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Introduction

T H I S D O C U M E N T provides mathematical derivations of the equations that

are implemented in the Sound Field Synthesis Toolbox.1 1 The Toolbox is available at

https://github.com/sfstoolbox/sfs/ and

was first described in H. Wierstorf and

S. Spors. “Sound Field Synthesis Toolbox”.

In: 132nd Audio Engineering Society

Convention. 2012, eBrief 50

We decided to create the Toolbox and this documentation in order to fully

allow for the principle of reproducible research2 in the research area of sound

2 For one of the pioneers see D. L. Donoho

et al. “Reproducible Research in Computa-

tional Harmonic Analysis”. Computing in

Science & Engineering 11.1 (2009), pp. 8–

18

field synthesis (SFS). Like other fields that involve signal processing, the

study of SFS implies implementing a multitude of algorithms and running

numerical simulations on a computer. As a consequence, the outcome of

the algorithms are easily vulnerable to implementation errors which cannot

completely be avoided.3

3 Compare D. C. Ince, L. Hatton, and J.

Graham-Cumming. “The case for open

computer programs”. Nature 482.7386

(2012), pp. 485–88

Functions derived in the theoretical chapter that are implemented in the

toolbox are accompanied by a link to the corresponding function. All figures

in this document have a link in the form of Z which is a link to a folder

containing all the data and scripts in order to reproduce the single figures.

This document is mainly based on the PhD thesis of Hagen Wierstorf.4 It 4 H. Wierstorf. “Perceptual Assessment of

Sound Field Synthesis”. PhD thesis. Tech-

nische Universität Berlin, 2014.
starts with a small introduction to the history of spatial sound presentation

and presents afterwards the theory of sound field synthesis, including the

derivation of lots of different driving functions. All functions that come with

a name tag like #D:wfs:pw are implemented in the Sound Field Synthesis

Toolbox and referenced in the code using the tag. In Chap. ?? an index of all

tags is presented with the corresponding page and equation number where it

can be found in this document.

1.1 Spatial Sound Presentation

The first ever practical attempt of spatial sound reproduction dates back to

1881, only five years after the invention of the first monaural transducer.

Back then, two parallel telephone channels were used to transmit recorded

music to the homes of the listeners.5 The basic idea was the ability to in- 5 T. du Moncel. “The international exhi-

bition and congress of electricity at Paris”.

Nature October 20 (1881), pp. 585–89.
fluence the interaural differences between the two ear signals of the listener.

That was achieved by recording a sound scene with two microphones placed

at different positions and feeding the recorded signals to the two telephone

channels.

Later on the idea advanced to the technique of binaural presentation

where the basic principle is to recreate the ear signals at both ears as they

would appear in reality. This can be achieved by placing two microphones

in the ears of the listener for recording and playing the recorded signals back

via headphones afterwards. Binaural presentation has advanced in the last

https://github.com/sfstoolbox/sfs/
http://github.com/sfstoolbox/sfs-documentation/tree/master
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Figure 1.1: Setup of stereophonic tele-

phones at the exhibition 1881 in Paris. Fig-

ure from T. du Moncel. “The interna-

tional exhibition and congress of electric-

ity at Paris”. Nature October 20 (1881),

pp. 585–89Z

decades by measuring the acoustical transmission paths between a source

and the ears of a listener, so called Head-Related Transfer Functions (HRTFs).

Afterwards these can be used to create any sound scene as long as the re-

quired HRTFs are available.

Spatial sound presentation via loudspeakers started in the 1930s, the time

when Blumlein invented the stereophonic recording and reproduction6 and 6 A. D. Blumlein. “Improvements in

and relating to Sound-transmission,

Sound-recording and Sound-reproducing

Systems”. Journal of the Audio Engineering

Society 6.2 (1958), pp. 91–98, 130

Steinberg and Snow discussed the idea of the acoustical curtain.7 The orig-

7 J. Steinberg and W. B. Snow. “Symposium

on wire transmission of symphonic music

and its reproduction in auditory perspective:

Physical Factors”. Bell System Technical

Journal 13.2 (1934), pp. 245–58.

inal idea of the latter was to create a sound field that mimics the real sound

scene. Their practical implementation with two or three loudspeakers was

not able to achieve this. With such low numbers of loudspeakers the sound

field is only controllable at single points in space. This corresponds to the

classical stereophonic setup consisting of a fixed listener position between

the two loudspeakers at a distance of around 2m. The human head has a

diameter of around 20 cm and hence only one ear can be placed at the point

where the sound field is as desired. But as Steinberg and Snow discovered for

their acoustic curtain, the spatial perception of the listener is not disturbed as

long as she does not move too far away from a line on which every point has

the same distance to both loudspeakers. By staying on that line the listener

perceives an auditory event in the center of both loudspeakers, if the same

acoustical signal is played through them. If the amplitude of one of the loud-

speakers is changed the auditory event is moved between the two speakers.

The connection of the amplitude difference between the loudspeakers and

the actual position of the auditory event is empirical and is described by so

called panning laws.8 If the listener leaves the central line, the position of 8 D. M. Leakey. “Some Measurements on

the Effects of Interchannel Intensity and

Time Differences in Two Channel Sound

Systems”. The Journal of the Acoustical So-

ciety of America 31.7 (1959), pp. 977–86

the auditory event will always be located at the position of one of the two

loudspeakers. The area in which the spatial perception of the auditory scene

works without considerable impairments is called the sweet-spot of a given

loudspeaker setup. It is indicated by the blue color in Figure 1.2. To explain

why the spatial perception of the listener is correct at the sweet-spot although

the sound field is not, the theory of summing localization was introduced by

Warncke in 1941.9

9 A discussion is provided in J. Blauert. Spa-

tial Hearing. The MIT Press, 1997, p. 204

In the last years the stereophonic setup was expanded to 5.0 surround and

even larger setups10 and the panning laws were formulated in a more general

10 E.g. K. Hamasaki, K. Hiyama, and H.

Okumura. “The 22.2 Multichannel Sound

System and Its Application”. In: 118th Au-

dio Engineering Society Convention. 2005,

Paper 6406

http://github.com/sfstoolbox/sfs-documentation/tree/master/01_introduction/fig1_01
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stereophony sound field synthesis

30◦ 30◦

sweet-spot

Figure 1.2: Loudspeaker setups for two

channel stereophony and sound field synthe-

sis. The area marked in blue describes the

positions were the listener can move to and

still perceives the same spatial impression.

This area is smaller for stereophonic setups

and is called the sweet-spot. The figure of

the stereophony setup is a modified version

of J. Ahrens. Analytic Methods of Sound

Field Synthesis. New York: Springer, 2012,

Fig. 1.1. Z

way dealing with setups using multiple loudspeakers.11 These approaches 11 V. Pulkki. “Virtual Sound Source Posi-

tioning Using Vector Base Amplitude Pan-

ning”. Journal of the Audio Engineering So-

ciety 45.6 (1997), pp. 456–66

could not fix the sweet-spot problem, but added a richer spatial impression

because sound is no longer restricted to come from the front.

Before 5.0 surround there were other approaches to enhance the spatial

impression of stereophony. From the 1970s onwards quadrophony and Am-

bisonics12 were developed in order to provide a surround experience with 12 M. A. Gerzon. “Periphony: With-Height

Sound Reproduction”. Journal of the Audio

Engineering Society 21.1 (1973), pp. 2–10.
four loudspeakers. The basic idea of Ambisonics is comparable to nowadays

Near-Field Compensated Higher Order Ambisonics (NFC-HOA) for a larger

number of loudspeakers: to describe an extended sound field by spherical ba-

sis functions that can be synthesized by any spherical or circular loudspeaker

setup. In practice, the restriction of the limited number of loudspeakers has

led to the usage of only two spherical basis functions. The results are loud-

speaker signals that are comparable to the case of panning in stereophony

with the difference of more active loudspeakers.13 If more than four loud- 13 E.g. M. Frank. “Phantom Sources using

Multiple Loudspeakers”. PhD thesis. Uni-

versity of Music and Performing Arts Graz,

2013.

speakers and more than two basis functions are applied the term is changed

to Higher Order Ambisonics (HOA) to highlight this fact. For the perceptual

side of Ambisonics the sweet-spot problem exists as well. The explanation of

this sweet-spot is only partly covered by the theory of summing localization,

because that theory is not well investigated for several sound sources coming

from all directions. This provoked a high number of different optimizations

of the loudspeaker signals by the Ambisonics community.

All of the methods described so far are able to provide a convincing spatial

impression at a specific listener position within the loudspeaker setup. That

means none of them can handle an equally good spatial impression for a

bigger audience.

In the late 1980s the old idea of Steinberg and Snow to reproduce a com-

plete sound field came to new life due to the fact that now arrangements of

more than 100 loudspeakers became possible.14 This high number of loud- 14 A. Berkhout. “A holographic approach to

acoustic control”. Journal of the Audio En-

gineering Society 36.12 (1988), pp. 977–95.
speakers is needed: for controlling an extended sound field up to 20 kHz,

loudspeaker spacings under 1 cm are required. Small distances like that are

not possible in practice. Nonetheless, the experience has shown that even

with larger distances reasonable sound field approximations are possible.

Some of them provide equal spatial impression in the whole listening area,

as indicated by the blue color in Figure 1.2. Methods trying to achieve this

http://github.com/sfstoolbox/sfs-documentation/tree/master/01_introduction/fig1_02
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goal are summarized under the term sound field synthesis (SFS). This docu-

ment focusses on the two SFS techniques Wave Field Synthesis (WFS) and

NFC-HOA that are explained in detail in the next chapter.

1.2 Mathematical Definitions

z

φ

θ

x

x

y

z

Figure 1.3: Coordinate system used in this

thesis. The vector x can also be described

by its length, its azimuth angle φ, and its

elevation θ. Z

Coordinate system Figure 1.3 shows the coordinate system that is used in

the following chapters. A vector x can be described by its position (x, y, z) in

space or by its length, azimuth angle φ ∈ [0, 2π[, and elevation θ ∈
[
−π

2 ,
π

2

]
.

The azimuth is measured counterclockwise and elevation is positive for pos-

itive z-values.

Fourier transformation Let s be an absolute integrable function, t, ω real

numbers, then the temporal Fourier transform is defined as15 15 R. N. Bracewell. The Fourier Transform

and its Applications. Boston: McGraw Hill,

2000.
S(ω) = F {s(t)} =

∫ ∞

−∞

s(t)e−iωt dt . (1)

In the same way the inverse temporal Fourier transform is defined as

s(t) = F−1 {S(ω)} =
1

2π

∫ ∞

−∞

S(ω)eiωt dω . (2)

http://github.com/sfstoolbox/sfs-documentation/tree/master/01_introduction/fig1_03
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Theory of Sound Field Synthesis

virtual
source

S(x, ω)

x0

n

x

P (x, ω)

V

∂V

0

Figure 2.1: Illustration of the geometry

used to discuss the physical fundamentals

of sound field synthesis and the single-layer

potential (3). Z

T H E P RO B L E M of sound field synthesis can be formulated as follows.1 1 Small parts of this section are published

in H. Wierstorf, A. Raake, and S. Spors.

“Binaural assessment of multi-channel re-

production”. In: The technology of binau-

ral listening. Ed. by J. Blauert. New York:

Springer, 2013, pp. 255–78.

Assume a volume V ⊂ R
n which is free of any sources and sinks, sur-

rounded by a distribution of monopole sources on its surface ∂V . The pres-

sure P (x, ω) at a point x ∈ V is then given by the single-layer potential

P (x, ω) =

∮

∂V

D(x0, ω)G(x− x0, ω) dA(x0) , (3)

#single:layer

where G(x− x0, ω) denotes the sound propagation of the source at location

x0 ∈ ∂V , and D(x0, ω) its weight, usually referred to as driving function.

The sources on the surface are called secondary sources in sound field syn-

thesis, analogue to the case of acoustical scattering problems. The single-

layer potential can be derived from the Kirchhoff-Helmholtz integral.2 The 2 E. G. Williams. Fourier Acoustics. San

Diego: Academic Press, 1999.challenge in sound field synthesis is to solve the integral with respect to

D(x0, ω) for a desired sound field P = S in V . It has unique solutions

which Zotter and Spors3 explicitly showed for the spherical case and Fazi4

3 F. Zotter and S. Spors. “Is sound field

control determined at all frequencies? How

is it related to numerical acoustics?” In:

52nd Audio Engineering Society Confer-

ence. 2013, Paper 1.3
4 F. M. Fazi. “Sound Field Reproduction”.

PhD thesis. University of Southampton,

2010, Chap. 4.3.

for the planar case.

In the following the single-layer potential for different dimensions is dis-

cussed. An approach to formulate the desired sound field S is described and

finally it is shown how to derive the driving function D.

http://github.com/sfstoolbox/sfs-documentation/tree/master/02_theory_of_sound_field_synthesis/fig2_01
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2.1 Solution for Special Geometries: Near-Field Compen-

sated Higher Order Ambisonics and Spectral Division

Method

The integral equation (3) states a Fredholm equation of first kind with a

Green’s function as kernel. This type of equation can be solved in a straight-

forward manner for geometries that have a complete set of orthogonal basis

functions. Then the involved functions are expanded into the basis functions

ψn as5 5 Compare P. M. Morse and H. Feshbach.

Methods of Theoretical Physics. Minneapo-

lis: Feshbach Publishing, 1981, p. 940.G(x− x0, ω) =
N∑

n=1

G̃n(ω)ψ
∗
n(x0)ψn(x) (4)

D(x0, ω) =

N∑

n=1

D̃n(ω)ψn(x0) (5)

S(x, ω) =
N∑

n=1

S̃n(ω)ψn(x) , (6)

where G̃n, D̃n, S̃n denote the series expansion coefficients and

〈ψn, ψn′〉 = 0 for n 6= n′. Introducing these three equations into (3) one

gets

D̃n(ω) =
S̃n(ω)

G̃n(ω)
. (7)

This means that the Fredholm equation (3) states a convolution. For ge-

ometries where the required orthogonal basis functions exist, (7) follows

directly via the convolution theorem.6 Due to the division of the desired 6 Compare G. B. Arfken and H. J. Weber.

Mathematical Methods for Physicists. Am-

sterdam: Elsevier, 2005, p. 1013.
sound field by the spectrum of the Green’s function this kind of approach

has been named Spectral Division Method (SDM).7 For circular and spher- 7 J. Ahrens and S. Spors. “Sound Field Re-

production Using Planar and Linear Arrays

of Loudspeakers”. IEEE Transactions on

Audio, Speech, and Language Processing

18.8 (2010), pp. 2038–50

ical geometries the term Near-Field Compensated Higher Order Ambison-

ics (NFC-HOA) is more common due to the corresponding basis functions.

“Near-field compensated” highlights the usage of point sources as secondary

sources in contrast to Ambisonics and Higher Order Ambisonics (HOA) that

assume plane waves as secondary sources.

The challenge is to find a set of basis functions for a given geometry. In

the following paragraphs three simple geometries and their widely known

sets of basis functions will be discussed.

2.1.1 Spherical Geometries
sphharmonics.m

asslegendre.mThe spherical harmonic functions constitute a basis for a spherical secondary

source distribution in R
3 and can be defined as8 8 N. A. Gumerov and R. Duraiswami. Fast

Multipole Methods for the Helmholtz Equa-

tion in Three Dimensions. Amsterdam: El-

sevier, 2004, (12.153), sin θ is used here

instead of cos θ due to the use of another

coordinate system, compare Figure 2.1 from

Gumerov and Duraiswami and Figure 1.3 in

this thesis.

Y m
n (θ, φ) = (−1)m

√

(2n+ 1)(n− |m|)!

4π(n+ |m|)!
P |m|
n (sin θ)eimφ , (8)

n = 0, 1, 2, ... m = −n, ..., n

where P
|m|
n are the associated Legendre functions. Note that this function

may also be defined in a slightly different way, omitting the (−1)m factor,

see for example Williams.9 9 Williams, op. cit., (6.20).

http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_general/sphharmonics.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_general/asslegendre.m
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The complex conjugate of Y m
n is given by negating the degree m as

Y m
n (θ, φ)∗ = Y −m

n (θ, φ) . (9)

For a spherical secondary source distribution with a radius of R0 the

sound field can be calculated by a convolution along the surface. The driving

function is then given by a simple division as10 10 J. Ahrens. Analytic Methods of Sound

Field Synthesis. New York: Springer, 2012,

(3.21). The 1
2π

term is wrong in (3.21)

and omitted here, compare the errata and

F. Schultz and S. Spors. “Comparing Ap-

proaches to the Spherical and Planar Sin-

gle Layer Potentials for Interior Sound Field

Synthesis”. Acta Acustica 100.5 (2014),

pp. 900–11, (24).

Dspherical(θ0, φ0, ω) =

1

R 2
0

∞∑

n=0

n∑

m=−n

√

2n+ 1

4π

S̆m
n (θs, φs, rs, ω)

Ğ0
n(

π

2 , 0, ω)
Y m
n (θ0, φ0) , (10)

where S̆m
n denote the spherical expansion coefficients of the source model,

θs and φs its directional dependency, and Ğ0
n the spherical expansion coef-

ficients of a secondary point source that is located at the north pole of the

sphere with x0 = (0, 0, R0) and is given as11 11 F. Schultz and S. Spors. “Comparing Ap-

proaches to the Spherical and Planar Sin-

gle Layer Potentials for Interior Sound Field

Synthesis”. Acta Acustica 100.5 (2014),

pp. 900–11, (25).

Ğ0
n(

π

2 , 0, ω) = −i
ω

c

√

2n+ 1

4π
h(2)n

(ω

c
R0

)

, (11)

where h
(2)
n describes the spherical Hankel function of n-th order and second

kind.

2.1.2 Circular Geometries

The following functions build a basis in R
2 for a circular secondary source

distribution12 12 Williams, op. cit.

Φm(φ) = eimφ . (12)

The complex conjugate of Φm is given by negating the degree m as

Φm(φ)∗ = Φ−m(φ) . (13)

For a circular secondary source distribution with a radius ofR0 the driving

function can be calculated by a convolution along the surface of the circle as

explicitly shown by Ahrens13 and is then given as 13 J. Ahrens and S. Spors. “On the Sec-

ondary Source Type Mismatch in Wave

Field Synthesis Employing Circular Distri-

butions of Loudspeakers”. In: 127th Audio

Engineering Society Convention. 2009, Pa-

per 7952.

Dcircular(φ0, ω) =
1

2πR0

∞∑

m=−∞

S̆m(φs, rs, ω)

Ğm(0, ω)
Φm(φ0) , (14)

where S̆m denotes the circular expansion coefficients for the source model,

φs its directional dependency, and Ğm the circular expansion coefficients for

a secondary line source with

Ğm(0, ω) = −
i

4
H(2)

m

(ω

c
R0

)

, (15)

where H
(2)
m describes the Hankel function of m-th order and second kind.

2.1.3 Planar Geometries

The basis functions for a planar secondary source distribution located on the

xz-plane in R
3 are given as

Λ(kx, kz, x, z) = e−i(kxx+kzz) , (16)

http://www.soundfieldsynthesis.org/errata/
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where kx, kz are entries in the wave vector k with k2 = (ωc )
2. The complex

conjugate is given by negating kx and kz as

Λ(kx, kz, x, z)
∗ = Λ(−kx,−kz, x, z) . (17)

For an infinitely long secondary source distribution located on the xz-

plane the driving function can be calculated by a two-dimensional convolu-

tion along the plane as14 14 J. Ahrens. Analytic Methods of Sound

Field Synthesis. New York: Springer, 2012,

(3.65).

Dplanar(x0, ω) =
1

4π2

∫∫ ∞

−∞

S̆(kx, ys, kz, ω)

Ğ(kx, 0, kz, ω)
Λ(kx, x0, kz, z0) dkx dkz ,

(18)

where S̆ denotes the planar expansion coefficients for the source model, ys

its positional dependency, and Ğ the planar expansion coefficients of a sec-

ondary point source with15 15 Schultz and Spors, op. cit., (65).

Ğ(kx, 0, kz, ω) = −
i

2

1
√
(ωc )

2 − k2x − k2z
, (19)

for (ωc )
2 > (k2x + k2z).

For the planar and the following linear geometries the Fredholm equation

is solved for a non compact space V , which leads to an infinite and non-

denumerable number of basis functions as opposed to the denumerable case

for compact spaces.16 16 Ibid.

2.1.4 Linear Geometries

The basis functions for a linear secondary source distribution located on the

x-axis are given as

χ(kx, x) = e−ikxx . (20)

The complex conjugate is given by negating kx as

χ(kx, x)
∗ = χ(−kx, x) . (21)

For an infinitely long secondary source distribution located on the x-axis

the driving function for R2 can be calculated by a convolution along this axis

as17 17 Compare (3.73) in Ahrens, op. cit.

Dlinear(x0, ω) =
1

2π

∫ ∞

−∞

S̆(kx, ys, ω)

Ğ(kx, 0, ω)
χ(kx, x0) dkx , (22)

where S̆ denotes the linear expansion coefficients for the source model, ys,

zs its positional dependency, and Ğ the linear expansion coefficients of a

secondary line source with

Ğ(kx, 0, ω) = −
i

2

1
√
(ωc )

2 − k2x
, (23)

for 0 < |kx| < |ωc |.

2.2 High Frequency Approximation: Wave Field Synthesis

The single-layer potential (3) satisfies the homogeneous Helmholtz equation

both in the interior and exterior regions V and V ∗ := R
n \ (V ∪ ∂V ). If
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D(x0, ω) is continuous, the pressure P (x, ω) is continuous when approach-

ing the surface ∂V from the inside and outside. Due to the presence of the

secondary sources at the surface ∂V , the gradient of P (x, ω) is discontin-

uous when approaching the surface. The strength of the secondary sources

is then given by the differences of the gradients approaching ∂V from both

sides as18 18 Compare F. M. Fazi and P. A. Nelson.

“Sound field reproduction as an equivalent

acoustical scattering problem”. The Journal

of the Acoustical Society of America 134.5

(2013), pp. 3721–9

D(x0, ω) = ∂nP (x0, ω) + ∂−nP (x0, ω) , (24)

where ∂n:=〈∇,n〉 is the directional gradient in direction n – see Figure 2.1.

Due to the symmetry of the problem the solution for an infinite planar bound-

ary ∂V is given as

D(x0, ω) = −2∂nS(x0, ω) , (25)

where the pressure in the outside region is the mirrored interior pressure

given by the source model S(x, ω) for x ∈ V . The integral equation re-

sulting from introducing (25) into (3) for a planar boundary ∂V is known

as Rayleigh’s first integral equation. This solution is identical to the explicit

solution for planar geometries (18) in R
3 and for linear geometries (22) in

R
2.

A solution of (24) for arbitrary boundaries can be found by applying the

Kirchhoff or physical optics approximation.19 In acoustics this is also known

19 See D. Colton and R. Kress. Integral

Equation Methods in Scattering Theory.

New York: Wiley, 1983, p. 53–54

as determining the visible elements for the high frequency boundary element

method.20 Here, it is assumed that a bent surface can be approximated by

20 E.g. D. W. Herrin et al. “A New Look

at the High Frequency Boundary Element

and Rayleigh Integral Approximations”. In:

Noise & Vibration Conference and Exhibi-

tion. 2003

a set of small planar surfaces for which (25) holds locally. In general, this

will be the case if the wave length is much smaller than the size of a planar

surface patch and the position of the listener is far away from the secondary

sources.21 Additionally, only one part of the surface is active: the area that

21 Compare the two assumptions in S. Spors

and F. Zotter. “Spatial Sound Synthesis with

Loudspeakers”. In: Cutting Edge in Spatial

Audio, EAA Winter School. 2013, pp. 32–

37, made before (15), which lead to the

derivation of the same window function in

a more explicit way.

is illuminated from the incident field of the source model.

With this approximation also non-convex secondary source distributions can

be used with WFS – compare Figure 2.2.22 This was neglected in most of the

22 See the appendix in M. Lax and H. Fesh-

bach. “On the Radiation Problem at High

Frequencies”. The Journal of the Acoustical

Society of America 19.4 (1947), pp. 682–90

literature so far, which postulates convex secondary source distributions.23

23 E.g. S. Spors, R. Rabenstein, and J.

Ahrens. “The Theory of Wave Field Synthe-

sis Revisited”. In: 124th Audio Engineering

Society Convention. 2008, Paper 7358
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Figure 2.2: Sound pressure of a point

source synthesized with WFS (68). The

secondary source distribution is shown in

black, whereby inactive sources are marked

with a dashed line. Parameters: xs =
(0, 2.5, 0)m, xref = (0,−3, 0)m, f =
700Hz. Z

The outlined approximation can be formulated by introducing a window

function w(x0) for the selection of the active secondary sources into (25) as

P (x, ω) ≈

∮

∂V

G(x|x0, ω) −2w(x0)∂nS(x0, ω)
︸ ︷︷ ︸

D(x0,ω)

dA(x0) . (26)

One of the advantages of the applied approximation is that due to its local

character the solution of the driving function (25) does not depend on the

http://github.com/sfstoolbox/sfs-documentation/tree/master/02_theory_of_sound_field_synthesis/fig2_02
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geometry of the secondary sources. This dependency applies to the direct

solutions presented in Section 2.1.

2.3 Sound Field Dimensionality

The single-layer potential (3) is valid for all V ⊂ R
n. Consequentially, for

practical applications a two-dimensional (2D) as well as a three-dimensional

(3D) synthesis is possible. Two-dimensional is not referring to a synthesis

in a plane only, but describes a setup that is independent of one dimension.

For example, an infinite cylinder is independent of the dimension along its

axis. The same is true for secondary source distributions in 2D synthesis.

They exhibit line source characteristics and are aligned in parallel to the in-

dependent dimension. Typical arrangements of such secondary sources are a

circular or a linear setup.

The characteristics of the secondary sources limit the set of possible sources

which can be synthesized. For example, when using a 2D secondary source

setup it is not possible to synthesize the amplitude decay of a point source.

For a 3D synthesis the involved secondary sources depend on all dimen-

sions and exhibit point source characteristics. In this scenario classical sec-

ondary sources setups would be a sphere or a plane.

2.3.1 2.5D Synthesis

2.5D3D 2D Figure 2.3: Sound pressure in decibel for

secondary source distributions with differ-

ent dimensionality all driven by the same

signals. The sound pressure is color coded,

lighter color corresponds to lower pressure.

In the 3D case a planar distribution of point

sources is applied, in the 2.5D case a linear

distribution of point sources, and in the 2D

case a linear distribution of line sources. Z

In practice, the most common setups of secondary sources are 2D setups,

employing cabinet loudspeakers. A cabinet loudspeaker does not show the

characteristics of a line source, but of a point source. This dimensionality

mismatch prevents perfect synthesis within the desired plane. The combina-

tion of a 2D secondary source setup with secondary sources that exhibit 3D

characteristics has led to naming such configurations 2.5D synthesis.24 Such

24 E. W. Start. “Direct Sound Enhance-

ment by Wave Field Synthesis”. PhD thesis.

Technische Universiteit Delft, 1997

scenarios are associated with a wrong amplitude decay due to the inherent

mismatch of secondary sources as is highlighted in Figure 2.3. In general,

the amplitude is only correct at a given reference point xref.

For a circular secondary source distribution with point source characteris-

tic the 2.5D driving function can be derived by introducing expansion coef-

ficients for the spherical case into the driving function (14). The equation is

than solved for θ = 0◦ and rref = 0. This results in a 2.5D driving function

given in Ahrens25 as 25 Ibid., (3.49).

Dcircular,2.5D(φ0, ω) =
1

2πR0

∞∑

m=−∞

S̆m
|m|(

π

2 , φs, rs, ω)

Ğm
|m|(

π

2 , 0, ω)
Φm(φ0) . (27)

For a linear secondary source distribution with point source characteris-

tics the 2.5D driving function is derived by introducing the linear expansion

http://github.com/sfstoolbox/sfs-documentation/tree/master/02_theory_of_sound_field_synthesis/fig2_03
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coefficients for a monopole source (40) into the driving function (22) and

solving the equation for y = yref and z = 0. This results in a 2.5D driving

function given as26 26 Ibid., (3.77).

Dlinear,2.5D(x0, ω) =
1

2π

∫ ∞

−∞

S̆(kx, yref, 0, ω)

Ğ(kx, yref, 0, ω)
χ(kx, x0) dkx . (28)

A driving function for the 2.5D situation in the context of WFS and arbi-

trary 2D geometries of the secondary source distribution can be achieved by

applying the far-field approximation27 H
(2)
0 (ζ) ≈

√
2i
πζ e

−iζ for ζ ≫ 1 to 27 Williams, op. cit., (4.23).

the 2D Green’s function. Using this the following relationship between the

2D and 3D Green’s functions can be established.

−
i

4
H

(2)
0

(ω

c
|x− x0|

)

︸ ︷︷ ︸

G2D(x−x0,ω)

≈

√

2π
c

iω
|x− x0|

1

4π

e−iω
c
|x−x0|

|x− x0|
︸ ︷︷ ︸

G3D(x−x0,ω)

, (29)

where H
(2)
0 denotes the Hankel function of second kind and zeroth order.

Inserting this approximation into the single-layer potential for the 2D case

results in

P (x, ω) =

∮

S

√

2π
c

iω
|x− x0| D(x0, ω)G3D(x− x0, ω) dA(x0) . (30)

If the amplitude correction is further restricted to one reference point xref,

the 2.5D driving function for WFS can be formulated as

D2.5D(x0, ω) =
√

2π|xref − x0|
︸ ︷︷ ︸

g0

√
c

iω
D(x0, ω) , (31)

where g0 is independent of x.
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2.4 Model-Based Rendering

greens function mono.m

greens function imp.mKnowing the pressure field of the desired source S(x, ω) is required in or-

der to derive the driving signal for the secondary source distribution. It can

either be measured, i.e. recorded, or modeled. While the former is known

as data-based rendering, the latter is known as model-based rendering. For

data-based rendering, the problem of how to capture a complete sound field

still has to be solved. Avni et al. discuss some influences of the recording

limitations on the perception of the reproduced sound field.28 This thesis fo- 28 A. Avni et al. “Spatial perception of sound

fields recorded by spherical microphone ar-

rays with varying spatial resolution”. The

Journal of the Acoustical Society of Amer-

ica 133.5 (2013), pp. 2711–21.

cusses on the perception of the synthesis part. Therefore it will consider only

model-based rendering.

Frequently applied models in model-based rendering are plane waves,

point sources, or sources with a prescribed complex directivity. In the follow-

ing the models used within the Sound Field Synthesis Toolbox are presented.

Plane Wave The source model for a plane wave is given as29

29 E. G. Williams. Fourier Acoustics. San

Diego: Academic Press, 1999, p. 21, (2.24).

Williams defines the Fourier transform with

transposed signs as F (ω) =
∫
f(t)eiωt.

This leads also to changed signs in his defi-

nitions of the Green’s functions and field ex-

pansions.

−1

0

1

−1 0 1

y
/

m

x / m

Figure 2.4: Sound pressure for a monochro-

matic plane wave (32) going into the direc-

tion (1, 1, 0). Parameters: f = 800Hz. Z

S(x, ω) = A(ω)e−iω
c
nkx , (32)

#S:pw

where A(ω) denotes the frequency spectrum of the source and nk a unit

vector pointing into the direction of the plane wave.

Transformed in the temporal domain this becomes

s(x, t) = a(t) ∗ δ
(

t−
nkx

c

)

, (33)

#s:pw

where a(t) is the Fourier transformation of the frequency spectrum A(ω).

The expansion coefficients for spherical basis functions are given as30

30 Ahrens, op. cit., (2.38)

S̆m
n (θk, φk, ω) = 4πi−nY −m

n (θk, φk) , (34)

where (φk, θk) is the radiating direction of the plane wave.

In a similar manner the expansion coefficients for circular basis functions

are given as

S̆m(φs, ω) = i−nΦ−m(φs) . (35)

The expansion coefficients for linear basis functions are given as after

Ahrens31 31 ibid., (C.5)

S̆(kx, y, ω) = 2π δ(kx − kx,s)χ(ky,s, y) , (36)

where (kx,s, ky,s) points into the radiating direction of the plane wave.

−1

0

1

−1 0 1

y
/

m

x / m

Figure 2.5: Sound pressure for a monochro-

matic point source (37) placed at (0, 0, 0).
Parameters: f = 800Hz. Z

Point Source The source model for a point source is given by the three

dimensional Green’s function as32

32 Williams, op. cit., (6.73)

S(x, ω) = A(ω)
1

4π

e−iω
c
|x−xs|

|x− xs|
, (37)

#S:ps

where xs describes the position of the point source.

Transformed to the temporal domain this becomes

s(x, t) = a(t) ∗
1

4π

1

|x− xs|
δ

(

t−
|x− xs|

c

)

. (38)

#s:ps

http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_monochromatic/greens_function_mono.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_time_domain/greens_function_imp.m
http://github.com/sfstoolbox/sfs-documentation/tree/master/02_theory_of_sound_field_synthesis/fig2_04
http://github.com/sfstoolbox/sfs-documentation/tree/master/02_theory_of_sound_field_synthesis/fig2_05
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The expansion coefficients for spherical basis functions are given as33 33 Ahrens, op. cit., (2.37).

S̆m
n (θs, φs, rs, ω) = −i

ω

c
h(2)n

(ω

c
rs

)

Y −m
n (θs, φs) , (39)

where (φs, θs, rs) describes the position of the point source.

The expansion coefficients for linear basis functions are given as34 34 Ibid., (C.10).

S̆(kx, y, ω) = −
i

4
H

(2)
0

(√

(ωc )
2 − k2x |y − ys|

)

χ(−kx, xs) , (40)

for |kx| < |ωc | and with (xs, ys) describing the position of the point source.

3D Dipole Source The source model for a three dimensional dipole source

is given by the directional derivative of the three dimensional Green’s func-

tion with respect to ns defining the orientation of the dipole source.

S(x, ω) = A(ω)

〈

∇xs

(
1

4π

e−iω
c
|x−xs|

|x− xs|

)

,ns

〉

= A(ω)
1

4π

(
1

|x− xs|
+ i

ω

c

)
〈x− xs,ns〉

|x− xs|2
e−iω

c
|x−xs| .

(41)

#S:dps
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Figure 2.6: Sound pressure for a monochro-

matic 3D dipole source (41) placed at

(0, 0, 0). Parameters: f = 800Hz. Z

Transformed to the temporal domain this becomes

s(x, t) = a(t)∗

(
1

|x− xs|
+ F−1

{
iω

c

})

∗
〈x− xs,ns〉

4π|x− xs|2
δ

(

t−
|x− xs|

c

)

.

(42)

#s:dps

Line Source The source model for a line source is given by the two dimen-

sional Green’s function as35

35 ibid., (8.47)

S(x, ω) = −A(ω)
i

4
H

(2)
0

(ω

c
|x− xs|

)

. (43)

#S:ls
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Figure 2.7: Sound pressure for a monochro-

matic line source (43) placed at (0, 0, 0).
Parameters: f = 800Hz. Z

Applying the large argument approximation of the Hankel function36 and

36 ibid., (4.23)

transformed to the temporal domain this becomes

s(x, t) = a(t)∗F−1

{√
c

iω

}

∗

√

1

8π

1
√

|x− xs|
δ

(

t−
|x− xs|

c

)

. (44)

#s:ls

The expansion coefficients for circular basis functions are given as

S̆m(φs, rs, ω) = −
i

4
H(2)

m

(ω

c
rs

)

Φ−m(φs) . (45)

The expansion coefficients for linear basis functions are given as

S̆(kx, ys, ω) = −
i

2

1
√

(ωc )
2 − k2x

χ(ky, ys) . (46)

2.5 Driving Functions

In the following, driving functions for Near-Field Compensated Higher Or-

der Ambisonics, the Spectral Division Method and Wave Field Synthesis

are derived for spherical, circular, and linear secondary source distributions.

Among the possible combinations of methods and secondary sources not all

http://github.com/sfstoolbox/sfs-documentation/tree/master/02_theory_of_sound_field_synthesis/fig2_06
http://github.com/sfstoolbox/sfs-documentation/tree/master/02_theory_of_sound_field_synthesis/fig2_07
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are meaningful. Hence, only the relevant ones will be presented. The same

holds for the introduced source models of plane waves, point sources, line

sources and focused sources. Ahrens and Spors37 in addition have consid-
37 Ahrens and Spors, op. cit.

ered Spectral Division Method driving functions for planar secondary source

distributions.

The driving functions are given in the temporal-frequency domain. For

some of them, especially in the case of WFS an analytic solution in the tem-

poral domain exists and is presented. For NFC-HOA, temporal-domain im-

plementations for the 2.5D cases are available for a plane wave and a point

source as source models. The derivation of the implementation is not explic-

itly shown here, but is described in Spors et al.38

38 S. Spors, V. Kuscher, and J. Ahrens. “Ef-

ficient realization of model-based rendering

for 2.5-dimensional near-field compensated

higher order Ambisonics”. In: IEEE Work-

shop on Applications of Signal Processing

to Audio and Acoustics. 2011, pp. 61–64The 2.5D cases are illustrated in the following by companion figures, be-

cause only those cases will be investigated in the remainder of this thesis.

2.5.1 Near-Field Compensated Higher Order Ambisonics and Spec-

tral Division Method
driving function mono nfchoa pw.m

driving function mono sdm pw.m

driving function imp nfchoa pw.m

Plane Wave For a spherical secondary source distribution with radius R0

the spherical expansion coefficients of a plane wave (34) and of the Green’s

function for a point source (11) are inserted into (10) and yield39 39 Schultz and Spors, op. cit., (96).

Dspherical(θ0, φ0, ω) = −A(ω)
4π

R 2
0

∞∑

n=0

n∑

m=−n

i−nY −m
n (θk, φk)

iωc h
(2)
n

(
ω
cR0

) Y m
n (θ0, φ0) .

(47)

#D:hoa:pw:3D
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Figure 2.8: Sound pressure of a monochro-

matic plane wave synthesized with 2.5D

NFC-HOA (49). Parameters: nk =
(0,−1, 0), xref = (0, 0, 0), f = 1 kHz.

Z

For a circular secondary source distribution with radius R0 the circular

expansion coefficients of a plane wave (35) and of the Green’s function for a

line source (15) are inserted into (14) and yield40

40 Compare J. Ahrens and S. Spors. “On the

Secondary Source Type Mismatch in Wave

Field Synthesis Employing Circular Distri-

butions of Loudspeakers”. In: 127th Audio

Engineering Society Convention. 2009, Pa-

per 7952, (16)

Dcircular(φ0, ω) = −A(ω)
2i

πR0

∞∑

m=−∞

i−mΦ−m(φk)

H
(2)
m (ωcR0)

Φm(φ0) .

(48)

#D:hoa:pw:2D

For a circular secondary source distribution with radius R0 and point

source as Green’s function the 2.5D driving function is given by inserting the

spherical expansion coefficients for a plane wave (34) and a point source (39)

into (27) as

Dcircular, 2.5D(φ0, ω) = −A(ω)
2

R0

∞∑

m=−∞

i−|m|Φ−m(φk)

iωc h
(2)
|m|

(
ω
cR0

)Φm(φ0) .

(49)

#D:hoa:pw:2.5D

For an infinite linear secondary source distribution located on the x-axis the

2.5D driving function is given by inserting the linear expansion coefficients

for a point source as Green’s function (23) and a plane wave (36) into (28)

and exploiting the fact that (ωc )
2−kxs

is constant. Assuming 0 ≤ |kxs
| ≤ |ωc |

this results in41 41 J. Ahrens and S. Spors. “Sound Field

Reproduction Using Planar and Linear Ar-

rays of Loudspeakers”. IEEE Transactions

on Audio, Speech, and Language Process-

ing 18.8 (2010), pp. 2038–50, (17)

Dlinear, 2.5D(x0, ω) = A(ω)
4iχ(ky, yref)

H
(2)
0 (kyyref)

χ(kx, x0) . (50)

#D:sdm:pw:2.5D

Transfered to the temporal domain this results in42

42 ibid., (18)

http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_monochromatic/driving_functions_mono/driving_function_mono_nfchoa_pw.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_monochromatic/driving_functions_mono/driving_function_mono_sdm_pw.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_time_domain/driving_functions_imp/driving_function_imp_nfchoa_pw.m
http://github.com/sfstoolbox/sfs-documentation/tree/master/02_theory_of_sound_field_synthesis/fig2_08
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dlinear, 2.5D(x0, t) = h(t) ∗ a(t−
x0

c
sinφk −

yref

c
sinφk) , (51)

where φk denotes the azimuth direction of the plane wave and

h(t) = F−1

{

4i

H
(2)
0 (kyyref)

}

. (52)

The advantage of this result is that it can be implemented by a simple weight-

ing and delaying of the signal, plus one convolution with h(t). The same

holds for the driving functions of WFS as presented in the next section.

Point Source For a spherical secondary source distribution with radius R0

the spherical coefficients of a point source (39) and of the Green’s func-

tion (11) are inserted into (10) and yield driving function mono nfchoa ps.m

driving function imp nfchoa ps.m

Dspherical(θ0, φ0, ω) =

A(ω)
1

R 2
0

∞∑

n=0

n∑

m=−n

h
(2)
n (ωc rs)Y

−m
n (θs, φs)

h
(2)
n (ωcR0)

Y m
n (θ0, φ0) . (53)

#D:hoa:ps:3D
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Figure 2.9: Sound pressure for a monochro-

matic point source synthesized by 2.5D

NFC-HOA (54). Parameters: xs =
(0, 2.5, 0)m, xref = (0, 0, 0), f = 1 kHz.

Z

For a circular secondary source distribution with radius R0 and point

source as secondary sources the 2.5D driving function is given by inserting

the spherical coefficients (39) and (11) into (27) as

Dcircular, 2.5D(φ0, ω) = A(ω)
1

2πR0

∞∑

m=−∞

h
(2)
|m|(

ω
c rs)Φ−m(φs)

h
(2)
|m|(

ω
cR0)

Φm(φ0) .

(54)

#D:hoa:ps:2.5D

For an infinite linear secondary source distribution located on the x-axis

and point sources as secondary sources the 2.5D driving function for a point

source is given by inserting the corresponding linear expansion coefficients (40)

and (23) into (28). Assuming 0 ≤ |kx| < |ωc | this results in43 43 Compare (4.53) in Ahrens, op. cit.

Dlinear, 2.5D(x0, ω) =

A(ω)

∫ ∞

−∞

H
(2)
0

(√
(ωc )

2 − k2x (yref − ys)
)
χ(−kx, xs)

H
(2)
0

(√
(ωc )

2 − k2x yref

) χ(kx, x0) dkx .

(55)

#D:sdm:ps:2.5D

Line Source For a circular secondary source distribution with radius R0

and line sources as secondary sources the driving function is given by insert-

ing the circular coefficients (45) and (15) into (14) as

Dcircular(φ0, ω) = A(ω)
1

2πR0

∞∑

m=−∞

H
(2)
m (ωc rs)Φ−m(φs)

H
(2)
m (ωcR0)

Φm(φ0) . (56)

For an infinite linear secondary source distribution located on the x-axis

and line sources as secondary sources the driving function is given by insert-

ing the linear coefficients (46) and (15) into (22) as

Dlinear(x0, ω) = A(ω)
1

2π

∫ ∞

−∞

χ(ky, ys)χ(kx, x0) dkx . (57)

http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_monochromatic/driving_functions_mono/driving_function_mono_nfchoa_ps.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_time_domain/driving_functions_imp/driving_function_imp_nfchoa_ps.m
http://github.com/sfstoolbox/sfs-documentation/tree/master/02_theory_of_sound_field_synthesis/fig2_09
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Focused Source Focused sources mimic point or line sources that are lo-

cated inside the audience area. For the single-layer potential the assumption

is that the audience area is free from sources and sinks. However, a focused

source is neither of them. It represents a sound field that converges towards

a focal point and diverges afterwards. This can be achieved by reversing the

driving function of a point or line source in time which is known as time

reversal focusing.44

44 S. Yon, M. Tanter, and M. Fink. “Sound

focusing in rooms: The time-reversal ap-

proach”. The Journal of the Acoustical So-

ciety of America 113.3 (2003), pp. 1533–43Nonetheless, the single-layer potential should not be solved for focused

sources without any approximation. In the near field of a source, evanescent

waves45 appear for spatial frequencies kx > |ωc |. They decay exponentially

45 Williams, op. cit., p. 24

with the distance from the source. An exact solution for a focused source is

supposed to include these evanescent waves around the focal point. That is

only possible by applying very large amplitudes to the secondary sources.46

46 Compare Fig. 2a in S. Spors and J.

Ahrens. “Reproduction of Focused Sources

by the Spectral Division Method”. In: Inter-

national Symposium on Communications,

Control and Signal Processing. 2010

Since the evanescent waves decay rapidly and are hence not influencing the

perception, they can easily be omitted. For corresponding driving functions

for focused sources without the evanescent part of the sound field see Spors

and Ahrens47 for SDM and Ahrens and Spors48 for NFC-HOA.

47 ibid.
48 J. Ahrens and S. Spors. “Spatial encod-

ing and decoding of focused virtual sound

sources”. In: International Symposium on

Ambisonics and Spherical Acoustics. 2009In this thesis only focused sources in WFS will be considered.

2.5.2 Wave Field Synthesis

In the following, the driving functions for WFS in the frequency and tempo-

ral domain for selected source models are presented. The temporal domain

functions consist of a filtering of the source signal and a weighting and de-

laying of the individual secondary source signals. This property allows for a

very efficient implementation of WFS driving functions in the temporal do-

main. It is one of the main advantages of WFS in comparison to most of the

NFC-HOA/SDM solutions discussed above.

driving function mono wfs pw.m

driving function imp wfs pw.mPlane Wave By inserting the source model of a plane wave (32) into (25)

and (31) it follows

D(x0, ω) = 2w(x0)A(ω)i
ω

c
nknx0

e−iω
c
nkx0 , (58)

#D:wfs:pw

D2.5D(x0, ω) = 2g0w(x0)A(ω)

√

i
ω

c
nknx0

e−iω
c
nkx0 . (59)

#D:wfs:pw:2.5D −1
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Figure 2.10: Sound pressure for a

monochromatic plane wave synthe-

sized by 2.5D WFS (59). Parameters:

nk = (0,−1, 0), xref = (0, 0, 0),
f = 1 kHz. Z

Transfered to the temporal domain via an inverse Fourier transform (2), it

follows

d(x0, t) = 2a(t) ∗ h(t) ∗ w(x0)nknx0
δ
(

t−
nkx0

c

)

, (60)

#d:wfs:pw

d2.5D(x0, t) = 2g0a(t) ∗ h2.5D(t) ∗ w(x0)nknx0
δ
(

t−
nkx0

c

)

,

(61)

#d:wfs:pw:2.5D

where

h(t) = F−1
{

i
ω

c

}

, (62)

#wfs:preeq

http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_monochromatic/driving_functions_mono/driving_function_mono_wfs_pw.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_time_domain/driving_functions_imp/driving_function_imp_wfs_pw.m
http://github.com/sfstoolbox/sfs-documentation/tree/master/02_theory_of_sound_field_synthesis/fig2_10


19

and

h2.5D(t) = F−1

{√

i
ω

c

}

(63)

#wfs:preeq:2.5D

denote the so called pre-equalization filters in WFS. wfs fir prefilter.m

secondary source selection.mThe window function w(x0) for a plane wave as source model can be

calculated after Spors et al. as49 49 S. Spors, R. Rabenstein, and J. Ahrens.

“The Theory of Wave Field Synthesis Revis-

ited”. In: 124th Audio Engineering Society

Convention. 2008, Paper 7358.w(x0) =







1 nknx0
> 0

0 else
(64)

#wfs:pw:selection

driving function mono wfs ps.m
Point Source By inserting the source model for a point source (37) into (25)

driving function imp wfs ps.m

and (31) it follows

−1

0

1

−1 0 1

y
/

m

x / m

Figure 2.11: Sound pressure for a

monochromatic point source synthe-

sized by 2.5D WFS (68). Parameters:

xs = (0, 2.5, 0)m, xref = (0, 0, 0),

f = 1 kHz. Z

D(x0, ω) =

1

2π
A(ω)w(x0)

(

i
ω

c
+

1

|x0 − xs|

)
(x0 − xs)nx0

|x0 − xs|2
e−iω

c
|x0−xs| ,

(65)

#D:wfs:ps:woapprox

D2.5D(x0, ω) =

g0

2π
A(ω)w(x0)

√

i
ω

c

(

1 +
1

iωc |x0 − xs|

)
(x0 − xs)nx0

|x0 − xs|2
e−iω

c
|x0−xs| .

(66)

#D:wfs:ps:woapprox:2.5D

Under the assumption of |x0 − xs| ≫ 1 (65) and (66) can be approximated

by

D(x0, ω) =
1

2π
A(ω)w(x0)i

ω

c

(x0 − xs)nx0

|x0 − xs|
3/2

e−iω
c
|x0−xs| , (67)

#D:wfs:ps

D2.5D(x0, ω) =

g0

2π
A(ω)w(x0)

√

i
ω

c

(x0 − xs)nx0

|x0 − xs|
3/2

e−iω
c
|x0−xs| , (68)

#D:wfs:ps:2.5D

which is the traditional formulation of a point source in WFS as given for

the 2.5D case in Verheijen.50 It has the advantage that its temporal domain 50 E. Verheijen. “Sound Reproduction by

Wave Field Synthesis”. PhD thesis. Tech-

nische Universiteit Delft, 1997, (2.22a),

whereby r corresponds to |x0 − xs| and

cosϕ to
(x0−xs)nx0

|x0−xs|
.

version could again be implemented as a simple weighting- and delaying-

mechanism. This is the default driving function for a point source in the

Sound Field Synthesis Toolbox.

Transfered to the temporal domain via an inverse Fourier transform (2) it

follows

d(x0, t) =
1

2π
a(t) ∗ h(t) ∗ w(x0)

(x0 − xs)nx0

|x0 − xs|
3/2

δ

(

t−
|x0 − xs|

c

)

,

(69)

#d:wfs:ps

http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_time_domain/wfs_fir_prefilter.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_general/secondary_source_selection.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_monochromatic/driving_functions_mono/driving_function_mono_wfs_ps.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_time_domain/driving_functions_imp/driving_function_imp_wfs_ps.m
http://github.com/sfstoolbox/sfs-documentation/tree/master/02_theory_of_sound_field_synthesis/fig2_11
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d2.5D(x0, t) =

g0

2π
a(t) ∗ h2.5D(t) ∗ w(x0)

(x0 − xs)nx0

|x0 − xs|
3/2

δ

(

t−
|x0 − xs|

c

)

.

(70)

#d:wfs:ps:2.5D

The window function w(x0) for a point source as source model can be cal- secondary source selection.m

culated after Spors at al. as51 51 Spors, Rabenstein, and Ahrens, op. cit.

w(x0) =







1 (x0 − xs)nx0
> 0

0 else
(71)

#wfs:ps:selection

driving function mono wfs ls.m

driving function imp wfs ls.m
Line Source By inserting the source model for a line source (43) into (25)

and (31) and calculating the derivate of the Hankel function52 it follows 52 M. Abramowitz and I. A. Stegun. Hand-

book of Mathematical Functions. Washing-

ton: National Bureau of Standards, 1972,

(9.1.30).D(x0, ω) = −
1

2
A(ω)w(x0)i

ω

c

(x0 − xs)nx0

|x0 − xs|
H

(2)
1

(ω

c
|x0 − xs|

)

,

(72)

#D:wfs:ls

D2.5D(x0, ω) =

−
1

2
g0A(ω)w(x0)

√

i
ω

c

(x0 − xs)nx0

|x0 − xs|
H

(2)
1

(ω

c
|x0 − xs|

)

.

(73)

#D:wfs:ls:2.5D

−1

0

1

−1 0 1

y
/

m

x / m

Figure 2.12: Sound pressure for a

monochromatic line source synthe-

sized by 2.5D WFS (73). Parameters:

xs = (0, 2.5, 0)m, xref = (0, 0, 0),
f = 1 kHz. Z

Applying H
(2)
1 (ζ) ≈ −

√
2

πiζ e
−iζ for z ≫ 1 after Williams53 and trans-

53 Williams, op. cit., (4.23)

fered to the temporal domain via an inverse Fourier transform (2) it follows

d(x0, t) =

√

1

2π
a(t) ∗ h(t) ∗ w(x0)

(x0 − xs)nx0

|x0 − xs|
3/2

δ

(

t−
|x0 − xs|

c

)

,

(74)

#d:wfs:ls

d2.5D(x0, t) =

g0

√

1

2π
a(t) ∗ F−1

{√
c

iω

}

∗ w(x0)
(x0 − xs)nx0

|x0 − xs|
3/2

δ

(

t−
|x0 − xs|

c

)

.

(75)

The window function w(x0) for a line source as source model can be calcu- secondary source selection.m

lated after Spors et al. as54 54 Spors, Rabenstein, and Ahrens, op. cit.

w(x0) =







1 (x0 − xs)nx0
> 0

0 else
(76)

#wfs:ls:selection

driving function mono wfs fs.m

driving function imp wfs fs.m

−1

0

1

−1 0 1

y
/

m

Focused Source As mentioned before, focused sources exhibit a field that

converges in a focal point inside the audience area. After passing the fo-

cal point, the field becomes a diverging one as can be seen in Figure 2.13.

In order to choose the active secondary sources, especially for circular or

spherical geometries, the focused source also needs a direction ns.

http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_general/secondary_source_selection.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_monochromatic/driving_functions_mono/driving_function_mono_wfs_ls.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_time_domain/driving_functions_imp/driving_function_imp_wfs_ls.m
http://github.com/sfstoolbox/sfs-documentation/tree/master/02_theory_of_sound_field_synthesis/fig2_12
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_general/secondary_source_selection.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_monochromatic/driving_functions_mono/driving_function_mono_wfs_fs.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_time_domain/driving_functions_imp/driving_function_imp_wfs_fs.m
http://github.com/sfstoolbox/sfs-documentation/tree/master/02_theory_of_sound_field_synthesis/fig2_13
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The driving function for a focused source are given by the time-reversed

versions of the driving functions for a point source as

D(x0, ω) =

1

2π
A(ω)w(x0)

(

i
ω

c
+

1

|x0 − xs|

)
(x0 − xs)nx0

|x0 − xs|2
ei

ω

c
|x0−xs| ,

(77)

#D:wfs:fs:woapprox

D2.5D(x0, ω) =

g0

2π
A(ω)w(x0)

√

i
ω

c

(

1 +
1

iωc |x0 − xs|

)
(x0 − xs)nx0

|x0 − xs|2
ei

ω

c
|x0−xs| ,

(78)

#D:wfs:fs:woapprox:2.5D

or by using an approximated point source as

D(x0, ω) =
1

2π
A(ω)w(x0)i

ω

c

(x0 − xs)nx0

|x0 − xs|
3/2

ei
ω

c
|x0−xs| , (79)

#D:wfs:fs

D2.5D(x0, ω) =
g0

2π
A(ω)w(x0)

√

i
ω

c

(x0 − xs)nx0

|x0 − xs|
3/2

ei
ω

c
|x0−xs| .

(80)

#D:wfs:fs:2.5D

As before for other source types, the approximated versions are the default

driving functions for a focused source used in this thesis.

Transfered to the temporal domain via an inverse Fourier transform (2) it

follows

d(x0, t) =
1

2π
a(t) ∗ h(t) ∗ w(x0)

(x0 − xs)nx0

|x0 − xs|
3/2

δ

(

t+
|x0 − xs|

c

)

,

(81)

#d:wfs:fs

d2.5D(x0, t) =

g0

2π
a(t) ∗ h2.5D(t) ∗ w(x0)

(x0 − xs)nx0

|x0 − xs|
3/2

δ

(

t+
|x0 − xs|

c

)

.

(82)

#d:wfs:fs:2.5D

In this thesis a focused source always refers to the time-reversed version of

a point source, but a focused line source can be defined in the same way

starting from (72)

D(x0, ω) = −
1

2
A(ω)w(x0)i

ω

c

(x0 − xs)nx0

|x0 − xs|
H

(1)
1

(ω

c
|x0 − xs|

)

.

(83)

#D:wfs:fs:ls

The window function w(x0) for a focused source can be calculated as secondary source selection.m

w(x0) =







1 ns(xs − x0) > 0

0 else
(84)

#wfs:fs:selection

http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_general/secondary_source_selection.m
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2.5.3 Local Sound Field Synthesis

The reproduction accuracy of WFS is limited due to practical aspects. For

the audible frequency range the desired sound field can not be synthesized

aliasing-free over an extended listening area, which is surrounded by a dis-

crete ensemble of individually driven loudspeakers. However, it is suitable

for certain applications to increase reproduction accuracy inside a smaller

(local) listening region while stronger artifacts outside are permitted. The

implemented Local Wave Field Synthesis method utilizes focused sources as

a distribution of virtual loudspeakers which are placed more densely around

the local listening area. These virtual loudspeakers can be driven by conven-

tional SFS techniques, like e.g. WFS or NFC-HOA. The results are similar

to band-limited NFC-HOA, with the difference that the form and position of

the enhanced area can freely be chosen within the listening area.

The set of focused sources is treated as a virtual loudspeaker distribution

and their positions xfs are subsumed under Xfs. Therefore, each focused

source is driven individually by Dl(xfs, ω), which in principle can be any

driving function for real loudspeakers mentioned in previous sections. At the

moment however, only WFS and NFC-HOA driving functions are supported.

The resulting driving function for a loudspeaker located at x0 reads driving function mono localwfs.m

driving function mono wfs vss.m

D(x0, ω) =
∑

xfs∈Xfs

Dl(xfs, ω)Dfs(x0,xfs, ω) , (85)

#D:localwfs

which is superposition of the driving function Dlfs(x0,xfs, ω) reproducing

a single focused source at xfs weighted by Dl(xfs, ω). Former is derived by

replacing xs with xfs in the WFS driving functions (79) and (82) for focused

sources. This yields

Dfs(x0,xfs, ω) =
1

2π
A(ω)w(x0)i

ω

c

(x0 − xfs)nx0

|x0 − xfs|
3/2

ei
ω

c
|x0−xfs| (86)

and

Dfs,2.5D(x0,xfs, ω) =
g0

2π
A(ω)w(x0)

√

i
ω

c

(x0 − xs)nx0

|x0 − xs|
3/2

ei
ω

c
|x0−xs| .

(87)

for the 2.5D case. For the temporal domain, inverse Fourier transform yields

the driving signals driving function imp localwfs.m

driving function imp wfs vss.m

d(x0, t) =
∑

xfs∈Xfs

dl(xfs, t) ∗ dfs(x0,xfs, t) , (88)

#d:localwfs

while dfs(x0,xfs, t) is derived analogously to (85) from (81) or (82). At the

moment dl(xfs, t) does only support driving functions from WFS.

http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_monochromatic/driving_function_mono_localwfs.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_monochromatic/driving_functions_mono/driving_function_mono_wfs_vss.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_time_domain/driving_function_imp_localwfs.m
http://github.com/sfstoolbox/sfs/blob/1.2.0/SFS_time_domain/driving_functions_imp/driving_function_imp_wfs_vss.m


Formula reference mapping

D:hoa:ps:2.5D eq. (54). 17

D:hoa:ps:3D eq. (53). 17

D:hoa:pw:2.5D eq. (49). 16

D:hoa:pw:2D eq. (48). 16

D:hoa:pw:3D eq. (47). 16

D:localwfs eq. (85). 22

d:localwfs eq. (88). 22

D:sdm:ps:2.5D eq. (55). 17

D:sdm:pw:2.5D eq. (50). 16

D:wfs:fs eq. (79). 21

d:wfs:fs eq. (81). 21

D:wfs:fs:2.5D eq. (80). 21

d:wfs:fs:2.5D eq. (82). 21

D:wfs:fs:ls eq. (83). 21

D:wfs:fs:woapprox eq. (77). 20

D:wfs:fs:woapprox:2.5D eq. (78). 21

D:wfs:ls eq. (72). 20

d:wfs:ls eq. (74). 20

D:wfs:ls:2.5D eq. (73). 20

D:wfs:ps eq. (67). 19

d:wfs:ps eq. (69). 19

D:wfs:ps:2.5D eq. (68). 19

d:wfs:ps:2.5D eq. (70). 19

D:wfs:ps:woapprox eq. (65). 19

D:wfs:ps:woapprox:2.5D eq. (66). 19

D:wfs:pw eq. (58). 18

d:wfs:pw eq. (60). 18

D:wfs:pw:2.5D eq. (59). 18

d:wfs:pw:2.5D eq. (61). 18

S:ls eq. (43). 15

s:ls eq. (44). 15

S:ps eq. (37). 14

s:ps eq. (38). 14

S:pw eq. (32). 14

s:pw eq. (33). 14

single:layer eq. (3). 7
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wfs:fs:selection eq. (84). 21

wfs:ls:selection eq. (76). 20

wfs:preeq eq. (62). 18

wfs:preeq:2.5D eq. (63). 18

wfs:ps:selection eq. (71). 19

wfs:pw:selection eq. (64). 18
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