
 

 

 
 
 

What can machine learning do? Implications for 
citizen scientists  
 
Anna Jia Gander, Department of Applied Information Technology, University of Gothenburg, Gothenburg, 
Sweden, anna.jia.gander@ait.gu.se 
 
Alena Seredko, Department of Education, Communication and Learning, University of Gothenburg, Gothenburg, 
Sweden, alena.seredko@gu.se 
 
Marisa Ponti, Department of Applied Information Technology, University of Gothenburg, Gothenburg, Sweden, 
marisa.ponti@ait.gu.se, ORCID ID: http://orcid.org/0000-0003-4708-4048  
 

 

ABSTRACT 
Citizen science projects set up in research fields such as astronomy, ecology and biodiversity, biology, and 
neuroimaging produce large datasets; thus they hold promise for applying artificial intelligence for the social and 
environmental spheres. Human-machine integration in citizen science can harness the contributions of many 
human observers and use machine learning (ML) to process their contributed data. Several citizen science projects 
have designed complex human-machine systems, taking advantage of the complementarity of the strengths of 
humans and machines, and aiming to optimize for efficiency and human engagement.  Using document analysis 
of 12 citizen science projects deploying ML techniques to optimize classification tasks, we describe the 
distribution of work between citizens and researchers and between humans and algorithms, as well as 
configurations of human-in-the-loop. The results indicate that experts are involved in every aspect of the loop, 
from annotating or labeling data to giving them to algorithms to train and make decisions from such predictions. 
Experts also test and validate models to improve accuracy by scoring their outputs when algorithms are not able 
to make the right decisions. While experts are the humans mainly involved in the loop, citizens are also involved 
at various stages of the process. We present three main examples of citizens-in-the-loop: (a) when algorithms 
provide incorrect suggestions; (b) when algorithms do not know to perform classification, and (c) when algorithms 
are active learners. We contend that, unlike automated systems that tend to remove or reduce the need for humans, 
the examined projects are heteromated systems that do not function without the indispensable human mediation 
of engaged citizens. 
 

Keywords: citizen science; classification; function allocation; heteromation; human-machine integration; 
machine learning. 

1. INTRODUCTION 
All over in the world, for several years now, many members of the general public have collaborated with 
professional scientists in research and data gathering in what is known as “citizen science”. Although involving 
amateurs in science is a several centuries-old practices, the term citizen science was coined in the 1990s by Irwin 
(1995) and has gained attention since from policy makers, academia, civil society, and the media. Members of the 
public – which we call here “citizen scientists,” or simply “citizens” to be meant not as citizens of nation states 
but as “members of a broadly construed community” (Eitzel et al. 2017, p. 6) – can participate in different types 
of citizen science and associated initiatives in several research fields. Citizen science projects are set up in 
astronomy and astrophysics, ecology and biodiversity, archeology, biology, and neuroimaging, among the others. 
For example, in ecology, citizens use sensors to contribute to data collection programs and monitor air or water 
quality, while in astronomy they classify galaxies. Citizen science projects often create large-scale observational 



 

 

datasets including citizen-generated images crowdsourced through smartphone apps, or galactic data collected by 
astronomers with telescopes. These data can benefit both science and society. For example, large-scale data can 
be used to complement official data sources to improve the Sustainable Development Goals reporting (Fritz et al. 
2019). AI can help identify knowledge gaps, create awareness, and expand the dialogue on relevant issues. 
 
AI has been used in citizen science for about 20 years (Ceccaroni et al. 2019). It is increasingly used to classify 
data and improve their quality (for example, by providing hints to volunteers based on automatic recognition of 
species from photographs) (Fritz et al. 2019). A subfield of AI, machine learning (ML), has been able to learn 
input/output relationships from data for years and thus solve problems such as classification or regression tasks 
with high accuracy. As artificial intelligence grows” smarter”, people become increasingly concerned with being 
replaced in many domains of activities. A question on a hypothetical AI takeover in citizen science was also raised 
by the participants at the 3rd European Citizen Science 2020 Conference (https://www.ecsa-conference.eu/), 
during a discussion panel aimed to initiate a dialogue on how citizen scientists interact and collaborate with 
algorithms. As mentioned during a presentation given by Miller (2020), the current rapid progress in machine 
learning for image recognition and labeling, in particular the use of deep learning through convolutional neural 
networks, generative adversarial networks, and more, presents an obvious threat to human engagement in citizen 
science; if machines can confidently carry out the work required, then there can be no space for authentic 
engagement in the scientific process. 
Several citizen science projects have designed complex human-machine systems, trying to take advantage of the 
complementarity of the strengths of humans and machines, and optimize for efficiency and human engagement 
(Trouille et al. 2019). Complementary abilities of both humans and machines need to be identified and leveraged 
to increase the accuracy and efficiency of the system (Kelling et al. 2013).  
 
A crucial step in the design of human-machine systems is function allocation (a term used interchangeably with 
task allocation in this paper), that is, deciding which tasks or jobs should be allocated to humans and which ones 
to machines (de Winter and Dodou 2014). For decades, the standard method to decide which tasks are better 
performed by machines or humans has been the HABA-MABA (“Humans are better at, Machines are better at”) 
list firstly introduced by Fitts (1951). This list contains 11 “principles” recommending the functions that are better 
performed by machines and should be automated, while the other functions should be assigned to humans. While 
the influence of these principles persists today in the human factors’ literature (de Winter and Dodou 2014), HCI 
scholars have criticized Fitt’s attributes for being static and insensitive to context dependency (Sheridan, 2000), 
and for neglecting the consequences of allocation decisions on the cooperative nature of complex work situations 
(Rognin, Salembier, and Zouinar 2000). The practical utility for the design of conventional methods used to 
allocate tasks has also been debated in HCI by Wright, Dearden, and Fields (2000), who suggested the use of 
naturalistic studies as well as abstract representations to understand “articulations of work” in ordinary work 
settings. 
 
In this paper, we do not aim to contribute to the design of human-machine systems, nor do we discuss or propose 
criteria for task allocation in citizen science classification projects. The question we address here is simpler: when 
designing a citizen science classification project involving humans and algorithms, which tasks or functions are 
allocated between citizens and researchers and between humans and algorithms? Typically, the focus on 
allocating tasks between humans and algorithms is related to an increasing endeavor to automate parts of human 
contributions. The use of ML presents opportunities in citizen science to improve speed, accuracy, and efficiency 
to analyze massive datasets and improve scientific discovery. However, concerns have been raised over the 
potential risks of disengaging citizen scientists by reducing the range of their possible contributions or making 
them either too simple or too complex (Leach, Parkinson, Lichten, and Marjanovic, 2020). Citizen science projects 
are not ordinary workplaces. Unpaid participants volunteer time and effort, therefore deriving personal meaning 
and value from performing a task is important to sustain engagement. 
 
Our primary goal for this paper is to describe the distribution of work between citizens and researchers and 
between humans and algorithms, as reported in documents about classification projects.  ML has been used in 
several projects to improve the classification of plants, animals, and galaxies, among others. The term 
“classification” refers to a single unit of output in a project, e.g., the coding of one image or the tagging of a video 
(Sauermann and Franzoni 2015). To respond to our question, we surveyed 12 citizen science classification 
projects to see what we could learn about function allocation between humans – specifically citizen scientists and 
experts (i.e., researchers) – and machines. In examining each project using documentary analysis, we described 
task allocation and configurations of the human-machine interplay.  



 
 

 

Our secondary goal is to raise questions about human-machine integration in citizen science and set directions for 
future research. A better understanding of human-machine integration in citizen science could be also relevant for 
the field of collective intelligence, which is increasingly interested in combining human intelligence with AI 
(Mulgan 2018). 

2. BACKGROUND 
While task allocation to participants in citizen science projects has been studied by Wiggins and Crowston (2012), 
function allocation between experts, non-experts, and machines in projects using human-machine systems does 
not appear to have been investigated. Kelling et al. (2012) described the challenges to be addressed for human-
machine systems to succeed in citizen science projects. They pointed out that tasks should be identified that 
humans can complete but machines cannot complete on their own, and should be sufficiently uncomplicated to 
motivate citizen scientists to participate. They also posited that the complementary abilities of both humans and 
machines should be identified to be leveraged to improve the accuracy and efficiency of the system. 
Despite the growing attention, our empirical understanding of human-machine integration in citizen science 
appears to be limited. The existing literature has used case examples to illustrate projects in which a combination 
of humans and ML performs data-centered tasks (Willi et al. 2019; Sullivan et al. 2018).  We can single out three 
major types of projects employing both human and machine efforts: 

1. Projects that relate to classifying objects or observations, when the large size of a dataset makes expert 
classification unfeasible (e.g., Nguyen et al. 2018; Lukic et al. 2018).  

2. Projects that benefit from citizen scientists’ ability to collect data in the field covering large territories, 
while ML approaches are used to predict the distribution of species or probability of phenomenon 
occurrence (e.g., Jackson et al. 2015; Robinson et al. 2018). 

3. Projects focused on clustering data to discover new classes (Coughlin et al. 2019; Wright et al. 2019). In 
contrast to the first two types of projects, where citizen science data is used to ‘help’ an algorithm, here an 
algorithm is used to ‘help’ citizen scientists. For example, Coughlin et al. (2019) employed a transfer 
learning algorithm to quantify similarities between Gravity Spy images, which allowed citizen scientists 
to search for glitches of similar morphology facilitating the identification of new classes. These types of 
projects are the fewest in number. 

 
Collecting, coding/classifying, and interpreting data are some of the most common activities that participants 
carry out, depending on their level of engagement in the scientific research process (Shirk et al. 2012). Similarly, 
ML is used at various stages of the data–science life cycle through algorithms that perform tasks like classification, 
regression, clustering, and association, especially when dealing with massive datasets. 

3. MATERIALS AND METHOD 
We selected a convenience sample of classification projects. Note that the selected projects reflect those that were 
documented at the moment in time, rather than a truly representative sample of the population. We used document 
analysis (Bowen 2009) of the sampled projects. The selection of documents was based on two main criteria: there 
must have been an implementation – or a proof-of-concept – of the application and the texts must have been 
produced by personnel directly involved in the design and development of the project. We manually compiled 
and summarized data from a host of published sources, such as documents retrieved through websites, research 
articles, reports, and blogs. The used sources are referenced in Appendix 4. We collected all data in 2020. 
 
We created a spreadsheet containing summarized data about the following 12 classification projects: Galaxy Zoo 
AI, Virus Spot, Multiple Sclerosis, Human Atlas, Plantsnap, MAIA (Machine Learning Assisted Image 
Annotation), iNaturalist, Milky Way, Twittersuicide, Mindcontrol, Observation.org, and Snapshot Serengeti. For 
each project, we described the tasks performed by citizen scientists, experts, and algorithms, respectively; the 
types of algorithms used; the sequence of tasks between humans and machines, and why the project combined 
humans and machines [data summaries are available in Appendix 1 and the anchors pointing to the reference 
sources used in the summaries are in Appendix 2]. For a proper understanding of the term task, we refer to 



 

 

Hackman’s (1969, p. 113) definition of the term as a job assigned to a person (or group) by an external agent or 
that can be self-generated. A task includes a set of instructions which specify which operations need to be 
performed by a person concerning an input, and/or what goal is to be achieved. We used Hackman’s (1969) 
conceptualization of tasks as a behavior description, that is, a description of what an agent does to achieve a goal. 
The emphasis is placed on the reported behavior of the task performer. This conceptualization applies to both 
humans and machines performing tasks. 
 
We coded the summarized data using qualitative content analysis (QCA) (Hsieh and Shannon 2005, p.1278) with 
NVivo 12 software (QSR 2020). We open coded the text describing the tasks performed by citizens, experts, and 
machines, and categorized the codes based on their conceptual similarity. 

4. RESULTS 
Table 1 illustrates the main characteristics of the sampled projects and exemplars of tasks. 
 



 

 

Project Application 
category 

Field of Study Project Goal Reason for 
human-machine 
integration 

ML Model Citizen tasks 
- Examples 

Researcher 
tasks - 
Examples 

Machine tasks 
- Examples 

Mindcontrol Recognition Neuroscience Scale expertise in 
neuroimaging. 

Train machines to 
emulate 
neuroimaging 
expert decision 
making. 
 

Classification - 
Convolutional 
neural network 

Amplify 
expert 
decisions; 
review 
machine 
annotations 

Validate 
classifications; 
develop a gold-
standard dataset 

Learn the 
training 
dataset; 
classify 

Twitter Suicide Recognition Sociology Bridge big data 
and close reading 
and nuanced 
interpretations of 
manual 
qualitative coding 
and analysis. 
 

Bridge the gap 
between close 
readings and 
nuanced 
interpretation of 
data and large-
scale patterning. 
 

Classification 
Convolutional 
neural network 

Amplify 
expert 
decisions; 
classify 

Aggregate 
labels to reach a 
consensus; 
identify classes 
of interest 

Classify 

MAIA-Machine 
Learning 
Assisted Image 
Annotation 

Recognition Oceanography Speed up manual 
image annotation 
for environmental 
monitoring and 
exploration. 

Efficiently 
identify good 
candidates for 
annotation. 

Autoencoder 
networks (AEN) 
in combination 
with fully 
convolutional 
networks (FCN) 
 

Review 
machine 
annotations; 
review 
machine 
training data 

Boost training 
data; 
validate 
classifications 

Help identify 
objects of 
interest; 
learn the 
training dataset 

iNaturalist Recognition Environmental 
science 

Map and share 
observations of 
biodiversity 
across the globe. 

Maximize the 
utility of natural 
history collections 

Classification Annotate 
observations; 

Provide a 
taxonomic 
nomenclature; 
curate data 

Learn the 
training 
dataset; rank 
observations 



 

 

 in a new era of 
data use. 

follow 
authoritative 
taxonomies 

Observation.org Recognition Environmental 
science 

Provide a free 
tool for all field 
observers around 
the world to 
record and share 
their plant and 
animal sightings. 
 

Enhance the 
completeness and 
quality of the 
observation 
database. 

Deep learning 
(neural network) 

Annotate 
observations; 
classify 

Develop a gold-
standard 
dataset; 
validate 
classifications 

Detect 
automatically 

Snapshot 
Serengeti 

Recognition Environmental 
science 

Provide a 
database of 
camera-trap-
images. 
 
 

Investigate multi-
species dynamics 
in an ecosystem. 

Plurality 
algorithm 

Classify Develop a 
citizen-labeled 
dataset; 
validate 
classifications 

Produce a 
consensus 
dataset 

Plantsnap Recognition Botany Help people 
identify plants all 
over in the world. 
 

Bridge the gap 
between nature 
and technology. 

Customized 
classification 
algorithm 

Annotate 
observations; 
peer review 

Train machine 
classification 

Detect 
automatically; 
classify 

Milky Way Recognition Astronomy Classify drawings 
on infrared 
images to 
identify targeted 
classes of 
astronomical 
objects. 

Create a hybrid 
model of machine 
learning 
combined with 
crowdsourced 
training data. 
 

Random Forest Classify Label data; 
curate data 

Machine 
classify; 
finding missing 
items in the 
database 



 
 

 

 
Human Protein 
Atlas 

Combination 
of pattern 
recognition 
and 
classification 
of images 

Life sciences Map all the 
human proteins 
in cells, tissues, 
and organs using 
the integration of 
various omics 
technologies. 

Improve large-
scale image 
classification to 
reduce 
development 
costs for labs and 
show that game 
players can 
produce high-
quality data. 
 

Deep learning 
(neural network) 

Classify Label data; train 
citizen scientists 

Classify 

Galaxy Zoo AI Recognition Astronomy Combine ML and 
big data to 
classify galaxies 
much faster than 
the most expert 
volunteers. 
 

Combine human 
skills with AI 
speed to classify 
far more galaxies 
and do science. 
 

Bayesian neural 
network 

Provide data 
for Galaxy 
Zoo 

Train machine 
classifications 

Classify 

Virus Spot Prediction Microbiology Identify rotavirus 
infected cells in 
cryo-electron 
microscopy 
(cryo-EM) 
images. 
 

Sort cryo-EM 
data in the future 
and streamline the 
data analysis 
pipeline. 
 

Convolutional 
neural network - 
deep learning 
semantic 
segmentation 

Classify;  
do 
collaborative 
analysis 

Develop a 
citizen-labeled 
data set 

Classify 



 

 

 
Table 1 Synopsis of project characteristics and tasks 

Multiple 
Sclerosis 

Prediction Medicine Predict the course 
of the disease 
based on 
randomly chosen 
clinical records 
of patients. 

Attain prognostic 
ability above that 
of machine 
learning 
algorithms and 
groups of humans 
alone. 
 

Random Forest  Make 
predictions; 
provide 
feedback and 
bugs reporting 

Create hybrid 
predictions; 
train machine 
classifications 

Make 
predictions 



  
 

 

We summarize the dataset according to the major categories and codes aggregated by the number of references 
(portions of coded text) across the 12 projects. In Figures 1, 2, and 3, we present the distribution of tasks performed 
by citizens, machines, and experts across projects. Given the small sample, the results do not have general 
representativeness. A description of the codes used to label citizen, expert, and machine tasks with examples from 
the data and detailed results from this work is in Appendix 3. 
 
 

 

Fig 1 Citizen tasks, aggregated and sorted by number of references 

 

Fig 2 Machine tasks, aggregated and sorted by number of references 
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Fig 3 Expert tasks, aggregated and sorted by number of references 

 

In Table 2, we present the three main tasks performed by each actor within the sampled projects. A complete 
description of tasks is in Appendix 3. 
 

Task It describes… Data examples 

Citizen 

Citizen classify Citizen scientists classifying data. 
They can assign golden standard 
labels to objects, or assign their own 
labels.  

citizen participants identify patterns that 
machine cannot identify in bubble 
detection and contribute to a dataset 
called (Milky Way). 

Annotate observations Citizen scientists adding context 
information associated with an 
observation, e.g., location and 
date/time of a photo.  

citizen participants provide evidence to 
their observation (e.g., time, place, 
descriptions) by using the tools provided 
by the database system 
(Observation.org).  

Review machine 
annotations  

Instances in which citizen scientists 
have to approve, reject, or edit the 
automatically suggested matches.  

citizens eliminate the false positive 
detections, which mark regions of the 
images that show no OOI, the annotation 
candidates are manually reviewed in the 
last step (MAIA). 

Expert 

Validate classifications Methods used to validate the quality of 
classifications. For example, it can 
include  experts seeking to ensure that 

researchers evaluate MAIA on three 
marine image datasets and validate that 
MAIA is a promising and efficient method 
for marine image analysis (MAIA). 
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citizen scientist-trained machine model 
generates correct classifications.  
 

Train machine 
classifications 

The use of labeled datasets for training 
machine learning to classify objects.  

researchers used the newly labelled DES 
data to do unsupervised recursive training 
to retrain their deep transfer learning 
model again, in order to boost the 
accuracy of classification (Galaxy Zoo AI). 

Develop a gold-standard 
dataset 

A dataset that is accepted as the most 
accurate and reliable and needs to be 
used as a reference for checking and 
comparing machine labeling.  

the ratings of the top 4 expert raters 
(including the lead author) were used to 
create a gold-standard subset of the data. 
The gold-standard dataset set contains 100 
images that were failed by experts, and 
100 images that were passed by experts 
(Mindcontrol). 
 

Machine 

Machine classify Machine classifying data by assigning 
labels to objects. 

the machine learning model was used for 
automated image classification of 
subcellular protein distribution patterns 
(e.g., recognizing patterns of the cell 
periphery such as plasma membrane, focal 
adhersions, cell junctions and making 
predictions of each cell) (Human Atlas). 

Learn the training dataset Machines learning the “gold-standard" 
labeled dataset to predict labels when 
classifying data. 

in MAIA, the training is performed with the 
set of boosted training samples and the 
default configuration of the Mask R-CNN 
implementation. The training samples are 
used to train the machine supervised 
learning neural networks to produce a set 
of annotation candidates for a whole 
image dataset (MAIA). 

Detect objects 
automatically 

An algorithm able to recognize objects, 
e.g., plants and animals. 

the system will provide a suggestion of 
what species it could be, and the 
suggestions come from the automatic 
image recognition model "Obsldentify" 
(Obsetvation.org). 

 
Table 2. The three main tasks performed by each actor 

4.1 Examples of citizens-in-the-loop 
Human-in-the-loop (HITL) is commonly described as the process in which humans help improve machine 
learning algorithms, e.g., by providing labels and features. HITL is said to leverage the benefits of human 
observation and classification skills, as well as machine computation abilities, to create better prediction models 
(Shih 2018).  Our results indicate that experts are involved in every aspect of the loop, from annotating or labeling 
data to giving them to algorithms to train and make decisions from such predictions. Experts also test and validate 
models to improve accuracy by scoring their outputs, when algorithms are not able to make the right decisions. 
While experts are the humans mainly involved in the loop, citizens are involved as well at various stages of the 
process. We present three main examples of what we call citizens-in-the-loop, showing how citizens assist 
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algorithms when they encounter difficulties. The examples show a type of interaction in which citizens and 
algorithms are interdependent and take turns to solve a task together, while the feedback loop allows a continuous 
improvement of the system (Berditchevskaia and Baeck 2020). 
 
When algorithms provide incorrect suggestions. In Observation.org, a free tool for field observers to record and 
share their plant and animal sightings, citizen scientists upload images of flora and fauna and if the recognition 
algorithm fails to provide correct identification of the species, then citizens can edit the wrong suggestion on the 
observation screen. Based on this, the system shows whether citizens have accepted or rejected observation data. 
Citizens contribute to creating a sort of gold-standard database used to train the machine learning model.  
Also in Snapshot Serengeti machines can misclassify animals in the collected pictures. In such a case, citizen 
scientists in the role of spotters identify the animals and serve as teachers for the algorithms. Firstly, the algorithm 
classifies the picture. If the animal is detected with a certain probability, spotters come to the scene. AI offers a 
primary classification (animal recognition) to the spotter (also the trapper who uploaded records can pre-classify 
the image). A spotter validates/ invalidates the pre-classification and the image is not considered as validated until 
there is at least a 75% consensus (which can be adjusted in a certain project) among all the spotters involved. This 
is the input for the algorithms. 
 
When algorithms do not know to perform classification. In Milky Way, a system leveraging citizen science and 
machine learning to detect interstellar bubbles, citizens identify patterns that machines cannot identify in bubble 
detection and contribute to building a database. Researchers use the citizen identification output to train machine 
learning and build a model of an automatic classifier. 
 
When algorithms are active learners. In MAIA, a machine learning assisted image annotation for the analysis of 
marine environmental images, an algorithm poses queries to citizens, in the form of training data images. Citizens 
review these images and determine whether they contain objects of interest for classification or not. Then, they 
refine manually each image with a circle to mark the object of interest in the image, by modifying the circle 
position or size, so it closely fits the position and size of the object. 

5. DISCUSSION 
We highlight two aspects from the results. First, collecting, classifying, and validating data are some of the most 
common activities that humans carry out. In line with Kelling et al. (2012), the documented tasks appear to be 
sufficiently simple to motivate citizen scientists to participate, while machines cannot complete these tasks on 
their own. The results show that humans play a main role in classifying and annotating data to be used to train a 
model, but once a model is trained, it requires an expert-in-the-loop to interpret model predictions and potentially 
refine them to generate the most accurate results for unseen and unknown data. The sampled projects show the 
need to maintain human oversight over ML models, which can be explained as the need to repair mistakes made 
by machines, or because a combination of human and machin is most efficient (de Winter & Dodou 2014).  
 
 In most cases, citizen scientists still perform relatively simple tasks such as data collection, image coding, or 
object annotation. However,  the roles of citizens can be reconfigured by algorithms as they come together with 
experts to constitute the project activities around data and objects (e.g., images). An example is the role of citizen 
scientists classifying images that serve as a training dataset for ML algorithms. Another role is that of citizens 
amplifying expert decisions. Instead of labeling thousands of training images, an expert can employ citizen 
scientists to help with this task, and machine learning can identify which citizen scientists provide expert-quality 
data.  
 
Second, the sampled projects have used a relatively narrow set of ML applications aimed at helping humans 
become more efficient through new approaches to classification and prediction. This finding is consistent with 
the results of a Nesta’s study of 20 project’s bringing AI and collective intelligence together (Berditchevskaia and 
Baeck 2020). The authors argued that more attention should be paid to the relationship between AI and collective 
intelligence, in terms of the potential of AI to help groups to think and work together on identifying problems, 
finding solutions, and making decisions.  
Furthermore, ML models are most useful when gold-standard or a “ground truth” datasets can be used as labels 
to properly train a classifier, because they represent the data that the model will encounter when it is used in the 
real world. Then, the ability of AI to identify patterns in huge amounts of data is useful for streamlining analysis. 
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For example, in Virus Spot researchers gather data from citizen participants and set a standard for how to use 
these data for an ML model. Then the algorithm learns how to sort and automate the segmentation of the cryo-
EM data (images of viruses), and streamlines the data analysis from weeks to days.  
 
Unlike automated systems that tend to remove or reduce the need for humans, the examined projects can be 
considered heteromated systems that do not function without the indispensable human mediation of engaged 
citizens (Ekbia and Nardi 2017).  Ekbia and Nardi (2017) consider citizen science projects as examples of 
heteromation relying on what they called “inverse instrumentality” (p. 35), a concept they coined after examining 
complex technological systems like video games which insert humans strategically, to allow the systems to work 
in intended ways (Ekbia and Nardi 2012). Following their reasoning, citizen science projects are not heteromated 
in terms of experts’ work, but through the participation of volunteers who act as indispensable mediators. As 
noted above, citizen science projects are not ordinary work settings employing paid staff. As Sauermann and 
Franzoni (2015) pointed out, citizen science projects provide important speed advantages as long as a large 
number of volunteers work in parallel, reducing the time required to perform a specific task. Insofar the success 
of these projects has relied on citizens willing to contribute time and effort. The sampled classification projects 
seek citizens to provide, classify, or annotate data. Their heteromated systems can push critical tasks to citizens, 
as the examples of citizens-in-the-loop show. These examples leverage the benefits of both the observation and 
classification skills of amateurs and non-professional scientists for data labeling, as well as the machine 
computation abilities, to create better prediction models (Shih, 2018). They also indicate the possibility of not just 
automating tasks but “leveraging” the knowledge of citizen scientists within a project, by capturing essential 
information and learning from the feedback they provide. In turn, this can result in motivating new citizen 
scientists to start contributing, and existing contributing citizens to generate a larger quantity of observations. In 
heteromated systems, efficiency is not opposed to engagement (Ekbia and Nardi 2017), as they cater to people’s 
motivations to participate in projects that offer opportunities for meaningful tasks. 
 
When allocating tasks, the argument about complementarity influenced by Fitt’s (1951) list risks essentializing 
the attributes of humans and machines. We commonly think that humans are especially good at creativity, 
intuition, and abstraction, for example, while machines are good at speed, quantification, and efficiency.  This 
complementarity is well described in the blog of Galaxy Zoo about using AI, wherein humans are acknowledged 
as being “much better classifier, able to make sense of the most difficult galaxies and even make discoveries,” 
while AI is good at boring tasks (Galaxy Zoo Upgrade, 2019). As noted above, treating the attributes in Fitt’s list 
as stable and natural does not take into account the dynamic redistribution of cognitive tasks or roles, involving 
interactions between humans and machines in a cooperative and situated way (e.g., Hutchins 1995). Cognitive 
work will be shifting between humans and machines (Ekbia and Nardi 2017), as the list of research tasks that 
machines can do is growing, although algorithms are still second to humans on recognizing patterns and they have 
longer learning curves. 

6. CONCLUSION 
This survey represents the perspective of the authors. Given the small sample of 12 applications, our analysis of 
task allocation needs to be considered only as an illustration. The approach we used suffers from the limitation of 
employing only documentary evidence, without combining it with other methods to reduce bias and compensate 
for the absence or the incompleteness of documents. Nevertheless, the employed method tried to minimize the 
subjectivity of the analysis, which is an initial step toward empirically examining function allocation. However, 
we hope it stimulates further research on this topic in citizen science projects using AI. For example, future studies 
could examine how the cooperative and situated practices in which humans and algorithms co-evolve and whether 
they change the content and meaning of tasks allocated early in the design of projects. Another topic could 
examine whether human-machine integration results in a skill-biased technological change, wherein machines 
take over low-skill tasks, for example. As obvious boundaries and distinctions between humans and machines are 
subject to blurring, we might face unexpected obstacles, possibilities, and questions worth investigating. 
 
Studying whether a task can be performed by a machine or a human is important to incorporate not only useful 
but also meaningful human participation into a project. Deriving personal meaning and value from participating 
is important to citizen scientists who typically volunteer time and effort driven by intrinsic or social motivations 
and not for financial compensation (Sauermann and Franzoni 2015). For this reason, optimizing the overall 
experience of participants, and not just speed and efficiency, is critical to realize the potential for the contribution 
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of each volunteer (Trouille et al. 2019). When we automatize certain tasks, we need to balance the goals of a 
project with the meaning that citizen scientists can derive from their participation. Citizen science projects need 
to cater to diverse needs and expectations. One size does not fit all. A boring task for one person can be a joy for 
another, while some volunteers may prefer to engage their brains and choose more difficult tasks 
As the boundaries between humans and machines blur, human roles in citizen science projects are likely to be 
reconfigured by ML. We argue that the value of citizen science applications using ML should lie in creating 
pathways for citizens that support their engagement and agency while balancing the quality and accuracy of 
classifications. In this respect, it is valuable to think about machine-in-the-loop approaches that aim to help citizen 
scientists, besides the citizens-in-the-loop helping machines. 
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