

(v) For y � 1 but y � Gu, we still have η ∼ y, so the
denominator can be approximated as 4Gu2η2(1 + Gu2/x)2,

J t
TM = h̄

4π2c2τ 4

∫ ∞

0

η dη

eη/y − 1

∫ 1

0

u du

[1 + (G/x)u2]2

= T 2/h̄

48cτ (cτ + Gd )
. (B10)

Since the convergence occurs at u ∼ min{1,
√

x/G}, η ∼ y,
the assumption y � Gu is satisfied if y � min{√Gx,G}; if
so, the condition uy/x � 1 to expand the exponential is sat-
isfied automatically. Thus, Eq. (B10) is valid when 1 � y �
min{√Gx,G}.

(vi) For y � 1,Gu, the Bose function is y/η, so we inte-
grate over η exactly (convergence at η ∼ 1 + 2Gu) and obtain

J t
TM = G2T

2πc2τ 3

∫ 1

0

u3 du

(1 + 2Gu)[1 + (G/x)u2]2

=
{

T x3/2/(16c2τ 3G1/2), x � G
GT/(12πc2τ 3), x � G,

(B11)

with the convergence occurring at u ∼ min{√x/G, 1}. At x �
G, the condition to expand eiξ/x is not fulfilled since we auto-
matically have ξ/x = uη/x ∼ 1. At x � G, we have Gu � 1
automatically, while uη/x ∼ G/x, so the second expression
given by Eq. (B11) is valid at x, y � G.

We schematically show the regions of validity of
Eqs. (B5)–(B11) in the (x, y) plane in Fig. 2(a). In the
overlapping region at y � x, both the ξ � x and ξ � x con-
tributions are valid, but the Fabry-Perot contributions from
ξ � x naturally dominate. At y � x, the Fabry-Perot con-
tributions are suppressed as e−πx/y = e−π h̄c/(T d ) since the
temperature is lower than the first Fabry-Perot mode energy
π h̄c/d . Nevertheless, it turns out that the prefactor in front
of the exponential is large, so the contribution from the first
mode (the one with the weakest exponential), coming from the
narrow region around ξ = η = πx [see Fig. 2(b)], should be
included together with the contribution from ξ � x, as long
as x, y � G (otherwise, the mode is overdamped because of
low reflectivity).

To pick up the first Fabry-Perot mode contribution, we
approximate the Bose function by e−η/y and set η = πx ev-
erywhere else in the integrand, which is a smooth function of
η. We also set ξ = πx everywhere in the integrand, except
the exponential eiξ/x in Dp

+ [Eq. (B1b)]. Then we find the
minimum of Dp

+ as a function of ξ , reached at ξmin = πx(1 −
x/G) + O(x3/G2), and approximate near the minimum,

Dp
+ = (πGx)2

∣∣∣∣1 − iπx

G + 1 + eiξ/x

∣∣∣∣
2

≈ (πx)2

(
1 + π2x2

2G

)2

+ (πG)2(ξ − ξmin)2. (B12)

Then, the integration over πx < η < ∞ and −∞ < ξ −
ξmin < ∞ gives

J t
TM = πcT

2d3[2G + (πcτ/d )2]
e−π h̄c/(T d ). (B13)
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FIG. 2. (a) Regions of validity of Eqs. (B5)–(B11) in the (x, y)
plane. In the shaded regions, there are two valid contributions.
(b) The (ξ, η) plane with the integration domain ξ < η (the shaded
area does not belong to the integration domain). The hatched area at
ξ � x contributes to Eqs. (B9) and (B10).

2. TE traveling contribution

The TE traveling contribution to Eq. (A6) can be rewritten
exactly as

J t
TE = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1

∫ η

0

ξ 3 dξ

Ds+Ds−
, (B14a)

Ds
± ≡ |ξ (1 − iη) + Gη(1 ± eiξ/x )|2. (B14b)

For G � 1, we may not simply set G → 0 in the denominator,
as we did in the TM case: here this leads to a logarithmic
divergence at ξ → 0. To see how the divergence is cut off, we
note that the convergence scale of the η integral is the same as
in the TM case: η ∼ y if y � 1 and η ∼ 1 if y � 1. This gives
the small-ξ cutoff scales ξ ∼ Gη and ξ ∼ G, respectively. As

a result,

J t
TE = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

(1 + η2)2(eη/y − 1)
ln

η

min{G,Gη}

=
{

[(π2G2T 4)/(15 h̄3c2)] ln(1/G), y � 1

[(G2T )/(4πc2τ 3)] ln[(T τ )/(G h̄)], y � 1.
(B15)

The overall map of behaviors in parameter space is therefore
equivalent to the TM traveling case given in Eq. (B2), but
the TE contribution (B15) is always dominant due to the
logarithmic factors.

The calculation for G � 1 is very similar to that of the TM
traveling wave contribution. Focusing first on the cases where
ξ � x so the exponentials eiξ/x oscillate fast, the averaged
contribution from Eq. (B14a) via Eq. (B3) is given by

J t
TE = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1

∫ η

0

ξ 2 dξ

ξ (η2 + 1) + 2Gη

× 1

ξ 2(η2 + 1) + 2Gξη + 2(Gη)2
. (B16)

At low frequency, the system Fabry-Perot modes are indi-
cated, as in the TM case, in the minima in Ds

±, this time
important when Gη � ξ

√
1 + η2. The integral in η may again

converge at η ∼ y due to the Bose function, or something else
if y is too large. We may identify the same regions as in the
TM case:

(i) For y � √
G, we have that ξ ∼ η ∼ y, so the fast oscil-

lation condition is x � y, and we may neglect all terms in the
denominator containing ξ ,

J t
TM = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1

∫ η

0

ξ 2 dξ

4(Gη)3
= π2T 4

180 h̄3c2G
.

(B17)

(ii) For
√
G � y � G, we keep ξη2 in the denominator in

the first line of Eq. (B16) and 2(Gη)2 in the second line (again,
oscillations are fast when x � y),

J t
TE = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1

∫ η

0

ξ 3 dξ

2(Gξ )2η4
= T 2

24 h̄c2τ 2
.

(B18)

(iii) For y � G, we expand the Bose function to give y/η
and retain ξη2 in the first line of Eq. (B16) and (ξη)2 +
2(Gη)2 in the second. The integrals converge at ξ, η ∼ G so
the oscillations are fast when x � G,

J t
TE = h̄G2

π2c2τ 4

∫ ∞

0
yη2 dη

∫ η

0

ξ dξ

(ξ 2 + 2G2)η4
=

√
2GT

4πc2τ 3
.

(B19)
For the contributions coming from ξ � x, we expand the
exponential eiξ/x,

J t
TE = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1

1

1 + η2(1 + G/x)2

×
∫ η

0

ξ dξ

(ξ + 2Gη)2 + ξ 2η2
. (B20)

Since ξ < η and G � 1, we may neglect ξ in the first bracket
of the denominator in the last line. This allows the simple
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FIG. 3. Regions of validity of Eqs. (B17)–(B24) in the (x, y)
plane.

integration over ξ ,

J t
TE = h̄G2

2π2c2τ 4

∫ ∞

0

η dη

eη/y − 1

ln[1 + η2/(2G)2]

1 + η2(1 + G/x)2
, (B21)

with the condition for the expansion of the exponential eiξ/x

becoming η � x.
There are three possible cutoff scales for η: y, G, and (1 +

G/x)−1. Which one of the three is effective, depends on the
positioning of y with respect to other scales. Again, three cases
arise:

(iv) For y � (1 + G/x)−1 < 1, the logarithm is expanded
for small argument and the second term in the denominator is
neglected since the integral converges at η ∼ y. The condition
y � x for the expansion of eiξ/x is satisfied automatically,

J t
TE = h̄

8π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1
= π2T 4

120h̄3c2
. (B22)

(v) For (1 + G/x)−1 � y � G, the integral is still deter-
mined by η ∼ y, but the second term in the denominator
dominates. eiξ/x may be expanded when y � x,

J t
TE = h̄

8π2c2τ 4

x2

(x + G)2

∫ ∞

0

η3 dη

eη/y − 1
= T 2/h̄

48(cτ + Gd )2 .

(B23)

(vi) For y � G, the Bose function is y/η and the integral
converges at η ∼ G so we retain the logarithm, and eiξ/x may
be expanded as long as G � x,

J t
TE = G2T τ

2π2c2τ 4

x2

(x + G)2

∫ ∞

0

dη

η2
ln

(
1 + η2

4G2

)
= GT

4πc2τ 3
.

(B24)

We schematically show the regions of validity of Eqs. (B17)–
(B24) for G � 1 in the (x, y) plane in Fig. 3, where there is
no such overlap as in the TM case [Fig. 2(a)].

As in the TM case, the first Fabry-Perot mode contribution
should be included together with the ξ � x contributions as
long as x, y � G. The same procedure is performed whereby
the minimum of Ds

+ [Eq. (B14b)] near ξ = πx is found, al-
lowing the integrand to be approximated by a Lorentzian. The

FIG. 4. Regions of validity of Eqs. (B26a)–(B26d) in the (x, y)
plane.

minimum and therefore the eventual contribution is found to
be identical to the TM case, given by Eq. (B13).

3. TM evanescent contribution

The TM evanescent contribution to Eq. (A6) can be rewrit-
ten exactly as

Je
TM = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1

∫ ∞

0

e−2ξ/xξ 3 dξ

D̃p
+D̃p

−
,(B25a)

D̃p
± ≡ |η(1 − iη) + iGξ (1 ± e−ξ/x )|2. (B25b)

This integral turns out to be exactly identical to that already
calculated in Ref. [18] when the spatial dispersion of the
conductivity is neglected (namely, Eqs. (1), (10), and (11)
of Ref. [18]). That is to say that in the present system, the
Coulomb limit (c → ∞) amounts to taking only the exact TM
evanescent contributions to the heat current, while neglecting
the rest. Thus, we can simply rewrite the results of Ref. [18]
in terms of G,

Jld = ζ (3)T 3

8π h̄2cGd
, (B26a)

Jhd = cGT

16πd3
, (B26b)

Jlp = ζ (3)T 3

4π h̄2cGd
, (B26c)

Jhp = T

16πτd2
L(Gcτ/d ), (B26d)

where L(x) is a slow logarithmic function approximately
given by

L(x) ≈ 4 ln3 x

1 + (ln x)/ ln(1 + ln x)
. (B27)

The domains of validity of the contributions are shown in
Fig. 4. Note that expression (B26a) equals the traveling con-
tribution (B9).
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4. TE evanescent contribution

The TE evanescent contribution to Eq. (A6) can be rewrit-
ten exactly as

Je
TE = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1

∫ ∞

0

e−2ξ/xξ 3 dξ

D̃s+D̃s−
, (B28a)

D̃s
± ≡ |iξ (1 − iη) + Gη(1 ± e−ξ/x )|2. (B28b)

Despite the apparent similarity to the corresponding TE trav-
eling contribution given by Eq. (B14a), there is no longer
oscillatory behavior in the denominator, so the resulting con-
tributions are completely different. In η, there are two possible
decay scales: η ∼ y from the Bose function, and η ∼ ξ/(G +
ξ ) from D̃s

+D̃s
−.

In the low-temperature case y � ξ/(G + ξ ) < 1 where the
temperature cutoff is effective, expanding e−ξ/x ≈ 1 leads to
logarithmic divergence at ξ → ∞. The large ξ cutoff scale is
therefore given by the decay scale of the exponential, ξ ∼ x,
leading to the result [valid for y � x/(G + x)]

Je
TE = h̄G2

π2c2τ 4

∫ ∞

0

η3 dη

eη/y − 1
ln

x

Gη
= π2G2T 4

15h̄3c2
ln

h̄c

GT d
.

(B29)
For high temperatures y � ξ/(G + ξ ), the Bose function is
y/η and it is convenient to perform integration over η first,
keeping D̃s

± exact:

Je
TE = G2T

4πc2τ 3

∫ ∞

0

e−2ξ/xξ 2 dξ

(G + ξ )[(G + ξ )2 − G2e−2ξ/x )]
, (B30)

where the integrand may decay due to the exponential or the
denominator. If x � G, the exponential is clearly active and
terms in ξ may be neglected in the denominator (the expansion
of the Bose function is valid for y � x/G),

Je
TE = T

4π2Gc2τ 3

∫ ∞

0

ξ 2 dξ

e2ξ/x − 1
= ζ (3)cT

16πGd3
. (B31)

If x � G, expansion of e−ξ/x ≈ 1 in Eq. (B30) again leads to
logarithmic divergence at ξ → ∞. As in the low-temperature
case, the divergence is cut off by ξ ∼ x (the expansion of the
Bose function is valid for y � 1),

Je
TE = G2T

4πc2τ 3

∫ ∼x

0

ξ dξ

(ξ + G)(ξ + 2G)
= G2T

4πc2τ 3
ln

cτ

Gd
.

(B32)

The domains of validity of the TE evanescent contributions
are shown in Fig. 5.

APPENDIX C: HEAT CURRENT BETWEEN
THREE-DIMENSIONAL METALLIC HALF SPACES

In this section, we give a derivation of asymptotic ex-
pressions for the heat current between two three-dimensional
semi-infinite metallic half spaces, separated by a vacuum gap
d , essentially reproducing the results obtained in Ref. [2].
We take two identical metals, described by the complex di-
electric functions ε(ω) = 1 + 4π iσ3D/ω, where σ3D is the
three-dimensional dc conductivity, which can be written in
terms of the bulk plasma frequency ωp and the electron relax-
ation time τ as 4πσ3D = ω2

pτ , and assumed to be temperature

FIG. 5. Regions of validity of Eqs. (B29)–(B32) in the (x, y)
plane.

independent. For conventional metals, 4πσ3D � ωp � 1/τ ,
and it is natural to assume T � h̄/τ (indeed, τ = 10−14 s cor-
responds to 760 K), so that for all relevant frequencies, ε(ω) ≈
4π iσ3D/ω � 1. Focusing on the local response regime, we
assume to be in the normal skin effect regime, characterized
by the frequency-dependent skin depth δω and its value at
ω = T/h̄,

δω = c√
2πσ3Dω

, δT ≡ c√
2πσ3DT/h̄

. (C1)

Since the metals are semi-infinite, there can be no transmit-
ted radiation and therefore the Joule losses are unambiguously
equal to the average Poynting vector in the gap. The heat
current per unit area, J (T ), may once again be written in the
form of Eq. (A6), but without the third term in the emis-
sivities in Eq. (A8) (corresponding to transmission in the
two-dimensional case), and with the reflectivities being just
the Fresnel coefficients [36],

rp = qz − q′
z/ε

qz + q′
z/ε

, rs = qz − q′
z

qz + q′
z

, (C2)

where q′
z = √

[ε(ω) − 1](ω2/c2) + q2
z is the normal com-

ponent of the complex wave vector describing the electric
and magnetic fields inside the metal, while qz is the same
in the vacuum gap. As in the two-dimensional case, the
contributions from traveling and evanescent waves for each
polarization are computed separately.

1. TM traveling contribution

The contribution may be written exactly as

J t
TM = h̄

4π2

∫ ∞

0

ω dω

eh̄ω/T − 1

∫ ω/c

0
qz dqz

(
1 − |rp|2

)2∣∣1 − r2
pe−2iqzd

∣∣2 .

(C3)
The Fresnel coefficient is simplified drastically by noticing
that since cqz < ω � 4πσ3D, we may write

q′
z ≈ ω

c

√
ε(ω), rp ≈ 1 − ω

cqz

2√
ε(ω)

. (C4)
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Focussing first on the case where the exponential in the
denominator is oscillating fast, we may perform the same
averaging according to Eq. (B3), valid for qz � 1/d , which
translates into d � λ̄T . This gives

J t
TM = h̄

4π2c2

∫ ∞

0

h̄ω3 dω

eh̄ω/T − 1

√
ω

2πσ3D

= 105 ζ (9/2)

64π3/2

h̄(T/h̄)9/2

√
2πσ3Dc2

. (C5)

When qz � 1/d , the exponential in the denominator of
Eq. (C3) may be expanded as 1 − 2iqzd , so the denominator
is approximately

1 − r2
pe−2iqzd ≈ 2iqz

[
d − (1 + i)δω

ω2

c2q2
z

]
. (C6)

This results in two expressions, depending on the relation
between d and the thermal skin depth δT :

J t
TM = h̄

4π2

∫ ∞

0

ω dω

eh̄ω/T − 1

∫ ω/c

0

δ2
ωqz dqz

[(cqz/ω)2d − δω]2 + δ2
ω

= 15 ζ (7/2)

128
√

π

h̄(T/h̄)7/2

√
2πσ3Dcd

, d � δT , (C7a)

= π2h̄(T/h̄)4

240 c2
, d � δT . (C7b)

Note that in the first case, the qz integral converges at qz ∼
(ω/c)

√
δω/d � ω/c, so the expansion of e−2iqzd is valid at

d � λ̄2
T /δT , which is a weaker condition than d � δT ; this

means that the small qz contribution may coexist with that
of Fabry-Perot modes, but it is subdominant. In the second
case d � δT , the convergence is at qz ∼ ω/c, so the condition
qzd � 1 is automatically satisfied when d � δT .

2. TE traveling contribution

The situation is quite analogous to the TM case. The TE
contribution is given by Eq. (C3), but with the replacement
rp → rs. Instead of Eq. (C4), we have

q′
z ≈ ω

c

√
ε(ω), rs ≈ −1 + (1 − i)qzδω. (C8)

In the case of fast oscillation at d � λ̄T , the denominator is
again averaged using Eq. (B3), leading to an expression that
is smaller than Eq. (C5) by a factor of 3.

When d � λ̄T , expanding e−2iqzd ≈ 1 − 2iqzd , we obtain
1 − r2

s e−2iqzd ≈ 2iqz[d − (1 + i) δω], which again results in
two expressions:

J t
TE = h̄

8π2c2

∫ ∞

0

ω3 dω

eh̄ω/T − 1

δ2
ω(ω)

|d − (1 + i)δω|2

= ζ (3)

4π2

h̄(T/h̄)3

2πσ3Dd2
, d � δT , (C9a)

= π2h̄(T/h̄)4

240 c2
, d � δT . (C9b)

In contrast to the previous TM case, the integral is al-
ways dominated by qz ∼ ω/c. In this case, analogously to
Eq. (B13), one can also take into account the contribution of

the first Fabry-Perot mode,

J t
TE = π2

4

cT δ1

d4
eπ h̄c/(T d ), (C10)

where δ1 is δω corresponding to ω = πc/d . This expression
has an exponential smallness, but its prefactor is parametri-
cally larger than Eq. (C9a).

3. TM evanescent contribution

The contribution may be written exactly as

Je
TM = h̄

π2

∫ ∞

0

ω dω

eh̄ω/T − 1

∫ ∞

0
q̃z dq̃z

(Im rp)2e−2q̃zd∣∣1 − r2
pe−2q̃zd

∣∣2 ,

(C11)
where the real integration variable q̃z is introduced since qz =
iq̃z is purely imaginary. Then, q′

z = √
ε(ω) (ω/c)2 − q̃2

z .
Let us first consider the case where the q̃2

z dominates over
ε(ω/c)2 in the square root, that is, q̃zδω � 1. Then,

rp ≈ 1 − 2

ε(ω)
= 1 + iω

2πσ3D
(C12)

and

Je
TM = h̄

4π2

∫ ∞

0

ω dω

eh̄ω/T − 1

∫ ∞

0

[ω/(2πσ3D)]2 q̃z dq̃z

sinh2 q̃zd + [ω/(πσ3D)]2

= π2

60

h̄(T/h̄)4

(2πσ3D)2d2
ln min

{
2πσ3D

T/h̄
,
δ2

T

d2

}
. (C13)

The q̃z integral is logarithmic and is determined by a broad
interval of q̃z from the upper cutoff ∼1/d down to the lower
cutoff: for d � c/(2πσ3D), it is (1/d )

√
ω/(2πσ3D), while

at larger distances, the small q̃z cutoff is determined by the
condition of q̃zδω � 1. The logarithmic region exists at all if
ε(ω/c)2 can be neglected at q̃z ∼ 1/d , which translates into
d � δT .

In the opposite case, where we neglect q̃z � 1/δω in q′
z,

we still assume q̃z � (ω/c)/
√

ε ∼ (ω/c)2δω, so the reflection
coefficient is still close to unity,

rp ≈ 1 + (1 + i)
ω

cq̃z

√
ω

2πσ3D
. (C14)

Then the q̃z integral is determined by small q̃z ∼√
ω/(cd )[ω/(2πσ3D)]1/4 � 1/d , so sinh q̃zd ≈ q̃zd ,

Je
TM = h̄

4π2

∫ ∞

0

ω dω

eh̄ω/T − 1

×
∫ ∞

0
q̃z dq̃z

[(
q̃2

z cd

ω

√
2πσ3D

ω
− 1

)2

+ 1

]−1

= 45 ζ (7/2)

256
√

π

h̄(T/h̄)7/2

√
2πσ3Dcd

. (C15)

The conditions q̃zd � 1, (ω/c)2δω � q̃z � 1/δω result in the
requirement

T/h̄

2πσ3D
δT � d � 2πσ3D

T/h̄
δT . (C16)

Note that the lower limit on d is smaller than δT , so there
is an interval where Eqs. (C13) and (C15) are both valid,
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representing contributions from different regions of q̃z inte-
gration. However, when inequalities (C16) hold, Eq. (C15)
automatically dominates over Eq. (C13). Going to longer
distances, where the assumption (ω/c)/

√
ε � q̃z is violated,

is not necessary since at such distances (well exceeding λ̄T )
the traveling wave contributions dominate; indeed, Eq. (C5)
exceeds Eq. (C15) in the common wisdom region d � λ̄T .

4. TE evanescent contribution

The TE contribution is given by Eq. (C11), but with the
replacement rp → rs. If we try to proceed as in the TM case
and assume first q̃zδω � 1, we obtain an integral diverging at
small q̃z, invalidating the assumption.

Making the opposite assumption, qzδω � 1, for the reflec-
tion coefficient, we obtain the same approximation (C8) with
qz = iq̃z, which leads to

Je
TE = h̄

4π2

∫ ∞

0

ω dω

eh̄ω/T − 1

∫ ∞

0

q̃3
z dq̃z

[(sinh q̃zd )/δω + q̃z]2 + q̃2
z

.

(C17)

At d � δω, the q̃z integral converges at q̃z ∼ 1/d , and the
resulting logarithmic ω integral,

Je
TE = 3 ζ (3)

8π2d4

∫ ∞

0

δ2
ω h̄ω dω

eh̄ω/T − 1
= 3 ζ (3)

4π2

c2T

2πσ3Dd4
ln

d

δT
,

(C18)

is cut off at low frequencies by the condition d ∼ δω, so that
the validity condition is d � δT .

For d � δT , we are forced to consider q̃zδω ∼ 1 and use
the exact expression q′

z = √
2i − q̃2

z δ
2
ω/δω; however, we can

safely set d → 0 as 1 ± rs ∼ 1. Then, we obtain

(Im rs)2

|1 − r2
s |2

= (Re q′
z )2

4|q′
z|2

= 1/2

4 + q̃4
z δ

4
ω + q̃2

z δ
2
ω

√
4 + q̃4

z δ
4
ω

,

(C19)

which gives

Je
TE = 2πσ3Dh̄

8π2c

∫ ∞

0

ω2 dω

eh̄ω/T − 1
= ζ (3)

4π2

2πσ3Dh̄(T/h̄)3

c2
,

(C20)

with the q̃z integral converging at q̃z ∼ 1/δω, as expected.
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